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A ubiquitous problem in quantum physics is to understand the ground-state properties of many-
body systems. Confronted with the fact that exact diagonalisation quickly becomes impossible when
increasing the system size, variational approaches are typically employed as a scalable alternative:
energy is minimised over a subset of all possible states and then different physical quantities are com-
puted over the solution state. Despite remarkable success, rigorously speaking, all what variational
methods offer are upper bounds on the ground-state energy. On the other hand, so-called relax-
ations of the ground-state problem based on semidefinite programming represent a complementary
approach, providing lower bounds to the ground-state energy. However, in their current implemen-
tation, neither variational nor relaxation methods offer provable bound on other observables in the
ground state beyond the energy. In this work, we show that the combination of the two classes of
approaches can be used to derive certifiable bounds on the value of any observable in the ground
state, such as correlation functions of arbitrary order, structure factors, or order parameters. We
illustrate the power of this approach in paradigmatic examples of 1D and 2D spin-one-half Heisen-
berg models. To improve the scalability of the method, we exploit the symmetries and sparsity of
the considered systems to reach sizes of hundreds of particles at much higher precision than previous
works. Our analysis therefore shows how to obtain certifiable bounds on many-body ground-state
properties beyond energy in a scalable way.

I. INTRODUCTION

The quantitative description of many-body quantum
systems is one of the most important challenges in
physics. A standard formulation of the problem consists
of N particles each described by a Hilbert space of dimen-
sion d with interactions encapsulated by a Hamiltonian

H acting on CdN . Typical questions of interest are the
study of the system Hamiltonian evolution, the compu-
tation of the energy spectrum, or the characterisation
of thermal and ground-state properties. A brute force
approach to these problems requires diagonalisation of
the Hamiltonian, or more generally, dealing with matri-
ces whose dimension (equal to dN ) grows exponentially
with the number of particles. It is therefore intractable
beyond small clusters of particles.

Among quantum many-body problems, the study of
ground states plays a central role due to its relevance for
the understanding of the low-energy phases in the sys-
tem, and in particular for the study of genuine quantum
correlation properties without a classical analog [1]. For-
mally, a ground state |ψGS〉 of a quantum Hamiltonian
H is a state of minimal energy, that is, a minimiser to

the following problem:

EGS = min
|ψ〉∈CdN

〈ψ|H|ψ〉. (1)

As mentioned, if |ψ〉 is decomposed in some given basis
of the Hilbert space with an exponentially-growing num-
ber of parameters, the exact solution to this optimisation
problem quickly becomes intractable when increasing the
system size. In fact, the very enumeration of the exact
ground-state coefficients in a given basis is out of reach.
To solve this issue, the standard approach consists of
finding approximations to the optimisation that provide
a much better scaling in terms of computation. By far,
the most popular approach is given by variational meth-
ods. There, the minimisation in Eq. (1) is restricted to
a subset of Ansatz states A for which the computation
of the expectation value 〈ψ|H|ψ〉 and its minimisation is
scalable with the number of particles,

EA = min
|ψ〉∈A

〈ψ|H|ψ〉. (2)

From an optimal solution state |ψA〉, one then com-
putes the value of some physically-relevant observables
oA = 〈ψA|O|ψA〉. In these methods, the hope is that the
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set of Ansatz states A is suitably chosen so that the ob-
tained energy and state are close to the unknown exact
values, EA ∼ EGS and |ψA〉 ∼ |ψGS〉, and so are other
physically-relevant quantities, oA ∼ oGS = 〈ψGS|O|ψGS〉.

Variational methods suffer two major limitations:
First, they provide no guarantee that the derived upper
bound EA is close to the exact ground-state energy EGS.
Second, and more problematically, even with a promise
that EA is close to EGS, there is absolutely no guarantee
that the state |ψA〉 is close to the ground state |ψGS〉 (un-
less one has more information about the system of inter-
est, such as its energy gap). Hence, for observables other
than the energy, it is not known how the computed value
oA relates to the actual ground-state value oGS, and in
particular whether oA represents a lower or upper bound
to oGS. As it turns out, oA may significantly differ from
oGS, as for instance strikingly observed in some fermionic
Hubbard models [2]. These issues shall be discussed in
more details in the core of the paper.

Complementary approaches to variational methods,
and which are the focus of the present work, are so-
called relaxations of the ground-state problem. The gen-
eral idea is to minimise the energy over a set of parame-
ters that contains all the physically-possible expectation
values 〈ψ|H|ψ〉, but also other values that are not al-
lowed by quantum mechanics. As for variational meth-
ods, the optimisation in the relaxation has a much better
scaling than exact diagonalisation and can be computed
for larger system sizes. An example of this approach is
given by the semidefinite programming (SDP) relaxation
to non-commutative polynomial optimisation problems,
which have been considered in many different ground-
state problems, see for instance [3–6], and formalised
in [7, 8], see also [9, 10]. This relaxation, also known
as the Navascués-Pironio-Acin (NPA) hierarchy, plays a
fundamental role in this article and is detailed below. By
construction, as the minimisation is performed over a set
of solutions that contains all the physical values (and pos-
sibly extra values), any relaxation provides a lower bound
of the exact ground-state energy ER ≤ EGS. Relaxations
can also provide estimates oR to the expectation value
of observables O in the ground state, but in contrast to
variational methods, one cannot guarantee that these es-
timates are compatible with some underlying quantum
state. Furthermore, as for variational methods, there is
no a priori guarantee that these values are close to those
of the ground state, oR ∼ oGS, neither whether they rep-
resent upper or lower bounds to the ground-state values.
In summary, combining the present techniques, all what
can be certified about ground states is that its energy lies
within the range EGS ∈ [ER, EA].

In this work, we show that the combination of varia-
tional methods together with the NPA hierarchy is much
richer than previously envisioned, and allows for deriving
certified upper and lower bounds on the values of arbi-
trary observables in the ground state, oGS ∈ [oLB, oUB].
We achieve this by assisting the non-commutative poly-
nomial relaxations with some available upper bound of

the ground-state energy as given by variational methods,
an approach also considered in [11]. This allows for com-
puting lower and upper bounds to any observable that
can be expressed as a polynomial in a family of basic
observables. Examples of these operators are correlation
functions of arbitrary order, and structure factors which
characterize long-range fluctuations in many-body sys-
tems. We apply this approach to several paradigmatic
spin models. We focus on Heisenberg models with local
interactions and translation symmetry in one and two
spatial dimensions, and exploit these properties to con-
struct SDP relaxations for systems of up to a hundred of
particles, obtaining much better bounds to ground-state
observables than achieved in previous works. Our ap-
proach therefore provides a scalable way to derive prov-
able bounds on ground-state properties, beyond the en-
ergy.

The structure of the article is as follows. In Section II
we introduce the quantum ground-state problem. We re-
view both variational methods and relaxations, with an
emphasis on SDP relaxations of non-commutative poly-
nomial optimisation because of their central role in our
analysis, and see how they provide, respectively, upper
and lower bounds to the ground-state energy. In Section
III we present our main idea and show how to derive cer-
tifiable bounds on the ground-state value of any polyno-
mial observable when combining the two approaches. In
Section IV we provide several applications and illustra-
tions of our construction. We first introduce the general
form of the considered models, and discuss how to exploit
their symmetries and the sparsity of the Hamiltonian to
reach systems of hundreds of particles. We then apply
the method to different Heisenberg models in one- and
two-dimensional lattices. In Section V we finally discuss
our findings and display our conclusions.

II. GROUND-STATE PROBLEM

We consider quantum systems composed of N parti-
cles, whose interactions are described by a Hamiltonian
operator. In what follows, and for simplicity, we are go-
ing to focus our discussion on systems of finite dimen-
sion d on a lattice, although the techniques we discuss
also apply beyond this scenario, e.g. to boson or fermion
models. We consider systems with local interactions and
translational symmetries so that it is possible to define a
Hamiltonian for an arbitrary number of parties HN given
by the sum of different tensor product terms hi acting on
a subset of neighbouring particles, HN =

∑
i hi. One is

then interested in determining the value o
(N)
GS of relevant

physical observables ON in the ground state: |ψ(N)
GS 〉, see

also Eq. (1), namely o
(N)
GS = 〈ψ(N)

GS |ON |ψ
(N)
GS 〉. Often, one

is also interested in the thermodynamic limit of an in-
finite number of particles, which are typically inferred
using scaling considerations by studying the dependence

of o
(N)
GS with N . In what follows, we often remove the
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dependence on N to simplify the notation.
Exactly solving the ground-state problem is computa-

tionally too costly already for systems of several tens of
particles, as the dimension of the systems grows exponen-
tially with the number of particles, dN . Hence one should
abandon looking for an exact solution to the problem and
adopt approximations to it, such as variational methods
or relaxations, which offer a much more favorable scaling
with N .

A. Variational methods

Variational methods restrict the ground-state optimi-
sation to a subset of Ansatz states A. It is then de-
manded that the number of parameters needed to specify
an Ansatz state, |ψA〉, scales polynomially with the num-
ber of particles, N , and that the computation of mean
values of the operators in the Hamiltonian, 〈ψA|hi|ψA〉,
is efficient. This allows for solving the energy minimisa-
tion over Ansatz states, Eq. (2), for systems much larger
than those for which an exact diagonalisation is possible.

Mean field is one of the simplest instances of a varia-
tional method, where the set of Ansatz states is defined
by product states. Here, the number of parameters scales
linearly with the system size, Nd, and the mean value
of the local terms hi is easy to compute. The Density-
Matrix-Renormalisation-Group (DMRG) approach has
represented a breakthrough in the design of variational
methods, for it often allows one to obtain good ap-
proximations to the ground-state energy of gapped 1D
systems [12, 13]. It is now well understood that the
Ansatz states relevant in DMRG are the so-called Matrix-
Product States (MPS), whose description requires Nχ2

parameters [14–16]. Here χ is the so-called bond di-
mension that determines the entanglement properties
of the MPS state. In fact, product states, used in
mean-field calculations, are MPS of bond dimension
χ = 1. It is known that DMRG works well for 1D
systems because ground states of gapped 1D systems
with local interactions can be approximated by MPS
of fixed bond dimension, that is, DMRG is optimis-
ing over a set of states that contains a very good ap-
proximation to the unknown ground state [17]. Us-
ing insights from entanglement theory, it was possible
to generalise MPS to other subset of states, such as
Projected-Entangled-Pair State (PEPS) [18] or Multi-
Entanglement-Renormalization-Ansatz (MERA) [19–21],
which may be viewed as special instances of the more
general set of Tensor-Network states [17].

Other popular variational states which are not based
on tensor networks include resonating valence bond
states, introduced in the context of quantum magnetism
[22], neural-network quantum states [23], or correlated-
plaquette states [24–26].

