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Abstract

We report the experimental results on certifying 1% global optimality of
solutions of AC-OPF instances from PGLiB via the CS-TSSOS hierarchy
– a moment-SOS based hierarchy that exploits both correlative and term
sparsity, which can provide tighter SDP relaxations than Shor’s relaxation.
Our numerical experiments demonstrate that the CS-TSSOS hierarchy scales
well with the problem size and is indeed useful in certifying global optimality
of solutions for large-scale real world problems, e.g., the AC-OPF problem.
In particular, we are able to certify 1% global optimality for a challenging
AC-OPF instance with 6515 buses involving 14398 real variables and 63577
constraints.
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1. Introduction

Background on polynomial optimization. Polynomial optimization con-
siders optimization problems where both the cost function and constraints
are defined by polynomials, which widely arises in numerous fields, such as
optimal power flow [1], numerical analysis [2], computer vision [3], deep learn-
ing [4], discrete optimization [5], etc. Even though it is usually not difficult
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to find a locally optimal solution via a local solver (e.g., Ipopt [6]), the task
of solving a polynomial optimization problem (POP) to global optimality
is NP-hard in general. Over the last decades, the moment-sums of squares
(moment-SOS) hierarchy consisting of a sequence of increasingly tight SDP
relaxations, initially established by Lasserre [7], has become a popular tool
to handle polynomial optimization. The moment-SOS hierarchy features its
global convergence and finite convergence under mild conditions [8]. How-
ever, the main concern on the moment-SOS hierarchy comes from its scala-
bility as the d-th step of the moment-SOS hierarchy involves a semidefinite
program (SDP) of size

(
n+d
d

)
where n is the number of decision variables

of the POP. Except the first (relaxation) step of the moment-SOS hierar-
chy (also known as Shor’s relaxation for quadratically constrained quadratic
programs (QCQP) [9]), solving higher steps of the moment-SOS hierarchy
is typically limited to small-scale POPs, at least when relying on interior-
point solvers. To overcome this scalability issue, one practicable way is to
exploit the structure of the POP to reduce the size of SDPs arising from
the moment-SOS hierarchy. Such structures include symmetry [10], correla-
tive sparsity [11, 12], term sparsity [13, 14, 15]. The purpose of this paper
is to demonstrate that the scalability of the moment-SOS hierarchy can be
significantly improved when appropriate sparsity patterns are accessible via
a thorough numerical experiment on the AC optimal power flow (AC-OPF)
problem.

Background on the AC-OPF problem. The AC-OPF is a fundamental
problem in power systems, which has been extensively studied in recent years;
for a detailed introduction and recent developments, the reader is referred to
the survey [16] and references therein. One can formulate the AC-OPF prob-
lem as a POP either with real variables [16, 1] or with complex variables [17].
Nonlinear programming tools can mostly produce a locally optimal solution
whose global optimality is however unknown. Since 2006, several convex re-
laxation schemes (e.g., second order cone relaxations (SOCR) [18], quadratic
convex relaxations (QCR) [19] and semidefinite (Shor’s) relaxations (SDR)
[20]) have been proposed to provide lower bounds for the AC-OPF which
can be then used to certify global optimality of locally optimal solutions.
While these relaxations (SOCR, QCR, SDR) could be scalable to problems
of large size and prove to be tight for quite a few cases [21, 19, 22], they
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yield significant optimality gaps for a large number of other cases1. To tackle
these more challenging cases, it is then mandatory to go to higher steps of
the moment-SOS hierarchy which can provide tighter lower bounds. Along
with this line recently in [23], the authors certified global optimality for all
AC-OPF instances with up to 300 buses from the AC-OPF library PGLiB us-
ing the moment-SOS hierarchy (combined with other techniques to improve
scalability). Exact global optimality is obtained for certain 2000 bus cases
in [17] using a multi-order moment-SOS hierarchy (after some case modifi-
cations and dropping some constraints). To tackle AC-OPF instances with
more buses, the CS-TSSOS hierarchy then comes into play.

The CS-TSSOS hierarchy for large-scale POPs. The CS-TSSOS hi-
erarchy [15] is a sparsity-adapted version of the moment-SOS hierarchy tar-
geted at large-scale POPs by simultaneously exploiting correlative sparsity
(CS) and term sparsity (TS). The underlying idea is the following:
(1) partitioning the system into subsystems by exploiting correlative sparsity,
i.e., the fact that only a few variable products occur;
(2) exploiting term sparsity, i.e., the fact that the input data only contain a
few terms (by comparison with the maximal possible amount), to each sub-
system to further reduce the size of SDPs.
By virtue of this two-step reduction procedure, one may obtain SDP relax-
ations of significantly smaller size compared to the original SDP relaxations.
Next the main concern on the CS-TSSOS hierarchy might be how it per-
forms when applying to real-word large-scale POPs in terms of scalability
and accuracy.

Certifying global optimality for AC-OPF instances from PGLiB.
As the main contribution of this paper, we benchmark the CS-TSSOS hier-
archy through a comprehensive numerical experiment on AC-OPF instances
from the AC-OPF library PGLiB v20.07 [21] with up to tens of thousands of
variables and constraints. The experimental results (see Section 6) demon-
strate that the CS-TSSOS hierarchy scales well with the problem size and
is able to certify global optimality (in the sense of reducing optimality gap

1The reader may find related results on benchmarking SOCR and QR at
https://github.com/power-grid-lib/pglib-opf/blob/master/BASELINE.md.
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within 1%) for many of the challenging test cases. In particular, the largest
instance whose global optimality is certified beyond Shor’s relaxation involves
14398 real variables and 63577 constraints. Besides, the largest instance for
which the CS-TSSOS hierarchy is able to provide a smaller optimality gap
than Shor’s relaxation involves 24032 real variables and 96805 constraints.
To the best of our knowledge, this is the first time in literature that one can
solve higher steps of the moment-SOS hierarchy other than Shor’s relaxation
for POPs of such large sizes.

