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ABSTRACT
Barrier certificates, which serve as differential invariants that wit-

ness system safety, play a crucial role in the verification of cyber-

physical systems (CPS). Prevailing computational methods for syn-

thesizing barrier certificates are based on semidefinite program-

ming (SDP) by exploiting Putinar Positivstellensatz. Consequently,
these approaches are limited by Archimedean condition, which re-

quires all variables to be bounded, i.e., systems are defined over

bounded domains. For the unbounded case, unfortunately, these

methods become conservative and even fail to identify potential

barrier certificates.

In this paper, we address this limitation by presenting a new

computational method. The main technique we use is the homoge-
nization approach [40], which was proposed in optimization com-

munity recently, to transform an unbounded optimization problem

to a bounded one. Our method can be applied to various definitions

of barrier certificates, thus expanding the scope of barrier certificate

synthesis in the general sense. Experimental results demonstrate

that our approach is more effective while maintaining a comparable

level of efficiency.

CCS CONCEPTS
• Computer systems organization → Embedded and cyber-
physical systems; • Theory of computation → Logic and ver-
ification; • Mathematics of computing → Semidefinite pro-
gramming.

KEYWORDS
Safety, differential invariants, barrier certificates, semidefinite pro-

gramming, homogenization

1 INTRODUCTION
Background. With recent advancements in optimization the-

ory and computational techniques, Cyber-Physical Systems (CPS),

which involve the seamless integration of physical components and

software systems, have proliferated across various application do-

mains. A significant subset of CPS, known as safety-critical systems,

presents a heightened level of concern. Failures or malfunctions

in such systems can lead to severe safety risks for individuals and

the environment. Examples of safety-critical CPS include aircraft,

automobiles, integrated medical devices, nuclear power plants, and

biological systems. As a result, ensuring the safety of these systems

has become a primary focus of extensive academic research.

Hybrid systems are mathematical models that involves both con-

tinuous dynamics and discrete transitions, and hence are widely

used for modelling CPS. One of the key challenges in CPS verifica-

tion is the safety problem (or dually, the reachability problem) of

hybrid systems. This problem aims to demonstrate that a hybrid

system, starting from its initial states, never enters an unsafe region.

In general, the safety problem of hybrid systems is undecidable [37].

However, for certain sub-classes of hybrid systems, the problem

becomes decidable [3, 6, 27, 45]. The most challenging aspect of

the safety problem lies in reasoning about the continuous dynam-

ics of hybrid systems, which are typically described by ordinary

differential equations (ODEs). Existing approaches can be broadly

categorized into two groups, reachability analysis and deductive
verification.

Reachability analysis aims to compute or approximate the set of

reachable states. The choice of different set representations leads

to various approaches in this field. For example, one can utilize

geometric objects (such as hyper-rectangles [50], polytopes [11],

ellipsoids [44], zonotopes [31]) or symbolic representations (such

as support functions [34], Taylor models [14, 16]) to depict sets of

system states and perform set propagation to construct approxima-

tions of the reachable set. For a comprehensive survey on this topic,

we recommend referring to [2]. Alternatively, simulation-based

method represents system states by nearby sampled trajectories

and attempt to cover the reachable set by a finite number of neigh-

borhoods of trajectories [10, 24–26, 32]. Another class of methods

represents system states by constructing a finite state abstraction of
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the system, thereby enabling the incorporation of model checking

techniques [4, 12, 68].

Deductive verification, derived from Hoare-style program ver-

ification [38], offers a method to verify safety without directly

computing the reachable set. At the core of deductive verification

lies the synthesis of differential invariants [47, 55], which extend

the concept of inductive invariants to the continuous-time domain.

Specifically, a differential invariant is a set of states from which

any trajectories starting from it can never escape. With a priori

specified template, the invariant generation problem boils down

to solving the constraints encoding the invariant condition. When

all involved constraints are polynomial, the problem is decidable

but has a doubly exponential time complexity [47], according to

Tarski’s theorem [69] and the complexity for the quantifier elim-

ination procedure [20]. Consequently, considerable efforts have

been dedicated to identifying differential invariants that allow for

efficient synthesis.

In their seminar work [56], Prajna and Jadbabaie introduced

the concept of barrier certificates as witnesses to safety. Namely, a

barrier certificate is a real-valued function whose zero sub-level set

serves as a differential invariant, separating the set of initial states

and the unsafe region. It is important to note that, for the purpose

of efficient synthesis, the barrier certificate condition strengthens

the general condition of differential invariants. Since then, various

definitions of barrier certificates have been proposed, aiming to

relax the original barrier certificate conditions while still allow-

ing for efficient synthesis. Examples of such definitions include

exponential-type barrier certificates [43], Darboux-type barrier cer-

tificates [74], general convex barrier certificates [18] and vector

barrier certificates [66], and invariant barrier certificate [70]. More-

over, similar notions of barrier certificates have been developed

for verifying systems that involve control inputs [5, 73], distur-

bances [71], and stochastic dynamics [39, 41, 57]. These extensions

broaden the applicability of barrier certificates in various domains.