It is not our purpose to review here all variational
methods; instead, we emphasize that despite all their re-
markable applications in the study of many-body quan-

tum systems, variational methods do have intrinsic lim-
itations. First of all, for many systems, it is not known
whether the actual ground state can be well approxi-
mated by a state in the chosen set of Ansatz states.
For instance, mean-field energy values can easily be com-
puted for very large sizes, but it is expected that ground
states of generic Hamiltonians are in fact entangled, so
that all entanglement properties – which sometimes form
defining properties of the phase as in topological quan-
tum matter [27, 28] – are inaccessible by construction.
Second, even when Ansatz states properly approximate
the ground state, the minimisation of the energy may re-
main hard. While an efficient algorithm exists for ground
states of 1D gapped local Hamiltonians [29], it is expected
that this is an exception. For instance, ground states of
2D gapped systems are known to be well approximated
by PEPS, but the computation of expectation values of
product operators with PEPS, including even the norm
of the state, is #P-hard in the number of tensors defining
the state [30]. Third, even if the ground state can be ap-
proximated by a given Ansatz state and the computation
of the energy is scalable, its minimisation often presents
many local minima and therefore one can never guarantee
that a good approximation to the ground state has been
achieved, EA ∼ EGS. But most importantly, the situa-
tion is even worse for other relevant quantities computed
from the Ansatz state resulting from the minimisation,
as it is completely unknown how they compare to the
actual values in the ground state. In fact, there exist
simple paradigmatic models displaying a very complex
low-energy landscape, with states very close in energy to
the ground state, but with significantly different predic-
tions for other quantities – the fermionic Hubbard model
being a prominent example [2].

In summary, variational methods have proven ex-
tremely useful to analyse ground-state problems; yet
strictly speaking all what can be certified is an upper
bound of the ground-state energy, EA ≥ EGS.

B. Relaxations

Relaxations of the ground-state problem represent a
complementary approach to variational methods. With-
out again attempting to be fully general, the main idea
is rather simple: for a Hamiltonian HN =

∑
i hi, the

ground-state problem, Eq. (1), can be reformulated as:

EGS = min
{〈hi〉}∈MQ

∑
i

〈hi〉, (3)

where MQ = {{〈hi〉}i : ∃|ψ〉 such that ∀i 〈hi〉 =
〈ψ|hi|ψ〉}, that is, the set of expectation values {〈hi〉}
that can be obtained from a quantum state |ψ〉. In par-
ticular, when the system is translationally-invariant, all
expectations values 〈hi〉 are identical, and the minimisa-
tion is over a single real number: the expectation value
of the operator hi. As such, the problem may look sim-
ple, but the characterization of MQ is generically very
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hard. For instance, for the case of Hamiltonians with lo-
cal interactions, that is, when the operators hi act non-
trivially on a reduced set of particles indexed by i, the
expectation values read 〈hi〉 = tr(hiρi), where {ρi}i is a
set of reduced states acting on the different subsystems
indexed by i that are compatible with a global N -particle
state |ψ〉. The characterization of this set is known as the
quantum marginal problem, which is QMA-hard [31]. A
standard recipe to construct scalable relaxations of the
ground-state problem is to replace in Eq. (3) the set of
quantum physical moments MQ by a (possibly strictly)

larger set M̃Q ⊇ MQ that has a simpler, and scalable,
characterization. As the minimisation is performed over
a larger set of values, the obtained energy ER cannot be
larger than the actual ground-state value, ER ≤ EGS.

A simple way to compute lower bounds to ground-state
energies of a large system of size N consists of performing
exact diagonalisation of the same model for the largest
possible size, say K < N . This approach is known as the
Anderson’s bound [32] and easily follows from the fact
that the set of moments compatible with an N -particle
quantum state is strictly included in the one compatible
with a quantum state of K < N particles (see Appendix
B for further details).

Relaxations of polynomial optimisation problems
based on SDP provide another way to derive lower
bounds. Because of the central role they play in our
analysis, we explain the main idea in what follows, while
more details about their implementation are given below.
These relaxations apply to any optimisation problem of
the form [8]:

pmin = min
{|ψ〉,X}

〈ψ|p(X)|ψ〉 (4)

such that: gj(X) � 0 j = 1, . . . ,m1

〈ψ|hk(X)|ψ〉 ≥ 0 k = 1, . . . ,m2

where p, gj and hk are polynomials defined over a set
of n operators X = (X1, . . . , Xn), the minimisation runs
over all possible Hilbert spaces, and where � refers to
operator positivity. For simplicity in the notation, we re-
strict the explanation to self-adjoint operators, although
all what follows also applies to general operators. The
solution to this problem may be hard. For instance, de-
ciding whether the solution to this optimisation problem
satisfies either pmin < 0 or pmin > 1 is Turing undecid-
able [33].

In Refs. [7, 8], it was shown how to construct an
infinite hierarchy, known as NPA, of monotonically in-
creasing lower bounds to the solution of the problem,
p(1) ≤ p(2) ≤ · · · ≤ p(∞) ≤ pmin. Under some mild as-
sumptions on the operators, that include the situation
in which all the operators Xi are bounded, the NPA hi-
erarchy is convergent, that is p(∞) = pmin. The main
advantage of the hierarchy is that the computation of
each lower bound defines a SDP instance and therefore
can efficiently be performed. However, the size of the
operators involved in each SDP step of the hierarchy is
also monotonically growing and, in the limit, involves op-

erators of infinite size. Interestingly, for some problems,
convergence is attained at a finite step in the hierarchy,
while for others, first steps of the NPA hierarchy provide
a good enough bound of the actual solution.

Because of the generality of the formalism, many
ground-state problems can be phrased in the language of
polynomial optimisation. For instance, fermionic Hamil-
tonians are often given by polynomials of creation and an-
nihilation operators, which satisfy the anti-commutation
relations in form of other polynomials. For spin-one-
half systems, Hamiltonians are defined by polynomials of
Pauli matrices on each site. Pauli matrices can be charac-
terised by their algebra while operators on different sites
commute, all these constraints having the form of polyno-
mials (note that for the Pauli algebra, these constraints
impose that the solution Hilbert space of Eq. (4) is of fi-
nite dimension). The method therefore provides a rather
versatile approach to derive an asymptotically convergent
sequence of lower bounds to the ground-state energy of
many models of interest, E(1) ≤ E(2) ≤ · · · ≤ E(∞) =
EGS. In fact, as already mentioned, it has already been
applied to different models, e.g., in the context of quan-
tum chemistry [3, 4], many-body physics [5, 6], or confor-
mal bootstrap [34], often before or unaware of the general
mathematical characterisation of non-commutative poly-
nomial optimisation presented in [7, 8]. As it happens
for variational methods, relaxations also provide values
for other observables beyond energy, oR, but again with
no control about whether they are close to or bound in
any way the value in the ground state. Therefore, when
combined, all what relaxations and variational methods
define is an energy interval in which the searched ground-
state energy lies.

Before concluding this part, it is worth mentioning
that SDP relaxations of polynomial optimisation prob-
lems have a long tradition in the context of classical spin
systems. In this case, the mathematical framework is the
one of commutative polynomial optimisation,

pmin = min
x

p(x)

such that: gj(x) ≥ 0 j = 1, . . . ,m, (5)

where p and gj are again polynomials but now over (clas-
sical, namely commuting) variables x = (x1, . . . , xn) and
one deals with standard positivity constraints. Many
classical spin systems have the form of polynomials over
spin variables σi such that σ2

i = 1, again a polynomial
constraint. A hierarchy of SDP relaxations of commu-
tative polynomial optimisation problems was introduced
in [35] and, in fact, the formalism of [8] used in this work
can be understood as the extension of the construction
in [35] to the non-commutative case, see [8].

III. CERTIFICATION OF GROUND-STATE
PROPERTIES

Variational methods and relaxations of polynomial
problems are often seen as two complementary ap-



5

proaches that allow one to bound the ground-state en-
ergy from above and below. The main point of our work
is to show that their combination is much richer than ex-
pected, as together they can be used to derive certifiable
bounds on any observable of interest in the ground state.

The idea is quite simple and was also discussed in [11].
As mentioned above, the ground-state energy problem
can be seen as an instance of polynomial optimisation
because the Hamiltonian can be expressed as polynomi-
als of some operators Xi. For instance, for finite dimen-
sional systems, it is enough to take as Xi a basis for
the space of matrices at each site, say Pauli matrices
for qubit systems. In fact, any observable of interest O
can be expressed as polynomial on these operators and
bounds on it can be derived through the NPA formalism.
Now, to restrict this optimisation to a region close to
the ground state, one can use the best upper bound EA
to the ground-state energy derived through variational
methods, as well as the best lower bound ER derived
through relaxations. The resulting optimisation reads:

oLB = min
{|ψ〉,X}

〈ψ|O(X)|ψ〉

such that: gj(X) � 0 j = 1, . . . ,m1

〈ψ|hk(X)|ψ〉 ≥ 0 k = 1, . . . ,m2

〈ψ|EA −H(X)|ψ〉 ≥ 0

〈ψ|H(X)− ER|ψ〉 ≥ 0. (6)

The different SDP relaxations of this minimisation pro-
vide a sequence of lower bounds to the actual value of the
observable in the ground state, o(1) ≤ · · · ≤ o(∞) ≤ oGS.
Note that in this case, the asymptotic value o(∞) is only
guaranteed to be equal to the actual ground-state value
oGS if EA = EGS. Finally, upper bounds oUB can be de-
rived just by replacing the minimisation in (6) by a max-
imisation, obtaining the announced certifiable bounds for
any observable in the ground state, oGS ∈ [oLB, oUB].

To illustrate the power of this method, we apply it in
what follows to several paradigmatic Heisenberg models
for spin-1/2 systems.

IV. APPLICATIONS AND RESULTS

We present several implementations of the method to
obtain certified bounds on ground-state observables for
various Heisenberg models in one and two spatial dimen-
sions [36]. Generic Heisenberg models are defined by
Hamiltonians of the form:

H = (1/4)
∑
i<j

Jij
∑

a∈{x,y,z}

σai σ
a
j , (7)

where i ∈ {1, 2, . . . , N} label the lattice sites, while
the couplings Jij implicitly define the lattice geometry
and σai are the Pauli matrices acting on site i. The
1/4 prefactor follows standard condensed-matter conven-
tions, where Hamiltonians are typically defined in terms

of spin operators sai = σai /2 instead of Pauli matrices.
We shall consider four different geometries:

1. The Heisenberg model with first-neighbour inter-
actions on a 1D lattice, Jij = δj,i+1, with peri-
odic boundary conditions (PBC), namely we use
the convention that N + 1 ≡ 1 for the i, j labels.

2. A 1D lattice with first- and second-neighbour cou-
plings, Jij = δj,i+1 + J2δj,i+2, where the J2 term
induces geometric frustration.