2. Notation and preliminaries

Let x = (x1, . . . , xn) be a tuple of variables and R[x] = R[x1, . . . , xn]
be the ring of real n-variate polynomials. A polynomial f ∈ R[x] can be
written as f(x) =

∑
α∈A fαxα with A ⊆ Nn, fα ∈ R, and xα := xα1

1 · · · xαn
n .

The support of f is defined by supp(f) := {α ∈ A | fα 6= 0}. A positive
semidefinite (PSD) matrix A is written as A � 0. For a positive integer r,
the set of r×r symmetric matrices is denoted by Sr and the set of r×r PSD
matrices is denoted by Sr+. For matrices A,B ∈ Sr, let A◦B ∈ Sr denote the
Hadamard product, defined by [A ◦B]ij = AijBij. We use | · | to denote the
cardinality of a set. For d ∈ N, let Nn

d := {α = (αi)
n
i=1 ∈ Nn |

∑n
i=1 αi ≤ d}.

The set xNn
d := {xα | α ∈ Nn

d} (fixing any ordering on it) is called the
standard monomial basis (up to degree d). For convenience we abuse notation
in the sequel, and denote by Nn

d instead of xNn
d the standard monomial basis

and use the exponent α to represent a monomial xα. With y = (yα)α∈Nn ⊆ R
being a sequence indexed by Nn, let Ly : R[x] → R be the linear functional
f =

∑
α fαxα 7→ Ly(f) =

∑
α fαyα. For α ∈ Nn,A ,B ⊆ Nn, let α + B :=

{α+β | β ∈ B} and A +B := {α+β | α ∈ A ,β ∈ B}. For m, l ∈ N\{0}
with l > m, let [m] := {1, 2, . . . ,m} and [m : l] = {m,m + 1, . . . , l}. For
β = (βi)i ∈ Nn, let supp(β) := {i ∈ [n] | βi 6= 0}.

An (undirected) graph G(V,E) or simply G consists of a set of nodes V
and a set of edges E ⊆ {{u, v} | u 6= v, (u, v) ∈ V × V }. For a graph G,
we use V (G) and E(G) to indicate the node set of G and the edge set of
G, respectively. The adjacency matrix of a graph G is denoted by BG for
which we put ones on its diagonal. A clique of a graph is a subset of nodes
that induces a complete subgraph. A maximal clique is a clique that is not
contained in any other clique. By definition, a chordal graph is a graph in
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
• • • ?
• • • •
• • • •
? • • •

 � 0 ⇐⇒


• • •
• • •
• • •

 � 0,

 • • •
• • •
• • •

 � 0

Figure 1: Illustration for Theorem 2.1

which any cycle of length at least four has a chord2. Any non-chordal graph
G(V,E) can be always extended to a chordal graph G′(V,E ′) by adding
appropriate edges to E, which is called a chordal extension of G(V,E). The
chordal extension of G is usually not unique and the symbol G′ is used to
represent any specific chordal extension of G throughout the paper.

Given a graph G(V,E), a symmetric matrix Q with rows and columns
indexed by V is said to have sparsity pattern G if Quv = Qvu = 0 whenever
u 6= v and {u, v} /∈ E. Let SG be the set of symmetric matrices with sparsity
pattern G and let ΠG be the projection from S|V | to the subspace SG, i.e.,
for Q ∈ S|V |,

[ΠG(Q)]uv =

{
Quv, if u = v or {u, v} ∈ E,
0, otherwise.

(2.1)

The set ΠG(S
|V |
+ ) denotes matrices in SG that have a PSD completion in

the sense that diagonal entries, and off-diagonal entries corresponding to
edges of G are fixed; other off-diagonal entries are free. More precisely,
ΠG(S

|V |
+ ) = {ΠG(Q) | Q ∈ S

|V |
+ }. For a chordal graph G, the following

theorem due to Grone et al. gives a characterization of matrices in the PSD
completable cone ΠG(S

|V |
+ ), which plays a crucial role in sparse semidefinite

programming.

Theorem 2.1 ([24], Theorem 7). Let G(V,E) be a chordal graph and as-
sume that C1, . . . , Ct are the list of maximal cliques of G(V,E). Then a

matrix Q ∈ ΠG(S
|V |
+ ) if and only if Q[Ci] � 0 for i = 1, . . . , t, where Q[Ci]

denotes the principal submatrix of Q indexed by the clique Ci.

2A chord is an edge that joins two nonconsecutive nodes in a cycle.
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3. The CS-TSSOS hierarchy

The moment-SOS hierarchy [7] provides a sequence of increasingly tighter
SDP relaxations for the following polynomial optimization problem:

(POP) :


infx∈Rn f(x)

s.t. gj(x) ≥ 0, j ∈ [m],

gj(x) = 0, j ∈ [m+ 1 : m+ l],

(3.1)

where f, g1, . . . , gm+l ∈ R[x] are all polynomials.
To state the moment hierarchy3, recall that for a given d ∈ N, the d-

th order moment matrix Md(y) associated with y = (yα)α∈Nn is defined
by [Md(y)]βγ := Ly(xβxγ) = yβ+γ ,∀β,γ ∈ Nn

d and the d-th order localiz-
ing matrix Md(gy) associated with y and g =

∑
α gαxα ∈ R[x] is defined

by [Md(g y)]βγ := Ly(gxβxγ) =
∑

α gαyα+β+γ ,∀β,γ ∈ Nn
d . Let dj :=

ddeg(gj)/2e for j = 1, . . . ,m+ l and dmin := max{ddeg(f)/2e, d1, . . . , dm+l}.
Then for an integer d ≥ dmin, the d-th order moment relaxation for POP
(3.1) is given by

inf
y∈R(n+2d

n ) Ly(f)

s.t. Md(y) � 0,

Md−dj(gjy) � 0, j ∈ [m],

Md−dj(gjy) = 0, j ∈ [m+ 1 : m+ l],

y0 = 1.

(3.2)

We call (3.2) the dense moment hierarchy for POP (3.1), whose op-
tima converge to the global optimum of (3.1) under mild conditions (slightly
stronger than compactness of the feasible set) [7]. Unfortunately, when the
relaxation order d is greater than 2, the dense moment hierarchy encounters
a severe scalability issue as the maximal size of PSD constraints is a combi-
natorial number in terms of n and d. Therefore in the following subsections,
we briefly revisit the framework of exploiting sparsity to derive a sparse mo-
ment hierarchy of remarkably smaller size for POP (3.1) in the presence of
appropriate sparsity patterns. For details, the interested reader may refer to

3We mainly focus on the moment hierarchy. The SOS hierarchy consists of the dual
SDPs.
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the early work on correlative sparsity by Waki et al. [11, 12] and the recent
work on term sparsity by the authors [25, 13, 14, 15].

3.1. Correlative sparsity (CS)

Let us from now on fix a relaxation order d. By exploiting correlative
sparsity, we partition the set of variables into a tuple of subsets and then the
initial system splits into a tuple of subsystems. To this end, we define the
correlative sparsity pattern (csp) graph4 associated with POP (3.1) to be the
graph Gcsp with nodes V = [n] and edges E satisfying {i, j} ∈ E if one of
the following holds:

(i) there exists α ∈ supp(f)∪
⋃
k∈J ′∪K′ supp(gk) such that {i, j} ⊆ supp(α);

(ii) there exists k ∈ [m+l]\(J ′∪K ′) such that {i, j} ⊆
⋃

α∈supp(gk) supp(α),

where J ′ := {k ∈ [m] | dk = d} and K ′ := {k ∈ [m+ 1 : m+ l] | dk = d}.
Let (Gcsp)′ be a chordal extension of Gcsp and {Ik}k∈[p] be the list of

maximal cliques of (Gcsp)′ with nk := |Ik|. We then partition the polynomials
gj, j ∈ [m]\J ′ into groups {gj | j ∈ Jk}, k ∈ [p] which satisfy

(i) J1, . . . , Jp ⊆ [m]\J ′ are pairwise disjoint and ∪pk=1Jk = [m]\J ′;

(ii) for any j ∈ Jk,
⋃

α∈supp(gj) supp(α) ⊆ Ik, k ∈ [p].

Similarly, we also partition the polynomials gj, j ∈ [m + 1 : m + l]\K ′ into
groups {gj | j ∈ Kk}, k ∈ [p].

For any k ∈ [p], let Md(y, Ik) (resp. Md(gy, Ik)) be the moment (resp.
localizing) submatrix obtained from Md(y) (resp. Md(gy)) by retaining only
those rows and columns indexed by β ∈ Nn

d of Md(y) (resp. Md(gy)) with
supp(β) ⊆ Ik.

Example 3.1. Consider the POP:
infx∈R3 x2

1x2 + x2x
2
3

s.t. 1− x2
1 − x2

2 ≥ 0,

1− x2
2 − x2

3 ≥ 0,

x4
1 + x2x3 = 1.

4We adopt the idea of “monomial sparsity” introduced in [17] for the definition of csp
graphs, which thus is slightly different from the original definition given in [12].
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Let us take the relaxation order d = 2. Then the csp graph is shown in Figure
2, which contains two maximal cliques: {x1, x2} and {x2, x3}.

x1

x2

x3

Figure 2: Illustration for correlative sparsity

3.2. Term sparsity (TS)

We next apply an iterative procedure to exploit term sparsity for each
subsystem involving variables x(Ik) := {xi | i ∈ Ik} for k ∈ [p]. The intuition
behind this procedure is the following: starting with a minimal initial set
of moments, we expand the set of moments that is taken into account in
the moment relaxation by iteratively performing chordal extension to the
related graphs inspired by Theorem 2.1. More concretely, let A := supp(f)∪⋃m+l
j=1 supp(gj) and Ak := {α ∈ A | supp(α) ⊆ Ik} for k ∈ [p]. We define

G
(0)
d,k,0 to be the graph with nodes Vd,k,0 := Nnk

d and edges

E(G
(0)
d,k,0) := {{β,γ} | β,γ ∈ Vd,k,0,β + γ ∈ Ak ∪ (2N)n}. (3.3)

Note that here we embed Nnk into Nn by specifying the i-th coordinate to
be zero when i ∈ [n]\Ik.

Example 3.2. Consider again the POP in Example 3.1 with the relaxation
order d = 2. Since there are two variable cliques derived from the correlative
sparsity pattern, we have p = 2. Figure 3 illustrates the term sparsity pattern
of this POP.

1 x2
1

x1

x2
2

x2 x1x2

1 x2
2

x2

x2
3

x3 x2x3

Figure 3: Illustration for term sparsity: G
(0)
d,1,0 (left) and G

(0)
d,2,0 (right)
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For the sake of convenience, we set g0 := 1 and d0 := 0 hereafter and for a
graph G(V,E) with V ⊆ Nn, let supp(G) := {β + γ | {β,γ} ∈ E}. Assume

that G
(0)
d,k,j, j ∈ Jk ∪ Kk, k ∈ [p] are all empty graphs with Vd,k,j := Nnk

d−dj .