3. A 2D square lattice with first-neighbour couplings.
Here, lattice sites are labelled by i = (x, y) with
x, y ∈ {1, 2, . . . , L} (so that N = L2), and cou-
plings are of the form J(x,y),(x′,y′) = δy′,yδx′,x+1 +
δx′,xδy′,y+1. We take PBC, namely L + 1 ≡ 1 for
both x and y labels.

4. A 2D square lattice with first- and second-
neighbour (frustration-inducing) couplings, where
second-neighbours are along the diagonal of ele-
mentary square plaquettes, namely, extra couplings
of the form J2[δ(x′,y′),(x+1,y+1) + δ(x′,y′),(x+1,y−1)].

In all cases, we obtain certified lower bounds on the
ground state energy, as well as upper and lower bounds
on relevant observables in the ground state, typically on
spin-spin correlation functions.

A. Algorithmic considerations

We begin with discussing the concrete SDP algorihm
tailored to generic Heisenberg models [Eq. (7)]. In partic-
ular, we briefly discuss how to reduce the size of SDP re-
laxations by exploiting algebraic structures of the model,
which is crucial in order to obtain the optimal results
given some computational resource. More details are
given in Appendix A.

The ground state energy of the Heisenberg model is the
optimum of the following non-commutative polynomial
optimisation problem:

min
{|ψ〉,σa

i }
〈ψ|H({σai })|ψ〉

such that: (σai )2 = 1, i = 1, . . . , N ; a ∈ {x, y, z},
σxi σ

y
i = iσzi , σyi σ

x
i = −iσzi , i = 1, . . . , N,

σyi σ
z
i = iσxi , σzi σ

y
i = −iσxi , i = 1, . . . , N,

σzi σ
x
i = iσyi , σxi σ

z
i = −iσyi , i = 1, . . . , N,

σai σ
b
j = σbjσ

a
i , 1 ≤ i < j ≤ N ; a, b ∈ {x, y, z}.

(8)
SDP relaxations can then be applied to Eq. (8) to obtain
lower bounds of the ground-state energy, by replacing
the optimisation over quantum many-body states |ψ〉 by
an optimisation over moment matrices. Specifically, sup-
pose that B = {um} is a monomial list, i.e., a subset of
monomials of the form um = σa1i1 . . . σ

apm
ipm

with respect

to the non-commuting variables {σai }i=1,...,N ;a∈{x,y,z},
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where pm is the degree of the monomial. Suppose also
that the energy 〈H〉 can be expressed as a linear combi-
nation of the entries of the moment matrix M indexed by
B with [M]uv = 〈u†v〉. Then a SDP relaxation to Eq. (8)
is given by:

min
{〈u†v〉}u,v∈B

〈H〉

such that: M � 0,

M obeys some moment replacement rules.
(9)

In particular, the equality constraints in Eq. (8) give rise
to corresponding replacement rules on monomials, allow-
ing one to reduce them to the normal form NF(u) :=
cσa1i1 σ

a2
i2
· · ·σarir with c ∈ {1,−1, i,−i}, 1 ≤ i1 < i2 <

· · · < ir ≤ N . It follows that the moment matrix M sat-
isfies the moment replacement rule: 〈u〉 = 〈NF(u)〉 for
all entries u of M. Note that (9) is a complex SDP. To
reformulate (9) as a SDP over real numbers, we refer the
reader to [37].

Further symmetry considerations on the concrete con-
sidered models allow one to drastically reduce the number
of independent variables in the moment matrix. For in-
stance, given the symmetry of Heisenberg models under
global rotations of the spins, correlations in the ground
state are of the form (1/4)〈σai σbj〉 = δa,bCij . Another rel-
evant symmetry is translation invariance which implies
that correlation functions only depend on the relative
position of the spins. Details on the technical implemen-
tation of those and other symmetries to reduce the com-
putational complexity of the SDP algorithm are given in
Appendix A.

B. Heisenberg chain

The Heisenberg chain is defined by the Hamiltonian:

H = (1/4)

N∑
i=1

∑
a∈{x,y,z}

σai σ
a
i+1 , (10)

where N + 1 ≡ 1 in order to implement PBC. The
ground state is critical (namely: gapless in the ther-
modynamic limit) and displays antiferromagnetic
correlations decaying as a power-law with distance,
〈sai sai+r〉 = (1/4)〈σai σai+r〉 = Cr ∼ (−1)r/rα with some
exponent α [38].

Ground-state energy.– The ground-state energy per spin
is given by ePBC(N) = 〈H〉/N = 3C1. In Fig. 1, we plot
the best lower bound of ePBC as obtained by our SDP
relaxation for up to N = 100 spins. As a comparison,
we plot the (quasi-)exact energy as obtained by DMRG
simulations. It is also of interest to compare our SDP
lower bound with the Anderson bound, which is obtained
by exact diagonalisation on a system with open boundary
conditions (OBC), eOBC(L) ≤ ePBC(N) for all N > L
(see Appendix B for details on the Anderson bound). In

Fig. 1, the SDP bound is seen to vastly outperform the
Anderson bound (which is in fact estimated with DMRG
for the sake of illustration for up to N = 100, as beyond
a few tens of qubits exact diagonaisation is out of reach).

To build the moment matrix in the SDP con-
struction, we use all monomials of the form:
1, σai , σ

a
i σ

b
i+j , σ

a
i σ

b
i+1σ

c
i+2, σ

a
i σ

b
i+1σ

c
i+2σ

d
i+3 with

j ∈ {1, 2, . . . , r} and a, b, c, d ∈ {x, y, z} (all differ-
ent monomials appearing only once). For each size N ,
we have chosen r as large as possible compatible with
memory limitations, namely r = N

2 for N ≤ 60, and
r = 20 for N = 80, 100. Furthermore for N = 100 we
discard all degree-four monomials σai σ

b
i+1σ

c
i+2σ

d
i+3 in

order to allow for more degree-two monomials. For the
sake of completeness, the data plotted in Fig. 1 are
also reported in Table III. Combining both the DMRG
upper bound eDMRG and the SDP lower bound eSDP

allows us to sandwich the exact ground-state energy
with a relative accuracy that remains below 10−3 up
to N = 100 spins. In contrast, previous works have
achieved no better than a few percents accuracy for
comparable system sizes [5, 6, 39]. The small energy gap
between the DMRG (variational upper bound) and the
SDP (certified lower bound) therefore certifies both the
expected good performance of DMRG to approximate
the actual 1D ground state and, in turn, also the good
performance of the implemented SDP relaxation.

DMRG PBC

DMRG OBC Rescaled (Anderson)

SDP Lower Bound

20 40 60 80 100
-0.460

-0.455
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-0.445
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FIG. 1: Ground-state energy per particle in the
Heisenberg chain (data in Table III). Upper and lower
bounds are derived, respectively, through DMRG and

the implemented polynomial relaxation. For
comparison, we show the expected Anderson bound,
that is, the lower bound one would obtain by exactly

solving the same system with OBC. This estimation is
also computed through DMRG, so that it is possible to

plot system sizes that are out of reach for exact
diagonalisation.



7

C. Heisenberg chain with second-neighbour
couplings

Our second application is the Heisenberg chain includ-
ing both first- and second-neighbour couplings, namely
the so-called J1 − J2 Heisenberg model:

H = (1/4)

N∑
i=1

∑
a∈{x,y,z}

[σai σ
a
i+1 + J2σ

a
i σ

a
i+2] , (11)

with PBC (in our convention the first-neighbour coupling
is J1 = 1). The J2 term induces geometric frustration,
leading to the sign problem in quantum Monte Carlo
methods and to a richer phase diagram. The model was
investigated in early days of DMRG simulations [40],
and represents a cornerstone in the study of quantum
magnetism, motivating the development of various
variational wave-functions. In particular, it is predicted
that for J2 < J2,c = 0.241167 . . . , the spin correlation
length is infinite, and correlations decay as a power-law
as in the J2 = 0 limit [40]. For J2 > J2,c, a gap opens
and the system spontaneously forms dimers among first
neighbours. In particular, at J2 = 0.5, the two exact
ground states are products of Bell pairs among first
neighbours [41]. For larger values of J2, more complex
correlation patterns emerge, with both long-range
dimer-dimer correlations and finite-range spiral spin
correlations [40]. Those predictions are based on DMRG
(hence, variational) numerical simulations. Here, in
contrast, we investigate the ability of SDP techniques to
offer relevant lower bounds to the ground-state energy,
as well as certified bounds on spin correlations in the
ground state – something that, to our knowledge, no
other approach can provide. In particular, we certify a
change of sign for the second-neighbour spin correlations
for J2 > 0.5 (see Fig. 4).

Ground state energy.– In Fig. 2, we plot the best lower
bound of the ground-state energy for a system of size
N = 40, as compared to the DMRG value (the data
are reported in Table IV; see also Table V for the lower
bounds computed for N = 100). Our compromise for
the choice of monomials is different for small and large
values of J2. For J2 ≤ 1, the monomials are the same as
for J2 = 0, namely:

1, σai , σ
a
i σ

b
i+j , σ

a
i σ

b
i+1σ

c
i+2, σ

a
i σ

b
i+1σ

c
i+2σ

d
i+3 ,

with j ∈ {1, 2, . . . , r} and a, b, c, d ∈ {x, y, z}. For J2 > 1,
to better capture the effect of frustration, our (heuristic
yet efficient) choice is:

1, σai , σ
a
i σ

b
i+j , σ

a
i σ

b
i+2σ

c
i+4, σ

a
i σ

b
i+1σ

c
i+2σ

d
i+3

with j ∈ {1, 2, . . . , r} and a, b, c, d ∈ {x, y, z}.
As can be seen in Table IV, for J2 . 0.5 we obtain

a relative accuracy of 10−3, and for all values of J2

the relative accuracy remains better than 0.016. As

SDP Lower Bound
DMRG
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FIG. 2: Ground-state energy per particle in the J1 − J2

Heisenberg chain (N = 40; data in Table IV). Upper
and lower bounds are derived, respectively, through
DMRG and the implemented polynomial relaxation.

Inset: the relative accuracy remains better than 0.016
for all values of J2.

expected, the largest gap appears at J2 = 1.0, where
the two couplings become comparable and there is
competition between them.