Now for each j ∈ {0} ∪ Jk ∪Kk, k ∈ [p], we iteratively define an ascending

chain of graphs (G
(s)
d,k,j)s≥1 by

G
(s)
d,k,j := (F

(s)
d,k,j)

′, (3.4)

where F
(s)
d,k,j is the graph with nodes Vd,k,j and edges

E(F
(s)
d,k,j) = {{β,γ} | β,γ ∈ Vd,k,j, (β + γ + supp(gj)) ∩ C (s−1)

d 6= ∅}, (3.5)

with

C (s−1)
d :=

p⋃
k=1

⋃
j∈{0}∪Jk∪Kk

(supp(gj) + supp(G
(s−1)
d,k,j ))). (3.6)

Let rd,k,j := |Nnk
d−dj | =

(
nk+d−dj
d−dj

)
for all k, j. Then for each s ≥ 1, the

moment relaxation based on correlative-term sparsity for POP (3.1) is given
by

infy Ly(f)

s.t. B
G

(s)
d,k,0
◦Md(y, Ik) ∈ Π

G
(s)
d,k,0

(S
rd,k,0
+ ), k ∈ [p],

B
G

(s)
d,k,j
◦Md−dj(gjy, Ik) ∈ Π

G
(k)
d,k,j

(S
rd,k,j
+ ), j ∈ Jk, k ∈ [p],

B
G

(s)
d,k,j
◦Md−dj(gjy, Ik) = 0, j ∈ Kk, k ∈ [p],

Ly(gj) ≥ 0, j ∈ J ′,
Ly(gj) = 0, j ∈ K ′,
y0 = 1.

(3.7)

The above hierarchy is called the CS-TSSOS hierarchy, which is indexed by
two parameters: the relaxation order d and the sparse order s.

3.3. The minimal initial relaxation step

For POP (3.1), suppose that f is not a homogeneous polynomial or the
polynomials gj, j ∈ [m + l] are of different degrees as in the case of the AC-
OPF problem. Then instead of using the uniform minimum relaxation order
dmin, it might be more beneficial, from the computational point of view, to

9



assign different relaxation orders to different subsystems obtained from the
correlative sparsity pattern for the initial relaxation step of the CS-TSSOS
hierarchy. To this end, we redefine the csp graph Gicsp(V,E) as follows: V =
[n] and {i, j} ∈ E whenever there exists α ∈ supp(f)∪

⋃
j∈[m+l] supp(gj) such

that {i, j} ⊆ supp(α). This is clearly a subgraph of Gcsp defined in Section
3.1 and hence typically admits a smaller chordal extension. Let (Gicsp)′ be
a chordal extension of Gicsp and {Ik}k∈[p] be the list of maximal cliques of
(Gicsp)′ with nk := |Ik|. Now we partition the polynomials gj, j ∈ [m] into
groups {gj | j ∈ Jk}k∈[p] and {gj | j ∈ J ′} which satisfy

(i) J1, . . . , Jp, J
′ ⊆ [m] are pairwise disjoint and

⋃p
k=1 Jk ∪ J ′ = [m];

(ii) for any j ∈ Jk,
⋃

α∈supp(gj) supp(α) ⊆ Ik, k ∈ [p];

(iii) for any j ∈ J ′,
⋃

α∈supp(gj) supp(α) * Ik for all k ∈ [p].

Similarly, we also partition the polynomials gj, j ∈ [m+1 : m+ l] into groups
{gj | j ∈ Kk}k∈[p] and {gj | j ∈ K ′}.

Assume that f decomposes as f =
∑

k∈[p] fk such that
⋃

α∈supp(fk) supp(α) ⊆
Ik for k ∈ [p]. We define the vector of minimum relaxation orders o = (ok)k ∈
Np with ok := max({dj : j ∈ Jk ∪Kk} ∪ {ddeg(fk)/2e}). Then with s ≥ 1,
we define the following initial relaxation step of the CS-TSSOS hierarchy:

infy Ly(f)

s.t. B
G

(s)
ok,k,0

◦Mok(y, Ik) ∈ Π
G

(s)
ok,k,0

(S
tk,0
+ ), k ∈ [p],

M1(y, Ik) � 0, k ∈ [p],

B
G

(s)
ok,k,j
◦Mok−dj(gjy, Ik) ∈ Π

G
(s)
ok,k,j

(S
tk,j
+ ), j ∈ Jk, k ∈ [p],

Ly(gj) ≥ 0, j ∈ J ′,
B
G

(s)
ok,k,j
◦Mok−dj(gjy, Ik) = 0, j ∈ Kk, k ∈ [p],

Ly(gj) = 0, j ∈ K ′,
y0 = 1,

(3.8)

where G
(s)
ok,k,j

, j ∈ Jk ∪ Kk, k ∈ [p] are defined as in Section 3.2 and tk,j :=(
nk+ok−dj
ok−dj

)
for all k, j. Note that in (3.8) we add the PSD constraint on each

first-order moment matrix M1(y, Ik) to strengthen the relaxation.
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The CS-TSSOS hierarchy is implemented in the Julia package TSSOS5.
In TSSOS, the minimal initial relaxation step is accessible via the commands
cs tssos first and cs tssos higher! by setting the relaxation order to
be "min". For an introduction to TSSOS, the reader is referred to [26].

4. Problem formulation of AC-OPF

The AC-OPF problem aims to minimize the generation cost of an alter-
nating current transmission network under the physical constraints (Kirch-
hoff’s laws, Ohm’s law) as well as operational constraints, which can be
formulated as the following POP in complex variables:

inf
Vi,S

g
k∈C

∑
k∈G(c2k(<(Sgk))2 + c1k<(Sgk) + c0k)

s.t. ∠Vr = 0,

Sglk ≤ Sgk ≤ Sguk , ∀k ∈ G,
υli ≤ |Vi| ≤ υui , ∀i ∈ N,∑

k∈Gi
Sgk − Sdi −Ys

i |Vi|2 =
∑

(i,j)∈Ei∪ER
i
Sij, ∀i ∈ N,

Sij = (Y∗ij − i
bc
ij

2
) |Vi|

2

|Tij |2 −Y∗ij
ViV

∗
j

Tij
, ∀(i, j) ∈ E,

Sji = (Y∗ij − i
bc
ij

2
)|Vj|2 −Y∗ij

V ∗i Vj
T∗ij

, ∀(i, j) ∈ E,
|Sij| ≤ suij, ∀(i, j) ∈ E ∪ ER,

θ∆l
ij ≤ ∠(ViV

∗
j ) ≤ θ∆u

ij , ∀(i, j) ∈ E.

(4.1)

The meaning of the symbols in (4.1) is as follows: N - the set of buses, G -
the set of generators, Gi - the set of generators connected to bus i, E - the
set of from branches, ER - the set of to branches, Ei and ER

i - the subsets of
branches that are incident to bus i, i - imaginary unit, Vi - the voltage at bus
i, Sgk - the power generation at generator k, Sij - the power flow from bus i to
bus j, <(·) - real part of a complex number, ∠(·) - angle of a complex number,
| · | - magnitude of a complex number, (·)∗ - conjugate of a complex number,
r - the voltage angle reference bus. All symbols in boldface are constants
(c0k, c1k, c2k,υ

l
i,υ

u
i , s

u
ij,θ

∆l
ij ,θ

∆u
ij ∈ R, Sglk ,S

gu
k ,S

d
i ,Y

s
i ,Yij,b

c
ij,Tij ∈ C). For

a full description on the AC-OPF problem, the reader may refer to [21]. By
introducing real variables for both real and imaginary parts of each complex

5TSSOS is freely available at https://github.com/wangjie212/TSSOS.
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variable, we can convert the AC-OPF problem to a POP involving only real
variables6.

To tackle an AC-OPF instance, we first compute a locally optimal solution
with a local solver (e.g., Ipopt [6]) and then rely on lower bounds obtained
from certain relaxation schemes (SOCR/QR/SDR/CS-TSSOS) to certify 1%
global optimality. Suppose that the optimum reported by the local solver is
AC and the lower bound given by a certain convex relaxation is opt. Then
the optimality gap is defined by

gap :=
AC− opt

AC
× 100%.

As in [23], if the optimality gap is less than 1%, then we accept the locally
optimal solution to be globally optimal.

In our experiments, we eliminate the power flow variables Sij from (4.1)
so that it only involves the voltage variable Vi and the power generation vari-
ables Sgk . Because of the inequality SijS

∗
ij ≤ (suij)

2, the resulting optimization
problem contains a quartic constraint. To implement the first order relax-
ation (Shor’s relaxation) for QCQPs, we then relax this quartic constraint
to a quadratic constraint using the trick described in [16, Sec. 5.3]. The
minimal initial relaxation step of the CS-TSSOS hierarchy for (4.1) is able
to provide a tighter lower bound than the first order relaxation and is less
expensive than the second order relaxation. Therefore, we hereafter refer to
it as the 1.5th order relaxation.

5. Experimental settings

Challenging test cases. Our test cases are selected from the AC-OPF
library PGLiB v20.07 which provides various AC-OPF instances for bench-
marking AC-OPF algorithms. For an introduction to this library, the reader
is referred to [21]. We observe that for a number of instances in PGLiB, the
SOCR approach is able to close the gap to below 1% and these instances are
not particularly interesting as our purpose is to certify 1% global optimality
for more challenging cases. To that end, we select test cases from PGLiB
(with no more than 25000 buses) for which SOCR yields an optimality gap
greater than 1%. There are 115 such instances in total. For each instance,

6The expressions involving angles of complex variables can be converted to polynomials
by using tan(∠z) = y/x for z = x + iy ∈ C.
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with TSSOS we initially solve the first order relaxation and if this relaxation
fails to certify 1% global optimality, we further solve the 1.5th order relax-
ation with s = 1. Here Mosek 9.0 [27] is employed as an SDP solver with
the default settings.

Chordal extension. To achieve a good balance between the computational
cost and the approximation quality of lower bounds, two types of chordal
extensions are used in the computation. For correlative sparsity, we use
approximately smallest chordal extensions which give rise to small clique
numbers. For term sparsity, instead we use maximal chordal extensions which
make every connected component to be a complete subgraph by setting TS

= "block" in TSSOS.

1 2

4 3

1 2

4 3

Figure 4: Illustration for smallest chordal extension (left) and maximal chordal extension
(right): the dashed edges are added via chordal extension

Scaling of polynomial coefficients. To improve the numerical condition-
ing of the SDP relaxations, we scale the coefficients of f and gj so that they
lie in the interval [−1, 1] before building the SDP relaxations.

Computational resources. Instances with no more than 3500 buses (ex-
cept 2853 sdet and 2869 pegase) were computed on a laptop with an Intel
Core i5-8265U@1.60GHz CPU and 8GB RAM memory; instances with more
than 3500 buses (including 2853 sdet and 2869 pegase) were computed on
a server with an Intel Xeon E5-2695v4@2.10GHz CPU and 128GB RAM
memory.