Individual terms in the Hamiltonian.– As mentioned, the
SDP approach allows one to obtain certified bounds on
relevant observables in the ground-state beyond the en-
ergy. In order to do so, we constrain the energy to lie
in-between the DMRG upper bound and the SDP lower-
bound. As a first application, we compute bounds on the
first-neighbour spin correlations C1 (see Fig. 3), as well
as the second-neighbour spin correlation C2 (see Fig. 4),
namely both individual terms composing the Hamilto-
nian. For the sake of comparison, we also plot the re-
sults obtained through DMRG calculations, which are
expected to be very close to the exact value. The de-
rived lower and upper bounds certify that:

• First-neighbour correlations remain antiferromag-
netic, C1 < 0, for all values of J2, as its upper
bound is always negative (see Fig. 3 and Table VI);

• at J2 = 0.5, the second-neighbour correlations
change from ferromagnetic (C2 > 0) to antiferro-
magnetic (C2 < 0) (see Fig. 4 and Table VII). This
is a non-trivial qualitative information, illustrat-
ing the competition between the J1 term which fa-
vors staggered correlations among first neighbours
(namely C1 < 0 and C2 > 0) and the J2 term
which favors staggered correlations among second
neighbours (namely C2 < 0).

These findings are fully compatible with the DMRG
results, but recall that the latter cannot provide any
certification about these properties. This is our first
illustration of how physically relevant correlation prop-
erties in the ground state can be certified using SDP
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relaxations.

SDP Lower Bound

SDP Upper Bound

DMRG

0.0 0.5 1.0 1.5 2.0

-0.14
-0.12
-0.10
-0.08
-0.06
-0.04
-0.02
0.00

J2

<
s 0x
s 1x
>

FIG. 3: First-neighbour spin correlations in the J1 − J2

Heisenberg chain are certified to remain
antiferromagnetic (〈sx0sx1〉 = C1 < 0) for all values of J2

(N = 40; data are given in Table VI).

SDP Lower Bound

SDP Upper Bound

DMRG

0.0 0.5 1.0 1.5 2.0
-0.15

-0.10

-0.05

0.00

0.05

J2

<
s 0x
s 2x
>

FIG. 4: Second-neighbour spin correlations in the
J1 − J2 Heisenberg chain are certified to change from
ferromagnetic (C2 > 0) to antiferromagnetic (C2 < 0)
when crossing J2 = 0.5 (N = 40; data are given Table

VII).

Spin correlations.– We then study the ability of the
SDP approach to bound the spin correlation function at
larger distance. In particular, as mentioned, for values of
J2 < J2,c, one expects that the system develops antifer-
romagnetic (that is, staggered) spin correlations which
decay as a power-law with distance, as in the J2 = 0
limit [40]. In order to explore the potentiality of SDP
relaxations to capture such quasi-long-range order the
ground state, we compute bounds on the spin-spin cor-
relations as a function of distance for a fixed system size
of N = 40. We consider both J2 = 0.2 < J2,c (Fig. 5 and
Table VIII) and J2 = 1.0 > J2,c (Fig. 6 and Table IX).
As can be seen, the SDP upper and lower bounds tightly
sandwich the DMRG value at small distances, while they

SDP Lower Bound

SDP Upper Bound

DMRG

0 5 10 15 20

-0.06

-0.04

-0.02

0.00

0.02

0.04

0.06

i

〈s
0x
s ix
〉

FIG. 5: Spin-spin correlation in the J1 − J2 Heisenberg
chain for J2 = 0.2 and system size N = 40 (data in

table VIII). The staggered sign structure is certified at
all distances.

SDP Lower Bound

SDP Upper Bound

DMRG

0 5 10 15 20

-0.15

-0.10

-0.05

0.00

0.05

i

〈s
0x
s ix
〉

FIG. 6: Spin-spin correlation in the J1 − J2 Heisenberg
chain for J2 = 1.0 and system size N = 40 (data in table
IX). Note that the bounds at i = 19 show a remarkable
and surprising improvement. We have however verified
that the obtained SDP solutions define feasible points

and hence provide valid lower and upper bounds.

become looser at larger distances. Yet, one sees that

• For J2 = 0.2, the SDP bounds are tight enough to
certify the staggered sign structure of the correla-
tion function up to the maximal distance i = N/2
(see Fig. 5 and Table VIII). Indeed, both the lower
and upper bounds change sign with the distance.

• For J1 = 1.0, SDP bounds certify instead a qualita-
tively different spatial structure of spin correlations
at short distance, while they become much looser
at larger distance.

It is important to remark that we have not attempted
here to optimise the choice of monomials to best cap-
ture the correlation function at large distance; instead
we have kept the same monomials as for tightly bound-
ing the energy, which especially constrain correlations at
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short distances. One can expect to get tighter bounds
by tailoring the monomial list to the observable to be
certified. We come back to this point below.

D. Square lattice Heisenberg model

Monte Carlo

SDP
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FIG. 7: Ground-state energy in the square lattice
Heisenberg model, and comparison to quantum Monte

Carlo (data in Table X).

We now move to the most challenging case of two-
dimensional systems. As above, we start with the Heisen-
berg model, but now on a square lattice:

H = (1/4)

L∑
i=1

L∑
j=1

∑
a∈{x,y,z}

σa(i,j)[σ
a
(i+1,j) + σa(i,j+1)] ,

(12)
where (i, j) label the position of the spins on a square
lattice with PBC (L + 1 ≡ 1). In contrast to the 1D
model, it is expected that the square-lattice Heisenberg
model spontaneously breaks the SU(2) symmetry in
the thermodynamic limit and displays true long-range
antiferromagnetic order in the ground state, implying
in particular that C(L/2, L/2) → cst. > 0 for L → ∞.
As further discussed below, while we do certify this
property for L ≤ 8, we cannot reliably extrapolate the
obtained SDP bounds to the thermodynamic limit.

Ground-state energy.– We first use our SDP algorithm
to compute lower bounds on the ground-state energy, as
done for the previous models. Our choice of monomials
is as follows:

1, σa(i,j), σ
a
(i,j)σ

b
(i+r1,j+r2),

σa(i,j)σ
b
(i,j+1)σ

c
(i+1,j+1), σ

a
(i,j)σ

b
(i,j+1)σ

c
(i−1,j+1),

σa(i,j)σ
b
(i+1,j)σ

c
(i+1,j+1), σ

a
(i,j)σ

b
(i−1,j)σ

c
(i−1,j+1),

σa(i,j)σ
b
(i+1,j)σ

c
(i+2,j), σ

a
(i,j)σ

b
(i,j+1)σ

c
(i,j+2),

σa(i,j)σ
b
(i+1,j)σ

c
(i,j+1)σ

d
(i+1,j+1)

with i, j ∈ {1, 2, . . . , L}, r1, r2 ∈ {−3,−2, . . . , 3} and
a, b, c, d ∈ {x, y, z}. For L = 10, we discard all degree-
four monomials σa(i,j)σ

b
(i+1,j)σ

c
(i,j+1)σ

d
(i+1,j+1). We con-

sider systems of linear size L = 4, 6, 8, 10.

We compare the derived bounds to the quantum Monte
Carlo data from [42], which are expected to be equal to
the exact values (up to statistical error bars which are
negligible on the scale of our comparison) (see Fig. 7 and
Table X). The energy gaps are now larger than in the
one-dimensionl case, but the relative accuracy of the SDP
lower bound of the energy is still about 0.01 as compared
to the quantum Monte Carlo result.

SDP Lower Bound

SDP Upper Bound

Monte Carlo

0.12 0.14 0.16 0.18 0.20 0.22 0.24
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

1/L

C
(L
/2
,L
/2
)

FIG. 8: Spin correlation at maximal distance in the
square lattice Heisenberg model as compared to Monte

Carlo computations (data in Table XI).

Long-range order.– We now focus on other ground-
state properties beyond energy and, in particular, on
long-range correlations. In order to investigate the pos-
sibility to certify spontaneous symmetry breaking and
the associated long-range antiferromagnetic order in the
ground state, we compute bounds on the correlation
at maximal distance C(L/2, L/2) (see Fig. 8 and Ta-
ble XI). For all the computed sizes, the lower bound on
C(L/2, L/2) remains positive, hence certifying the pres-
ence of long-range order on those sizes. However, simi-
larly to the case of the J1 − J2 model at J2 = 0.2 (Sec-
tion IV C), for increasing system size the SDP bounds
on C(L/2, L/2) become increasingly looser. It is there-
fore not possible to argue that C(L/2, L/2) will remain
positive for L > 8 (corresponding to 1/L < 0.125 on
the figure) from scaling arguments on the derived lower
bounds.

Note again that, to derive these bounds on long-range
correlations, we have used the same monomial list as for
optimising the ground state energy. In future works one
may instead tailor the choice of the monomials to better
bound the correlation function at large distance, which
can be expected to offer some improvement.
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E. J1 − J2 square lattice Heisenberg model

As a last example, we consider the J1 − J2 Heisenberg
model on a square lattice:

H = (1/4)

L∑
i=1

L∑
j=1

∑
a∈{x,y,z}

σa(i,j)

[
σa(i+1,j) + σa(i,j+1)

+J2(σa(i+1,j+1) + σa(i+1,j−1))
]
,(13)

with PBC. The J2 terms favors antiferromagnetic
correlations along the diagonals of the square lattice,
which are incompatible with the correlations favored by
the first-neighbour J1 = 1 term and leads to frustration.
As for the J1 − J2 Heisenberg chain, this model is
not amenable to quantum Monte Carlo due to the
sign problem. Several variational methods based on
Ansatz wavefunctions have however been applied to this
paradigmatic model of frustrated quantum magnetism,
sometimes obtaining conflicting results due to a complex
energy landscape with various ground-state candidates
which are close in energy yet with incompatible forms of
order [43–48].

Ground-state energy.– Again, we first compute SDP
lower bounds on the energy, which complement varia-
tional methods. We present results for L = 6, 8 in the
Appendix G 1 (see Figures 12 and 13), and for L = 10 in
Figure 9 (data are respectively given in Tables XII, XIII
and XIV). Notice in particular that size L = 10 (namely,
N = 100 qubits) is not achievable with exact methods,
so that combining upper- and lower bounds become very
relevant to constrain ground-state properties. Combining
variational upper bounds and SDP lower bounds allows
us to sandwich the true ground-state energy with a few
percent of relative accuracy (Table XIV).

DMRG
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SDP
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FIG. 9: Energy lower bounds for the 2D J1 − J2

Heisenberg model on a square with L = 10 (data in
table XIV).

Spin correlations.– Finally, the SDP approach can also
be applied to deliver certified bounds on relevant observ-
ables in regimes inaccessible to exact numerical methods,

such as the J1− J2 model on a square lattice for L = 10.
Constraining the energy to lie in-between the maximal
lower bound (as obtained by the SDP) and the minimal
upper bound (as obtained using variational methods), we
obtain certified bounds on first- and second-neighbour
(diagonal) correlations in the exact ground state. The
monomial list that we use to bound both the energy and
spin correlations is the same as the one in Section IV D
for the square lattice Heisenberg model.