6. Computational results and discussion

The computational results are summarized in Table 2–4 corresponding to
three operational conditions, denoted by “typical”, “congested” and “small
angle differences”, respectively, where the timing includes the time for pre-
processing (to obtain the block structure), the time for building SDP and the

13



Table 1: Notation
AC local optimum (available from PGLiB)
mc maximal size of variable cliques
mb maximal size of SDP blocks
opt optimum of SDP relaxations
time running time in seconds
gap optimality gap (%)
∗ encountering a numerical error
- out of memory

time for solving SDP. Note that the maximal size of variable cliques varies
from 6 to 218 among the tested cases. According to the tables, we can draw
the following conclusions.

Reducing the optimality gap. As we would expect, the 1.5th order relax-
ation provides tighter lower bounds than the first order relaxation. Indeed,
when it is solvable, the 1.5th order relaxation always reduces the optimality
gap (unless the lower bounds given by the first order relaxation are already
globally optimal). The largest instance for which the 1.5th order relaxation is
solvable is 10000 goc and its corresponding POP involves 24032 real variables
and 96805 constraints. The improvement of optimality gaps with the 1.5th
order relaxation is significant on quite a few cases. For instance, the first
order relaxation yields a optimality gap of 42.96% on 30 as under congested
operating conditions while the 1.5th order relaxation yields a optimality gap
of merely 0.01%. On the other hand, as the cost of these improvements solv-
ing the 1.5th order relaxation typically spends significantly more time than
solving the first order relaxation.

Certifying 1% global optimality. The first order relaxation is able to
certify 1% global optimality for 29 out of all 115 instances. The 1.5th order
relaxation is able to certify 1% global optimality for 29 out of the remaining
86 instances. The largest instance for which we are able to certify 1% global
optimality with the 1.5th order relaxation is 6515 rte and its corresponding
POP involves 14398 real variables and 63577 constraints. One would expect
that solving the second order relaxation could certify global optimality for
more instances. However this is too expensive to implement for large-scale
instances in practice.

14



115
1.5th order

58
first order

29

Figure 5: Certifying 1% global optimality for the test cases: the first order relaxation
solves 29 cases; the 1.5th order relaxation solves extra 29 cases

Computational burden. The computational burden of the CS-TSSOS
relaxations heavily relies on the maximal size of variable cliques. This is
because large variable cliques usually lead to SDP matrices of large size in
the resulting CS-TSSOS relaxations. It takes 63785 seconds to solve the 1.5th
order relaxation for the case 4020 goc under congested operating conditions
as it involves a variable clique of size 120. For similar reasons, Mosek runs
out of memory with the 1.5th order relaxation for the cases 9241 pegase,
9591 goc, 10480 goc, 13659 pegase, 19402 goc, 24464 goc.

Numerical issues. Even though we have scaled polynomial coefficients
to improve numerical conditioning of the resulting SDPs, we observe that
in numerous cases (especially when solving the 1.5th order relaxation), the
termination status of Mosek is “slow progress”, which means that Mosek does
not converge to the default tolerance although the solver usually still gives
a fairly good near-optimal solution in this case. Moreover, there are 12
even more challenging instances for which Mosek encounters severe numerical
issues with the 1.5th order relaxation and fails in converging to the optimum.
This indicates that there is still room for improvement in order to tackle these
challenging SDPs.

7. Conclusions

We have benchmarked the CS-TSSOS hierarchy on a number of chal-
lenging AC-OPF cases and demonstrated that the 1.5th order relaxation is
indeed useful in reducing the optimality gap and certifying global optimality

15



Table 2: The results for AC-OPF problems: typical operating conditions

case name AC
first order 1.5th order

opt time mb gap mc opt time mb gap
3 lmbd 5.8126e3 5.7455e3 0.10 5 1.15 6 5.8126e3 0.12 22 0.00
5 pjm 1.7552e4 1.4997e4 0.15 6 14.56 6 1.7534e4 0.58 22 0.10
30 ieee 8.2085e3 7.5472e3 0.22 8 8.06 8 8.2085e3 0.99 22 0.00

162 ieee dtc 1.0808e5 1.0164e5 2.15 28 5.96 28 1.0645e5 99.1 74 1.51
240 pserc 3.3297e6 3.2512e6 2.39 16 2.36 16 3.3084e6 28.6 44 0.64
300 ieee 5.6522e5 5.5423e5 2.72 16 1.94 14 5.6522e5 25.2 40 0.00
588 sdet 3.1314e5 3.0886e5 4.37 18 1.37 18 3.1196e5 50.6 32 0.38
793 goc 2.6020e5 2.5636e5 5.35 18 1.47 18 2.5932e5 66.1 33 0.34
1888 rte 1.4025e6 1.3666e6 30.0 26 2.56 26 1.3756e6 458 56 1.92
2312 goc 4.4133e5 4.3435e5 87.8 68 1.58 68 4.3858e5 997 81 0.62
2383wp k 1.8682e6 1.8584e6 63.0 50 0.52 48 1.8646e6 945 77 0.19
2742 goc 2.7571e5 2.7561e5 703 92 0.04