The results are respectively displayed in Fig. 10 and
Fig. 11 (data in Tables XV and XVI). We emphasize that
this frustrated model for N = 100 spins is well beyond
the capabilities of known exact methods such as exact
diagonalisation, so that the certified bounds offered by
the SDP approach are especially insightful. We notice in
particular that SDP bounds are sufficiently accurate to
certify:

• Correlations C(0, 1) remain antiferromagnetic for
all studied values of J2, as the computed upper
bound is always negative.

• Second-neighbour correlations experience a change
of sign while varying the J2/J1 ratio, a behavior
reminiscent of the 1D model studied in Section
IV C. The transition occurs for a value of J2 in the
range (0.45, 0.6).

Again, this type of certification is impossible with previ-
ous approaches.

max C(0,1)

min C(0,1)

0.2 0.4 0.6 0.8 1.0

-0.10

-0.08

-0.06

-0.04

-0.02

0.00

J2

FIG. 10: Bounds for the correlations C(0, 1) of the 2D
J1 − J2 Heisenberg model on a square lattice of

dimension L = 10 (data in table XV).

V. DISCUSSIONS

In this work we have shown how SDP relaxations of
polynomial optimisation problems when combined with
upper bounds obtained through variational methods can
provide certifiable bounds on ground-state properties be-
yond energy. We have illustrated the potentialities of the
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max C(1,1)

min C(1,1)

0.2 0.4 0.6 0.8 1.0
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FIG. 11: Bounds for the correlations C(1, 1) of the 2D
J1 − J2 Heisenberg model on a square lattice of

dimension L = 10 (data in table XVI).

method in 1D and 2D Heisenberg models. The choice
is motivated by their rich phenomenology, the existence
of previous results to benchmark our results, and their
symmetries, which allow us reaching large system sizes.
However, the method is general and can be applied to
essentially any many-body Hamiltonian. In fact, a first
natural continuation of our results is to apply the intro-
duced approach to other relevant models in physics, for
instance for fermions. Note also that while our work has
focused on finite-size systems, it is also possible to adapt
it to systems in the thermodynamic limit, following sim-
ilar ideas as discussed in [49].

Another direction that deserves further considerations
is to understand how to use the knowledge of the model
under study to improve the obtained bounds. Our work
already does this by exploiting the symmetries and spar-
sity of the considered models to significantly improve the
scalability. But one can also study how to combine our
approach with different relaxation techniques, such as
those of [49]. Another way of improving our results is
by adapting the choice of monomials to the observable
of interest. For instance, in our work, we choose the
monomials based on the local operators appearing in the
Hamiltonian. However, once the bounds on the energy
are obtained, one could have modified the monomials in
the SDP when studying long-range correlations. We leave
the study of this possibility for further work. Note also
that machine learning can also be employed to choose the
monomials, as done in [50].

On the numerical side, some of the lower bounds
based on a solution returned by a SDP solver may come
together with unsatisfying numerical feasibility status.
Therefore, another interesting research direction is to ob-
tain truly certified lower bounds based on exact rational
arithmetic. For this, one could design a post-processing
method, relying either on rigorous interval arithmetic or
rounding-projection techniques, in the same spirit as in
[51, 52]. Also, the SDPs arising from the NPA hierar-
chy possess some special structures (e.g., low-rank opti-

mal solutions, unit diagonal) which could be exploited
to design more efficient SDP algorithms as in [53]. We
can thus rely on a structure-exploiting SDP solver to ap-
proach models of larger size in the future.

To conclude, our work demonstrates how to derive
bounds on ground-state properties of quantum many-
body Hamiltonians beyond energy. In doing so, it opens
many different perspectives for future research. Our vi-
sion is that the considered techniques will become a stan-
dard tool to complement and certify result of variational
methods, so far the dominant tool to study quantum
many-body problems.
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Appendix A: SDP reductions by exploiting structure

In this appendix, we further discuss how to implement
symmetries of the problem in the SDP algorithm to re-
duce the number of free variables in the implementation.
We start be restating the main problem for completeness.

The ground state energy of the Heisenberg model is the
optimum of the following non-commutative polynomial
optimisation problem:

min
{|ψ〉,σa

i }
〈ψ|H|ψ〉

such that: (σai )2 = 1, i = 1, . . . , N, a ∈ {x, y, z},
σxi σ

y
i = iσzi , σyi σ

x
i = −iσzi , i = 1, . . . , N,

σyi σ
z
i = iσxi , σzi σ

y
i = −iσxi , i = 1, . . . , N,

σzi σ
x
i = iσyi , σxi σ

z
i = −iσyi , i = 1, . . . , N,

σai σ
b
j = σbjσ

a
i , 1 ≤ i 6= j ≤ N, a, b ∈ {x, y, z}.

(A1)
The NPA hierarchy [8] can be then applied to (A1) yield-
ing a non-decreasing sequence of lower bounds on the
ground state energy. Specifically, suppose that Bd is a
monomial basis (i.e., a subset of monomials w.r.t. the
non-commutating variables {σai }i=1,...,N,a∈{x,y,z}) up to
degree d. Then the d-th order moment relaxation of the
NPA hierarchy for (A1) is given by

min
{〈u〉}u∈Bd

〈H〉

such that: Md � 0,

Md obeys some moment replacement rules,
(A2)

where Md is the moment matrix indexed by Bd with
[Md]uv = 〈u†v〉. Note that the equality constraints in
(A1) give rise to the following replacement rules on mono-
mials:

(σai )2 −→ 1, i = 1, . . . , N, a ∈ {x, y, z}, (A3a)

σxi σ
y
i −→ iσzi , i = 1, . . . , N, (A3b)

σyi σ
x
i −→ −iσzi , i = 1, . . . , N, (A3c)

σyi σ
z
i −→ iσxi , i = 1, . . . , N, (A3d)

σzi σ
y
i −→ −iσxi , i = 1, . . . , N, (A3e)

σzi σ
x
i −→ iσyi , i = 1, . . . , N, (A3f)

σxi σ
z
i −→ −iσyi , i = 1, . . . , N, (A3g)

σai σ
b
j −→ σbjσ

a
i , 1 ≤ i 6= j ≤ N, a, b ∈ {x, y, z}.

(A3h)

For any monomial u, by applying the above replacement
rules, we can reduce it to the normal form NF(u) :=
cσa1i1 σ

a2
i2
· · ·σarir with c ∈ {1,−1, i,−i}, 1 ≤ i1 < i2 <

· · · < ir ≤ N . It follows that the moment matrix Md

satisfies the moment replacement rule: 〈u〉 = 〈NF(u)〉
for all entries u of Md.

1. Sparsity

In order to exploit the sparsity of the Heisenberg
model, for each degree d, we pick monomials that are
supported on contiguous sites:

Pd := {σa1i σ
a2
i+1 · · ·σ

ad
i+d−1 | i = 1, . . . , N,

aj ∈ {x, y, z}, j = 1, . . . , d}.

Then at relaxation order d, we use the sparse monomial
basis Bd = ∪di=0Pi instead of the full monomial basis.
Moreover, to capture long-range correlations, we also in-
clude the monomials of form σai σ

b
i+j with j = 2, . . . , r

and a, b ∈ {x, y, z} in the monomial basis. The result-
ing SDP relaxation is more efficient to solve but possibly
leads to more conservative lower bounds. We emphasize
that similar reduction of the monomial basis already ap-
peared in the related literature. In the context of quan-
tum information theory, we refer to [54] where the au-
thors obtain upper bounds on maximal violations of Bell
inequalities after random selection of a subset of mono-
mials with given degrees. For general (non-)commutative
polynomial optimisation problems, one can exploit either
correlative sparsity [55, 56], occurring when there are few
correlations between the variables of the input problem,
or term sparsity [57, 58], occurring when there are a small
number of terms involved in the input problem by com-
parison with the fully dense case. The interested reader
is referred to [59] for a recent monograph on this topic.

2. Symmetry

a. Sign symmetry of the model

We can observe that the feasible set of (A1) is invariant
under the substitution of two of the three variables, e.g.,
σxi and σyi of a given site into their opposite, e.g., −σxi
and −σyi . In order for any objective functions of the
form (7) to also be invariant, we need to consider the
same substitutions for all the sites. There are therefore
three substitutions:

sxy : (σxi , σ
y
i , σ

z
i )Ni=1 −→ (−σxi ,−σ

y
i , σ

z
i )Ni=1, (A4a)

syz : (σxi , σ
y
i , σ

z
i )Ni=1 −→ (σxi ,−σ

y
i ,−σ

z
i )Ni=1, (A4b)

szx : (σxi , σ
y
i , σ

z
i )Ni=1 −→ (−σxi , σ

y
i ,−σ

z
i )Ni=1. (A4c)

Note that szx is the composition of sxy and syz so we
only need to consider the invariance under two of the
three substitutions.

For each monomial m, sxy(m) (resp. syz(m)) is ei-
ther m or −m. Similarly to [60, Section III.C], for each
monomial m, we consider its signature as the vector
(sxy(m)/m, syz(m)/m) ∈ {−1, 1}2. Consider that the
list of monomials is such that each of the four groups
of monomials with the same signature appears contigu-
ously. Notice that a product of two monomials is invari-
ant under the sign symmetries if and only if is the product
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of two monomials of the same signature. The moments
of symmetric monomials therefore form a block diagonal
structure of 4 blocks in the moment matrix. We can re-
duce the large positive semidefinite matrix into 4 smaller
positive semidefinite matrix as shown in [60, Theorem 4]
in the commutative case.

For example, when d = 1, the partition is given by
Table I.

Signature Monomials
(1, 1) {1}
(1,−1) {σz

i }Ni=1

(−1, 1) {σx
i }Ni=1

(−1,−1) {σy
i }

N
i=1

TABLE I: Table of monomials indexing the sign
symmetry blocks when d = 1.

When d = 2, the partition is given by Table II.

Signature Monomials

(1, 1) {1, σx
i σ

x
i+1, σ

y
i σ

y
i+1, σ

z
i σ

z
i+1}Ni=1

(1,−1) {σz
i , σ

x
i σ

y
i+1, σ

y
i σ

x
i+1}Ni=1

(−1, 1) {σx
i , σ

y
i σ

z
i+1, σ

z
i σ

y
i+1}

N
i=1

(−1,−1) {σy
i , σ

x
i σ

z
i+1, σ

z
i σ

x
i+1}Ni=1

TABLE II: Table of monomials indexing the sign
symmetry blocks when d = 2.

b. Sign symmetry of the Hamiltonian

The Hamiltonian H in (A1) may have more sign sym-
metries. For example, consider the Heisenberg model,
the Hamiltonian H is invariant under the substitutions:

(σxi , σ
y
i , σ

z
i )Ni=1 −→ (−σxi , σ

y
i , σ

z
i )Ni=1, (A5a)

(σxi , σ
y
i , σ

z
i )Ni=1 −→ (σxi ,−σ

y
i , σ

z
i )Ni=1, (A5b)

(σxi , σ
y
i , σ

z
i )Ni=1 −→ (σxi , σ

y
i ,−σ

z
i )Ni=1. (A5c)

Besides the zero entries given in Section A 2 a, these
additional sign symmetries of the Hamiltonian yield extra
zero entries of the moment matrix: 〈u〉 = 0 if NF(u) is
variant under the transformations (A5).