2869 pegase 2.4624e6 2.4384e6 85.0 26 0.97 26 2.4571e6 3641 191 0.22
3012wp k 2.6008e6 2.5828e6 123 52 0.69 52 2.5948e6 1969 81 0.23
3022 goc 6.0138e5 5.9277e5 115 48 1.43 50 5.9858e5 1886 76 0.47
4020 goc 8.2225e5 8.2208e5 2356 112 0.02
4661 sdet 2.2513e6 2.2246e6 25746 204 1.18 218 ∗ ∗ 285 ∗
4917 goc 1.3878e6 1.3658e6 267 64 1.59 68 1.3793e6 29562 110 0.61
6468 rte 2.0697e6 2.0546e6 415 54 0.73
6470 rte 2.2376e6 2.2060e6 478 54 1.41 58 ∗ ∗ 98 ∗
6495 rte 3.0678e6 2.6327e6 426 56 14.18 54 ∗ ∗ 108 ∗
6515 rte 2.8255e6 2.6563e6 460 56 5.99 54 ∗ ∗ 108 ∗

9241 pegase 6.2431e6 6.1330e6 982 64 1.76 64 - - 1268 -
10000 goc 1.3540e6 1.3460e6 1714 84 0.59
10480 goc 2.3146e6 2.3051e6 8559 136 0.41

13659 pegase 8.9480e6 8.8707e6 1808 64 0.86
19402 goc 1.9778e6 1.9752e6 37157 180 0.13
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Table 3: The results for AC-OPF problems: congested operating conditions

case name AC
first order 1.5th order

opt time mb gap mc opt time mb gap
3 lmbd 1.1236e4 1.0685e4 0.11 5 4.90 6 1.1236e4 0.23 22 0.00
5 pjm 7.6377e4 7.3253e4 0.14 6 4.09 6 7.6377e4 0.55 22 0.00
14 ieee 5.9994e3 5.6886e3 0.17 6 5.18 6 5.9994e3 0.54 22 0.00

24 ieee rts 1.3494e5 1.2630e5 0.37 10 6.40 10 1.3392e5 1.52 31 0.76
30 as 4.9962e3 2.8499e3 0.36 8 42.96 8 4.9959e3 2.41 22 0.01

30 ieee 1.8044e4 1.7253e4 0.25 8 4.38 8 1.8044e4 1.24 22 0.00
39 epri 2.4967e5 2.4522e5 0.28 8 1.78 8 2.4966e5 2.72 25 0.00

73 ieee rts 4.2263e5 3.9912e5 0.76 12 5.56 12 4.1495e5 6.77 36 1.82
89 pegase 1.2781e5 1.0052e5 1.13 24 21.35 24 1.0188e5 1404 184 20.29
118 ieee 2.4224e5 1.9375e5 1.80 10 20.02 10 2.2151e5 11.5 37 8.56

162 ieee dtc 1.2099e5 1.1206e5 1.97 28 7.38 28 1.1955e5 84.1 74 1.19
179 goc 1.9320e6 1.7224e6 1.24 10 10.85 10 1.9226e6 9.69 37 0.48
500 goc 6.9241e5 6.6004e5 4.31 18 4.67 18 6.7825e5 78.0 50 2.05
588 sdet 3.9476e5 3.9026e5 6.42 18 1.14 18 3.9414e5 57.0 32 0.15
793 goc 3.1885e5 2.9796e5 6.18 18 6.55 18 3.1386e5 79.2 33 1.56
2000 goc 1.4686e6 1.4147e6 54.0 42 3.67 42 1.4610e6 1094 62 0.51
2312 goc 5.7152e5 4.7872e5 93.4 68 16.24 68 5.2710e5 972 81 7.77
2736sp k 6.5394e5 5.8042e5 89.6 50 11.24 48 ∗ ∗ 79 ∗
2737sop k 3.6531e5 3.4557e5 71.9 48 5.40 48 3.4557e5 1653 77 5.40
2742 goc 6.4219e5 5.0824e5 772 92 20.86 90 6.0719e5 4644 108 5.45
2853 sdet 2.4578e6 2.3869e6 118 40 2.88 40 2.4445e6 10292 293 0.54

2869 pegase 2.9858e6 2.9604e6 90.2 26 0.85 26 2.9753e6 5409 191 0.35
3022 goc 6.5185e5 6.2343e5 102 48 4.36 50 6.4070e5 1519 76 1.71
3120sp k 9.3599e5 7.6012e5 138 52 18.79 58 8.5245e5 1627 70 8.93
3375wp k 5.8460e6 5.5378e6 222 58 5.27 54 5.7148e6 2619 90 2.25
3970 goc 1.4241e6 1.0087e6 2469 104 29.17 98 1.0719e6 15482 135 24.73
4020 goc 1.2979e6 1.0836e6 3523 112 16.51 120 1.1218e6 63785 174 13.57
4601 goc 7.9253e5 6.7523e5 2143 108 14.80 98 7.3914e5 17249 125 6.74
4619 goc 1.0299e6 9.6351e5 1782 82 6.45 84 9.9766e5 18348 132 3.13
4661 sdet 2.6953e6 2.6112e6 15822 204 3.12 218 ∗ ∗ 285 ∗
4837 goc 1.1578e6 1.0769e6 500 80 6.98 84 1.0947e6 8723 132 5.45
4917 goc 1.5479e6 1.4670e6 259 64 5.23 68 1.5180e6 4688 110 1.93
6470 rte 2.6065e6 2.5795e6 427 54 1.04 58 ∗ ∗ 98 ∗
6495 rte 2.9750e6 2.9092e6 453 56 2.21 54 ∗ ∗ 108 ∗
6515 rte 3.0617e6 2.9996e6 421 56 2.02 54 3.0434e6 8456 108 0.60

9241 pegase 7.0112e6 6.8784e6 865 64 1.89 64 - - 1268 -
9591 goc 1.4259e6 1.2425e6 7674 148 12.86 134 - - 201 -
10000 goc 2.3728e6 2.1977e6 2564 84 7.38 84 2.3206e6 27179 97 2.20
10480 goc 2.7627e6 2.6580e6 8791 136 3.79 132 - - 208 -