Note that symmetry reduction usually applies for any
convex problem with symmetric objective and symmet-
ric feasible set. In this case, the symmetry of the feasible
set is not apparent because the replacement rules are not
symmetric, e.g., replacing σxi σ

y
i by iσzi is not symmetric

under any of the substitutions (A5). We can show the
symmetry of the set of sums of Hermitian squares using
(1) their connection with the set of strictly positive Her-
mitian elements over the quotient ring (detailed below)
and (2) the fact that the Hamiltonian is invariant under
the substitutions (A5).

Indeed, let us denote the non-commutative polynomial
ring by C〈{σxi , σ

y
i , σ

z
i }Ni=1〉 and the ideal generated by the

equality constraints of (A1) by I. Let Ω := {NF(u) |
u is a monomial in {σxi , σ

y
i , σ

z
i }Ni=1}. Then the optimiza-

tion problem (A1) is equivalent to the unconstrained op-
timization problem: min

{|ψ〉,σa
i }
〈ψ|H|ψ〉, considered in the

quotient ring C〈{σxi , σ
y
i , σ

z
i }Ni=1〉/I ∼= C〈Ω〉. Let us de-

note by S the group of additional sign symmetries given
by (A5) and by ΣS the set of sums of Hermitian squares
of C〈Ω〉, that are invariant under S after conversion to

normal form, i.e., elements of the form h =
∑
j p
†
jpj ,

pj ∈ C〈Ω〉, such that s(NF(h)) = NF(h) for any s ∈ S.
Then one can show that any strictly positive Hermitian
element of C〈Ω〉 that is invariant under S lies in ΣS by
[9], the proof being very similar to the one of [61, Propo-
sition 3.1]. Here “strict positivity” should be understood
as strict positivity over all possible evaluations in Hilbert
spaces, as detailed, e.g., in [61, Section 2.2]. By duality
one considers optimization over linear functionals non-
negative on ΣS , which leads to an equivalent formulation
of the above unconstrained optimization problem:

min
linear `:C〈Ω〉→C

`(H)

such that: `(q) ≥ 0 ∀q ∈ ΣS ,

`(p†) = `(p)∗ ∀p ∈ C〈Ω〉 ,
`(1) = 1 .

(A6)

From any ` feasible for the above problem (A6), let us
define the linear functional `S : C〈Ω〉 → C by `S(p) =
1/|S|

∑
s∈S `(s(p)) for all p ∈ C〈Ω〉. Then it is clear that

`S(H) = `(H) since H is invariant under the action of S.
In addition, `S(1) = 1, `S(p†) = `(p)∗ for all p ∈ C〈Ω〉
and `S(q) ≥ 0 for all q ∈ ΣS . To prove the latter fact,
we used the fact that one has s(q) = q for any s ∈ S and
any q ∈ ΣS written in normal form. Overall this shows
that `S is feasible for (A6) and yields the same objective
value than the one with `.

To conclude, at each relaxation (A2) one can restrict
ourselves to optimizing over linear functionals vanishing
on variant elements of C〈Ω〉 under the transformations
(A5). This boils down to setting every entry of the Her-
mitian moment matrix M = [`(v†w)]v,w∈Ω from (A2) to
〈u〉 = 0 if NF(u) is variant under the transformations
(A5).

c. Translation symmetry

The translation symmetry of (A1) comes from that the
Hamiltonian H is invariant under any translation of sites,
which implies

〈υ(u)〉 = 〈u〉, (A7)

where υ : i −→ i+r denotes a translation of sites with r ∈
{1, . . . , N}. This together with the PBC imposes a block
structure on the moment matrix Md where each block is
an Hermitian circulant matrix as long as the monomial
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basis Bd is appropriately sorted [6]. By virtue of this
fact, we are able to further block-diagonalise each block
of the moment matrix Md provided in Section A 2 a. For
example, consider the submatrix T of the moment matrix
indexed by {σxi }Ni=1. The translation symmetry implies
Ti,j = Tj,i = 〈σxi σxj 〉 = 〈σx1σxj−i+1〉. Therefore T is a
symmetric circulant matrix and so can be diagonalised
by a discrete Fourier transform

Pi,j =
1√
N
e−2πi(i−1)(j−1)/N , i, j = 1, . . . , N. (A8)

Note that similar block-diagonalisation techniques
have also been obtained in the commutative polynomial
optimisation setting; see [62] for more details.

d. Permutation symmetry

The permutation symmetry of (A1) comes from that
the Hamiltonian H is invariant under any permutation of
{x, y, z}, which yields the following moment replacement
rule on the moment matrix Md (by a similar proof as in
Section A 2 b since the positivity of Hermitian elements
is invariant under such permutation):

〈τ(σa1i1 σ
a2
i2
· · ·σarir )〉 = 〈σa1i1 σ

a2
i2
· · ·σarir 〉, (A9)

where 1 ≤ i1 < i2 < · · · < ir ≤ N , a1, . . . , ar ∈ {x, y, z},
and τ denotes any permutation of {x, y, z}.

e. Mirror symmetry

For a model supported on a 2D square lattice, there
may exist an additional symmetry. Let us consider for
instance the 2D Heisenberg model

H =
∑

a=x,y,z

L∑
i=1

L∑
j=1

σa(i,j)

(
σa(i+1,j) + σa(i,j+1)

)
(A10)

supported on an N = L × L square lattice. The mir-
ror symmetry of this 2D Heisenberg model means that
the Hamiltonian H is invariant under the transformation
ω : (i, j) −→ (j, i), which yields the following moment
replacement rule on the moment matrix Md:

〈ω(u)〉 = 〈u〉. (A11)

Appendix B: Anderson bound

In this appendix, we illustrate the concept of Ander-
son bound to obtain lower bounds on ground-state en-
ergies. For the sake of concreteness and simplicity, we
consider a one-dimensional model with translation in-
variance and PBC, although the idea is straightforward
to extend to other cases. The Hamiltonian is of the

form H =
∑N
i=1 hi with hi acting in the neighbour-

hood of site i. We then define the restricted Hamilto-
nian Hi(L) =

∑L
j=i hj for L < N . We may rewrite the

full Hamiltonian as H = L−1
∑N
i=1Hi(L), with the 1/L

prefactor compensating for the fact that all individual
terms hi are repeated L times in the sum. The Anderson
bound is then obtained by noting that for any state |ψ〉,
〈ψ|Hi(L)|ψ〉 cannot be smaller than the smallest eigen-
value of Hi(L), namely, to the ground-state energy of
Hi(L). This holds in particular when |ψ〉 is the ground
state of H. As Hi(L) describes the initial model on a
cluster of L sites with OBC, we conclude that:

EPBC(N) ≥ N

L
EOBC(L) , (B1)

or equivalently:

ePBC(N) ≥ eOBC(L) . (B2)

Appendix C: Improving SDP bounds by imposing
an extra positivity constraint

The bound given by the SDP relaxation for a fixed
relaxation order can be improved by imposing an extra
positivity constraint. We note that the constraint corre-
sponding to the k-body physicality is

1

2k

(
1 +

∑
a1,...,ak

〈σa11 σa22 · · ·σ
ak
k 〉σ

a1
1 σa22 · · ·σ

ak
k

)
≥ 0,

(C1)
where ai ∈ {0, x, y, z}, i = 1, . . . , k. As (C1) is linear in
the moments, we can add (C1) to the constraints of (9).
In theory, the larger k is, the tighter the resulting bound
is. However, a large k also leads to a SDP of big size.
In our experience, taking k = 8 achieves a good balance
between the increment of computational costs and the
improvement of bounds.

Appendix D: Heisenberg chain

In this appendix, we provide the numerical data cor-
responding to Fig. 1 in the main text (section IV B),
namely the ground-state energy in the Heisenberg chain
with PBC evaluated through both DMRG and SDP ap-
proaches (Table III).

Appendix E: Heisenberg chain with
second-neighbour couplings

In this section, we provide numerical data related to
the J1 − J2 Heisenberg chain (section IV C in the main
text). We provide SDP and DMRG data for the ground-
state energy for N = 40 spins as a function of J2 (Table
IV, corresponding to Fig. 2 in the main text)), as well
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N EDMRG ESDP
EDMRG − ESDP

|EDMRG|
r

6 −0.467129 −0.467129 0.000000 3
10 −0.451545 −0.451545 0.000000 5
14 −0.447396 −0.447403 0.000015 7
18 −0.445708 −0.445734 0.000059 9
22 −0.444858 −0.444898 0.000090 11
26 −0.444371 −0.444433 0.000141 13
30 −0.444065 −0.444151 0.000193 15
34 −0.443862 −0.443964 0.000231 17
38 −0.443719 −0.443833 0.000257 19
42 −0.443615 −0.443737 0.000275 21
46 −0.443537 −0.443666 0.000290 23
50 −0.443477 −0.443610 0.000300 25
60 −0.443376 −0.443517 0.000318 30
80 −0.443276 −0.443538 0.000591 20
100 −0.443229 −0.443593 0.000820 20

TABLE III: Heisenberg chain energy in a system of N
spins. r denotes the maximal distance between spins for

two-body terms in the monomial list (see main text,
section IV B). Note that the relative accuracy (third

column) is below 10−3 for all sizes.

as SDP data for N = 100 spins (Table V). In both ta-
bles, the last column indicates the degree d of the mono-
mials to construct the moment matrix, as explained in
Appendix A.

J2 EDMRG ESDP
EDMRG−ESDP
|EDMRG|

d

0.1 -0.42581 -0.42585 0.00011 4
0.2 -0.40892 -0.40893 0.00002 4

0.24117 -0.40233 -0.40234 0.00002 4
0.3 -0.39342 -0.39346 0.00012 4
0.4 -0.38055 -0.38092 0.00098 4
0.5 -0.37500 -0.37500 0.00000 4
0.6 -0.38081 -0.38167 0.00226 4
0.7 -0.39721 -0.39952 0.00582 4
0.8 -0.42177 -0.42613 0.01035 4
0.9 -0.45206 -0.45839 0.01401 4
1.0 -0.48657 -0.49446 0.01620 4
1.5 -0.68570 -0.69570 0.01458 4
2.0 -0.90242 -0.91010 0.00852 4

TABLE IV: Ground-state energy in the Heisenberg
chain with second-neighbour (J2) for N = 40 spins, as

evaluated by SDP and DMRG methods.

We also provide numerical data for the spin-spin cor-
relations in a system with N = 40 spins with PBC.

In Table VI we display SDP bounds on the first-
neighbour correlation C(1) = (1/4)〈σxi σxi+1〉 sandwiching
the DMRG value (Fig. 3 in the main text).

In Table VII we display similarly SDP bounds on
the second-neighbour correlation C(2) = (1/4)〈σxi σxi+2〉
sandwiching the DMRG value (Fig. 4 in the main text).

We then provide the numerical data for the spin-spin
correlation as a function of distance, for both J2 = 0.2

J2 ESDP r d
0.1 -0.42558385 20 3
0.2 -0.40861848 20 3

0.24117 -0.40205147 20 3
0.3 -0.39326097 20 3
0.4 -0.38088778 20 3
0.5 -0.37500000 20 3
0.6 -0.38215931 20 3
0.7 -0.40039365 20 3
0.8 -0.42707445 20 3
0.9 -0.45923392 20 3
1.0 -0.49525052 20 3
1.5 -0.69630683 20 3
2.0 -0.91191391 20 3

TABLE V: Ground-state energy lower-bound in the
Heisenberg chain with second-neighbour (J2) for
N = 100 spins, as evaluated by the SDP algorithm.

J2 SDP Lower Bound C(1)DMRG SDP Upper Bound
0.1 -0.14786074 -0.1477430325 -0.14765720
0.2 -0.14729208 -0.147169525 -0.14706027

0.241167 -0.14686185 -0.1467200175 -0.14655361
0.3 -0.14603355 -0.14567769 -0.14503139
0.4 -0.14304080 -0.14074337 -0.13719501
0.5 -0.12586317 -0.125 -0.12412305
0.6 -0.11102647 -0.106575027 -0.09321750
0.7 -0.09475276 -0.0837010968 -0.06511861
0.8 -0.08121743 -0.0662572234 -0.04425710
0.9 -0.07047691 -0.0539501872 -0.03055534
1.0 -0.06230067 -0.0413538 -0.02283913
1.5 -0.03687337 -0.01515181 -0.00762655
2.0 -0.02456216 -0.00916219 -0.00477422

TABLE VI: Heisenberg chain with second-neighbour
couplings. Spin-spin correlation at first neighbour

(N = 40).

J2 SDP Lower Bound C(2)DMRG SDP Upper Bound
0.1 0.05721213 0.058070785 0.05925762
0.2 0.05377170 0.0543200625 0.05493536

0.241167 0.05159693 0.0522883225 0.05287970
0.3 0.04630329 0.0484616925 0.04965045
0.4 0.02586365 0.034734385 0.04048043
0.5 -0.00175465 0 0.00173068
0.6 -0.05619797 -0.0381662752 -0.02651573
0.7 -0.09611990 -0.0697203904 -0.05378431
0.8 -0.12041565 -0.0929827357 -0.07421526
0.9 -0.13347897 -0.107586145 -0.08912191
1.0 -0.13935193 -0.12083676 -0.09989024
1.5 -0.14729411 -0.14224963 -0.12779654
2.0 -0.14801455 -0.14578753 -0.13812159

TABLE VII: Heisenberg chain with second-neighbour
couplings. Spin-spin correlation at second neighbour

(N = 40).

(Table VIII and main Fig. 5) and J2 = 1.0 (Table IX and
main Fig. 6).
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i SDP Lower Bound C(i)DMRG SDP Upper Bound
1 -0.14729208 -0.14716953 -0.14706027
2 0.05377170 0.05432006 0.05493536
3 -0.04223742 -0.04150683 -0.04071656
4 0.02697955 0.02788165 0.02875245
5 -0.02608222 -0.02506805 -0.02391077
6 0.01828035 0.01960574 0.02097705
7 -0.02014718 -0.01837402 -0.01667832
8 0.01339107 0.01542562 0.01760283
9 -0.01748701 -0.01480768 -0.01235376
10 0.01014856 0.0129733 0.01597931
11 -0.01610359 -0.01266906 -0.00949348
12 0.00792242 0.01142796 0.01513887
13 -0.01540711 -0.0113155 -0.00748512
14 0.00627837 0.01043121 0.01476372
15 -0.01513636 -0.010455 -0.00599421
16 0.00504368 0.00980607 0.01471382
17 -0.01518012 -0.00994131 -0.00490270
18 0.00414641 0.00946065 0.01491181
19 -0.01547775 -0.00970028 -0.00413067
20 0.00358767 0.00935002 0.01525790

TABLE VIII: Lower and upper SDP bounds for the
spin-spin correlator at distance i in the Heisenberg

chain with second-neighbour couplings (J2 = 0.2 and
size N = 40).

i SDP Lower Bound C(i)DMRG SDP Upper Bound
1 -0.06230067 -0.0413538 -0.02283913
2 -0.13935193 -0.12083676 -0.09989024
3 0.01884823 0.03311709 0.05421466
4 0.00971664 0.03623002 0.05751094
5 -0.06031966 -0.02670336 -0.00682832
6 -0.05338124 -0.01955047 0.01661007
7 -0.00390555 0.01860728 0.05169353
8 -0.04111449 0.00624808 0.03992840
9 -0.05681356 -0.01321554 0.02103763
10 -0.04328585 -0.00198039 0.04430916
11 -0.03371714 0.00905963 0.04936674
12 -0.04668599 -0.00176414 0.03943488
13 -0.05242524 -0.00596366 0.03949383
14 -0.04496886 0.00272444 0.03852069
15 -0.04945007 0.00389108 0.04193050
16 -0.05042092 -0.00398912 0.04059603
17 -0.042316503 -0.00202086 0.03886868
18 -0.05358065 0.00395704 0.05037295
19 -0.02405042 0.00076097 0.02054356
20 -0.06885791 -0.00445211 0.05499198

TABLE IX: Lower and upper SDP bounds for the
spin-spin correlator at distance i in the Heisenberg

chain with second-neighbour couplings (J2 = 1.0 and
size N = 40).
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Appendix F: Square lattice Heisenberg model

In this appendix, we provide numerical data on the
square lattice Heisenberg model with PBC. We compare
the SDP bounds with quantum Monte Carlo results of
ref. [42]. In Table X we provide data for the ground-
state energy as a function of the system size (N = L×L
with L = 4, 6, 8, 10, main Fig. 7).

L ESDP EMC
EMC−ESDP
|EMC|

4 -0.70305078 -0.7017777 0.0018141
6 -0.68317181 -0.6788734 0.0063317
8 -0.67967080 -0.6734875 0.0091810
10 -0.68003093 -0.6715494 0.0126298

TABLE X: SDP lower bound on the energy of the
square lattice Heisenberg model as compared to

quantum Monte Carlo results.

In Table XI we provide data on the spin correlation
C(L/2, L/2), namely at maximal distance along the di-
agonal of the square lattice (main Fig. 8). It is expected
that this correlation remains nonzero in the thermody-
namic limit, corresponding to antiferromagnetic long-
range order in the ground state.

L SDP Lower Bound C(L/2, L/2)MC SDP Upper Bound
4 0.05227666 0.059872 0.06519277
6 0.02626831 0.050856 0.06314557
8 0.00199976 0.045867 0.07006021

TABLE XI: SDP lower and upper bound for the spin
correlations at maximum distance in the square lattice
Heisenberg model, sandwiching quantum Monte Carlo

results.

Appendix G: Square-lattice J1−J2 Heisenberg model

In this appendix, we provide numeral data regarding
the J1 − J2 Heisenberg model on a square lattice (size
N = L × L and PBC), as discussed in Section IV E in
the main text.

1. Ground-state energy

We first present data for the ground-state energy, as
compared with various variational methods employed in
previous works in the literature.

In Table XII we present data for L = 6. We compare
the SDP lower-bound with neural-network (NN) Ansatz
wavefunctions [48] and exact results [63].The same data
are plotted in Fig. 12.

In Table XIII we present data for L = 8. We compare
the SDP lower-bound with variational Monte Carlo on

J2 ESDP ENN Eexact
Eexact−ESDP
|Eexact|

0.2 -0.60446854 -0.59895 -0.599046 0.00905
0.4 -0.53763182 -0.52936 -0.529745 0.01489
0.45 -0.52479952 -0.51452 0.01998
0.5 -0.51495867 -0.50185 -0.503810 0.02213
0.55 -0.50999811 -0.49067 -0.495178 0.02993
0.6 -0.51339892 -0.49023 -0.493239 0.04087
0.8 -0.60697786 -0.58590 -0.586487 0.03495
1.0 -0.73517835 -0.71351 -0.714360 0.02914

TABLE XII: Ground-state energy for the square-lattice
J1 − J2 Heisenberg model (L = 6). Last column:

relative difference between the best variational upper
bound and the SDP lower bound.
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FIG. 12: Energy lower bounds for the 2D J1 − J2

Heisenberg model on a square with L = 6 (data in
Table XII).

Ansatz wavefunctions (VMC) and DMRG computations
[47]. The same data are plotted in Fig. 13.

J2 ESDP EVMC EDMRG
Evar−ESDP
|Evar|

0.2 -0.60284236
0.4 -0.53682283 -0.52556 -0.5262 0.02019
0.45 -0.52391112 -0.51140 -0.5116 0.02406
0.5 -0.51398956 -0.49906 -0.4992 0.02963
0.55 -0.50899192 -0.48894 -0.4891 0.04067
0.6 -0.51182820
0.8 -0.60221175
1.0 -0.72821272

TABLE XIII: Energy lower bounds for the
square-lattice J1 − J2 Heisenberg model (L = 8). Last
column: relative difference between the best variational

upper bound and the SDP lower bound.

In Table XIV we provide numerical data for Fig. 9 in
the main text, namely ground-state energy for L = 10
for both SDP, NN and DMRG methods.
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FIG. 13: Energy lower bounds for the square-lattice
J1 − J2 Heisenberg model with L = 8 (data in Table

XIII).

J2 ESDP ENN EDMRG
Evar−ESDP
|Evar|

0.2 -0.60308301 -0.59275 0.01743
0.4 -0.53747136 -0.52371 -0.5253 0.02317
0.45 -0.52464206 -0.50905 -0.5110 0.02670
0.5 -0.51462802 -0.49516 -0.4988 0.03173
0.55 -0.50930924 -0.48277 -0.4880 0.04367
0.6 -0.51136063 -0.47604 0.07420
0.8 -0.59945283 -0.57383 0.04465
1.0 -0.72475248 -0.69636 0.04077

TABLE XIV: Energy lower bound (SDP) and upper
bounds (NN and DMRG) for the square-lattice J1 − J2

Heisenberg model (L = 10). Last column: relative
difference between the best variational upper bound

and the SDP lower bound.