13659 pegase 9.2842e6 9.1360e6 1599 64 1.60 64 - - 1268 -
19402 goc 2.3987e6 2.3290e6 32465 180 2.91 172 - - 242 -
24464 goc 2.4723e6 2.4177e6 11760 116 2.21 118 - - 172 -
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Table 4: The results for AC-OPF problems: small angle difference conditions

case name AC
first order 1.5th order

opt time mb gap mc opt time mb gap
3 lmbd 5.9593e3 5.7463e3 0.11 5 3.57 6 5.9593e3 0.13 22 0.00
5 pjm 2.6109e4 2.6109e4 0.12 6 0.00
14 ieee 2.7768e3 2.7743e3 0.14 6 0.09

24 ieee rts 7.6918e4 7.3555e4 0.21 10 4.37 10 7.4852e4 1.64 31 2.69
30 as 8.9735e2 8.9527e2 0.19 8 0.23

30 ieee 8.2085e3 7.5472e3 0.30 8 8.06 8 8.2085e3 1.03 22 0.00
73 ieee rts 2.2760e5 2.2136e5 0.55 12 2.74 12 2.2447e5 5.01 36 1.38
118 ieee 1.0516e5 1.0191e5 0.79 10 3.10 10 1.0313e5 10.8 37 1.93

162 ieee dtc 1.0869e5 1.0282e5 2.46 28 5.40 28 1.0740e5 105 74 1.19
179 goc 7.6186e5 7.5261e5 1.39 10 1.21 10 7.5573e5 11.8 37 0.80

240 pserc 3.4054e6 3.2772e6 3.00 16 3.76 16 3.3128e6 33.8 44 2.72
300 ieee 5.6570e5 5.6162e5 2.73 16 0.72 14 5.6570e5 25.2 40 0.00
500 goc 4.8740e5 4.6043e5 6.52 18 5.53 18 4.6098e5 67.7 50 5.42
588 sdet 3.2936e5 3.1233e5 5.12 18 5.17 18 3.1898e5 56.6 32 3.15
793 goc 2.8580e5 2.7133e5 5.61 18 5.06 18 2.7727e5 76.0 33 2.98

1354 pegase 1.2588e6 1.2172e6 19.8 26 3.31 26 1.2582e6 387 49 0.05
1888 rte 1.4139e6 1.3666e6 31.2 26 3.34 26 1.3756e6 497 56 2.71
2000 goc 9.9288e5 9.8400e5 50.9 42 0.89 42 9.8435e5 1052 62 0.86
2312 goc 4.6235e5 4.4719e5 121 68 3.28 68 4.5676e5 1009 81 1.21
2383wp k 1.9112e6 1.9041e6 65.6 50 0.37 48 1.9060e6 937 77 0.27
2736sp k 1.3266e6 1.3229e6 89.5 50 0.28
2737sop k 7.9095e5 7.8672e5 76.3 48 0.53
2742 goc 2.7571e5 2.7561e5 686 92 0.04

2746wop k 1.2337e6 1.2248e6 79.1 48 0.72
2746wp k 1.6669e6 1.6601e6 83.1 50 0.41
2853 sdet 2.0692e6 2.0303e6 106 40 1.88 40 2.0537e6 40671 293 0.75

2869 pegase 2.4687e6 2.4477e6 85.4 26 0.85
3012wp k 2.6192e6 2.5994e6 97.1 52 0.76
3022 goc 6.0143e5 5.9278e5 93.4 48 1.44 50 5.9859e5 1340 76 0.47
3120sp k 2.1749e6 2.1611e6 117 52 0.64
4020 goc 8.8969e5 8.4238e5 2746 112 5.32 120 8.7038e5 43180 174 2.17
4601 goc 8.7803e5 8.3370e5 1763 108 5.05 98 8.3447e5 15585 125 4.96
4619 goc 4.8435e5 4.8106e5 1387 82 0.68
4661 sdet 2.2610e6 2.2337e6 16144 204 1.21 218 ∗ ∗ 285 ∗
4917 goc 1.3890e6 1.3665e6 260 64 1.62 68 1.3800e6 4914 110 0.65
6468 rte 2.0697e6 2.0546e6 399 54 0.73
6470 rte 2.2416e6 2.2100e6 451 54 1.41 58 ∗ ∗ 98 ∗
6495 rte 3.0678e6 2.6323e6 404 56 14.19 54 ∗ ∗ 108 ∗
6515 rte 2.8698e6 2.6565e6 399 56 7.43 54 ∗ ∗ 108 ∗

9241 pegase 6.3185e6 6.1696e6 912 64 2.36 64 - - 1268 -
9591 goc 1.1674e6 1.0712e6 7835 148 8.24 134 - - 201 -
10000 goc 1.4902e6 1.4204e6 2508 84 4.68 84 1.4212e6 25340 97 4.63
10480 goc 2.3147e6 2.3051e6 6522 136 0.42

13659 pegase 9.0422e6 8.9142e6 1653 64 1.42 64 - - 1268 -
19402 goc 1.9838e6 1.9783e6 30122 180 0.28
24464 goc 2.6540e6 2.6268e6 12101 116 1.03 118 - - 172 -
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of AC-OPF solutions. We hope that the computational results presented
in this paper would convince people to think of CS-TSSOS as an alternative
tool for certifying global optimality of solutions of large-scale POPs. One line
of future research is to improve the efficiency of the CS-TSSOS relaxations
by relying on more advanced chordal extension algorithms. We also plan to
design suitable branch and bound algorithms to reach better accuracy results
such as 0.1% or 0.01% global optimality for the AC-OPF problem.
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