2. First- and second-neighbour spin-spin
correlations

We finally provide SDP bounds for first- and second-
neighbour spin-spin correlations as a function of the
second-neighbour coupling J2, for a system of size L =
10. Data are respectively displayed in Table XV (cor-
responding to Fig. 10 in the main text) and Table XVI
(corresponding to Fig. 11 in the main text).

J2 min C(0, 1) max C(0, 1)
0.2 -0.11333849 -0.10800495
0.4 -0.11324885 -0.09395090
0.45 -0.11296774 -0.08486804
0.5 -0.11249860 -0.06910228
0.55 -0.11175223 -0.04379525
0.6 -0.10979021 -0.01789049
0.8 -0.05065273 -0.00391276
1.0 -0.03156633 -0.00055923

TABLE XV: Bounds for the correlations C(0, 1) of the
square-lattice J1 − J2 Heisenberg model (L = 10).

J2 min C(0, 1) max C(0, 1)
0.2 0.04606643 0.07095733
0.4 0.01666475 0.06490964
0.45 0.00005861 0.06250239
0.5 -0.02684876 0.05994387
0.55 -0.06666621 0.05689195
0.6 -0.10979021 -0.01789049
0.8 -0.05065273 -0.00391276
1.0 -0.03156633 -0.00055923

TABLE XVI: Bounds for the correlations C(1, 1) of the
square-lattice J1 − J2 Heisenberg model (L = 10).
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[18] R. Orús, A practical introduction to tensor networks:

Matrix product states and projected entangled pair
states, Annals of Physics 349, 117 (2014).

[19] G. Vidal, Classical simulation of infinite-size quantum
lattice systems in one spatial dimension, Phys. Rev. Lett.
98, 070201 (2007).

[20] G. Vidal, Entanglement renormalization, Phys. Rev.
Lett. 99, 220405 (2007).

[21] G. Evenbly and G. Vidal, Algorithms for entanglement
renormalization: Boundaries, impurities and interfaces,
Journal of Statistical Physics 157, 931 (2014).

[22] S. Liang, B. Doucot, and P. W. Anderson, Some new
variational resonating-valence-bond-type wave functions
for the spin-½ antiferromagnetic heisenberg model on a
square lattice, Phys. Rev. Lett. 61, 365 (1988).

[23] G. Carleo and M. Troyer, Solving the quan-
tum many-body problem with artificial neu-
ral networks, Science 355, 602 (2017),
https://www.science.org/doi/pdf/10.1126/science.aag2302.

[24] F. Mezzacapo, N. Schuch, M. Boninsegni, and J. I. Cirac,
Ground-state properties of quantum many-body systems:
entangled-plaquette states and variational monte carlo,
New Journal of Physics 11, 083026 (2009).

[25] H. J. Changlani, J. M. Kinder, C. J. Umrigar, and G. K.-
L. Chan, Approximating strongly correlated wave func-
tions with correlator product states, Phys. Rev. B 80,
245116 (2009).

[26] J. Thibaut, T. Roscilde, and F. Mezzacapo, Long-range
entangled-plaquette states for critical and frustrated
quantum systems on a lattice, Phys. Rev. B 100, 155148
(2019).

[27] M. Levin and X.-G. Wen, Detecting topological order in a
ground state wave function, Phys. Rev. Lett. 96, 110405
(2006).

[28] X.-G. Wen, Colloquium: Zoo of quantum-topological
phases of matter, Rev. Mod. Phys. 89, 041004 (2017).

[29] Z. Landau, U. Vazirani, and T. Vidick, A polynomial
time algorithm for the ground state of one-dimensional
gapped local hamiltonians, Nature Physics 11, 566
(2015).

[30] N. Schuch, M. M. Wolf, F. Verstraete, and J. I. Cirac,
Computational complexity of projected entangled pair
states, Phys. Rev. Lett. 98, 140506 (2007).

[31] Y.-K. Liu, M. Christandl, and F. Verstraete, Quantum
computational complexity of the n-representability prob-
lem: Qma complete, Phys. Rev. Lett. 98, 110503 (2007).

[32] P. W. Anderson, Limits on the energy of the antiferro-
magnetic ground state, Phys. Rev. 83, 1260 (1951).

[33] W. Slofstra, The set of quantum correlations is not
closed, Forum of Mathematics, Pi 7, e1 (2019).

[34] X. Han, S. A. Hartnoll, and J. Kruthoff, Bootstrapping
matrix quantum mechanics, Phys. Rev. Lett. 125, 041601
(2020).

[35] J. B. Lasserre, Global optimization with polynomials and
the problem of moments, SIAM Journal on optimization
11, 796 (2001).

[36] Our codes are available at https://github.com/

wangjie212/ManyBodySOS and https://github.com/

blegat/CondensedMatterSOS.jl.

https://www.cambridge.org/nl/universitypress/subjects/physics/condensed-matter-physics-nanoscience-and-mesoscopic-physics/quantum-phase-transitions-2nd-edition?format=HB&isbn=9780521514682
https://doi.org/10.1126/science.aam7127
https://arxiv.org/abs/https://www.science.org/doi/pdf/10.1126/science.aam7127
https://doi.org/10.1063/1.1360199
https://doi.org/10.1063/1.1360199
https://arxiv.org/abs/https://pubs.aip.org/aip/jcp/article-pdf/114/19/8282/10831897/8282_1_online.pdf
https://arxiv.org/abs/https://pubs.aip.org/aip/jcp/article-pdf/114/19/8282/10831897/8282_1_online.pdf
https://doi.org/10.1103/PhysRevA.63.042113
https://doi.org/10.1103/PhysRevA.63.042113
https://doi.org/10.1103/PhysRevLett.108.200404
https://doi.org/10.1103/PhysRevLett.108.200404
https://doi.org/10.1088/1367-2630/14/2/023027
https://doi.org/10.1088/1367-2630/14/2/023027
https://doi.org/10.1109/CCC.2008.26
https://doi.org/10.1109/CCC.2008.26
https://arxiv.org/abs/2006.06002
https://doi.org/10.1103/PhysRevLett.69.2863
https://doi.org/10.1103/RevModPhys.77.259
https://doi.org/10.1103/PhysRevLett.75.3537
https://doi.org/10.1103/PhysRevLett.75.3537
https://doi.org/https://doi.org/10.1016/j.aop.2010.09.012
https://doi.org/https://doi.org/10.1016/j.aop.2010.09.012
https://doi.org/10.1080/14789940801912366
https://arxiv.org/abs/https://doi.org/10.1080/14789940801912366
https://doi.org/10.1103/RevModPhys.93.045003
https://doi.org/10.1103/RevModPhys.93.045003
https://doi.org/https://doi.org/10.1016/j.aop.2014.06.013
https://doi.org/10.1103/PhysRevLett.98.070201
https://doi.org/10.1103/PhysRevLett.98.070201
https://doi.org/10.1103/PhysRevLett.99.220405
https://doi.org/10.1103/PhysRevLett.99.220405
https://doi.org/10.1007/s10955-014-0983-1
https://doi.org/10.1103/PhysRevLett.61.365
https://doi.org/10.1126/science.aag2302
https://arxiv.org/abs/https://www.science.org/doi/pdf/10.1126/science.aag2302
https://doi.org/10.1088/1367-2630/11/8/083026
https://doi.org/10.1103/PhysRevB.80.245116
https://doi.org/10.1103/PhysRevB.80.245116
https://doi.org/10.1103/PhysRevB.100.155148
https://doi.org/10.1103/PhysRevB.100.155148
https://doi.org/10.1103/PhysRevLett.96.110405
https://doi.org/10.1103/PhysRevLett.96.110405
https://doi.org/10.1103/RevModPhys.89.041004
https://doi.org/10.1038/nphys3345
https://doi.org/10.1038/nphys3345
https://doi.org/10.1103/PhysRevLett.98.140506
https://doi.org/10.1103/PhysRevLett.98.110503
https://doi.org/10.1103/PhysRev.83.1260
https://doi.org/10.1017/fmp.2018.3
https://doi.org/10.1103/PhysRevLett.125.041601
https://doi.org/10.1103/PhysRevLett.125.041601
https://github.com/wangjie212/ManyBodySOS
https://github.com/wangjie212/ManyBodySOS
https://github.com/blegat/CondensedMatterSOS.jl
https://github.com/blegat/CondensedMatterSOS.jl


20

[37] J. Wang, A more efficient reformulation of complex
SDP as real SDP (2023), preprint https:arXiv.org/

abs/2307.11599.
[38] T. Giamarchi, Quantum Physics in One Dimension (Ox-

ford University Press, 2003).
[39] A. Haim, R. Kueng, and G. Refael, Variational-

correlations approach to quantum many-body problems
(2020), arXiv:2001.06510 [cond-mat.str-el].

[40] S. R. White and I. Affleck, Dimerization and incommen-
surate spiral spin correlations in the zigzag spin chain:
Analogies to the kondo lattice, Phys. Rev. B 54, 9862
(1996).

[41] C. K. Majumdar and D. K. Ghosh, On next-nearest-
neighbor interaction in linear chain. i, Journal of Mathe-
matical Physics 10, 1388 (1969).

[42] A. W. Sandvik, Finite-size scaling of the ground-state pa-
rameters of the two-dimensional heisenberg model, Phys.
Rev. B 56, 11678 (1997).

[43] M. E. Zhitomirsky and K. Ueda, Valence-bond crystal
phase of a frustrated spin-1/2 square-lattice antiferro-
magnet, Phys. Rev. B 54, 9007 (1996).

[44] L. Capriotti and S. Sorella, Spontaneous plaquette dimer-
ization in the j1−−j2 heisenberg model, Phys. Rev. Lett.
84, 3173 (2000).

[45] H.-C. Jiang, H. Yao, and L. Balents, Spin liquid ground
state of the spin- 1

2
square J1-J2 heisenberg model, Phys.

Rev. B 86, 024424 (2012).
[46] L. Wang, D. Poilblanc, Z.-C. Gu, X.-G. Wen, and F. Ver-

straete, Constructing a gapless spin-liquid state for the
spin-1/2 J1 − J2 heisenberg model on a square lattice,
Phys. Rev. Lett. 111, 037202 (2013).

[47] S.-S. Gong, W. Zhu, D. N. Sheng, O. I. Motrunich, and
M. P. A. Fisher, Plaquette ordered phase and quantum
phase diagram in the spin- 1

2
J1−J2 square heisenberg

model, Phys. Rev. Lett. 113, 027201 (2014).
[48] K. Choo, T. Neupert, and G. Carleo, Two-dimensional

frustrated J1−J2 model studied with neural network
quantum states, Phys. Rev. B 100, 125124 (2019).

[49] I. Kull, N. Schuch, B. Dive, and M. Navascués,
Lower bounding ground-state energies of local hamil-
tonians through the renormalization group (2022),
arXiv:2212.03014 [quant-ph].
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