Recently, there are also works aim at generalizing the notion of

𝑘-inductiveness for safety verification, leading to the definitions of

𝑡-barrier certificates [13] and 𝑘-inductive barrier certificates [7, 8].

Sum-of-squares programming [46] is a well-established com-

putational technique for synthesizing barrier certificates and has

been employed in most of the works mentioned above. Typically,

the barrier certificate conditions are first encoded into constraints

involving sum-of-squares polynomials. These constraints are then

translated into SDP and solved by numerical solvers. In the encod-

ing step, one can choose to rely on either a sufficient condition or a

necessary condition. In scenarios where the domains are bounded,

the differences between these two conditions are often overlooked,

as their formulations are quite similar. However, when dealing with

systems defined over unbounded domains, the sufficient condition

tends to be conservative while the necessary condition can not be

utilized due to Archimedean condition in Putinar’s Positivstellen-

satz. In such cases, the sufficient condition becomes the sole viable

option, potentially leading to conservative results.

Besides sum-of-squares programming, much efforts have been

devoted to incorporate other numerical methods for solving the

obtained constraints, for instance, interval arithmetic [22, 29, 30],

linear programming [64], and data-driven approaches [1, 54, 62, 75,

76].

Contributions. This paper focuses on the computational aspect

of barrier certificates. Our main contributions are threefold:

(1) We present the problem of synthesizing barrier certificates

as a special class of polynomial feasible problems. We then

highlight the differences between utilizing the necessary

condition and the sufficient condition. It is worth noting that

these distinctions are mostly overlooked in existing works

with only a mention in [70]. (See Section 3)

(2) We derive a necessary condition for polynomial feasible

problems with unbounded sets by employing a recent ad-

vancement in polynomial optimization, known as the homog-
enization approach [40]. This technique enables us to project

potentially unbounded regions into bounded regions in the

projective space, hence removing the restriction imposed by

Archimedean condition. Additionally, we discuss two alter-

native techniques for obtaining necessary conditions and

compare their differences. (See Section 4)

(3) We implement two algorithms based on the sufficient condi-

tion and the necessary condition, respectively. These algo-

rithms are tested over a set of benchmarks with unbounded

domains adapted from the literature. Experimental results

demonstrate that the necessary condition is more expressive

than the sufficient condition. (See Sections 5 and 6)

In summary, our contributions include a clear exposition of the

problem, an exploration of necessary conditions for unbounded

sets, and practical implementations and experimental evaluations

of the algorithms.

Organization. The rest of this paper is organized as follows: Sec-

tion 2 formally defines the safety verification problem and intro-

duces algebraic tools that will be used. Section 3 formulates the

barrier certificate synthesis problems as polynomial feasible prob-

lems and explains the difference between using the necessary con-

dition and the sufficient condition. Section 4 investigates into three

approaches for obtaining necessary conditions for systems over

unbounded domains, with an emphasis on the homogenization

approach. Section 5 discusses the practical computation details

and Section 6 reports the experimental results. Finally, Section 7

concludes the paper.

2 PRELIMINARIES
In this section, we first fix basic notions used throughout this pa-

per. Afterwards, we recap necessary concepts concerning safety

verification problems and sum-of-squares relaxations.

Basic Notations. Let N denote the set of all natural numbers,

N[𝑚,𝑛] represents the index set {𝑚,𝑚 + 1, . . . , 𝑛} for any naturals

𝑚,𝑛 such that𝑚 ≤ 𝑛. Let R,R≥0, and R>0 denote the set of reals,
non-negative real numbers and the set of positive real numbers

respectively. By convention, we use boldface letters to denote vec-

tors and vector-valued functions, e.g., 𝒙 = (𝑥1, . . . , 𝑥𝑛) denotes a
state variable and 𝒇 = (𝑓1, . . . , 𝑓𝑛) denotes a vector field. For vectors
𝒙,𝒚 ∈ R𝑛 , let ∥𝒙 ∥ =̂

√︃∑𝑛
𝑖=1 𝑥

2

𝑖
denote the standard Euclidean norm,

⟨𝒙,𝒚⟩ =̂ ∑𝑛
𝑖=1 𝑥𝑖𝑦𝑖 denote the inner product of 𝒙 and 𝒚.

2
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Let R[𝒙] denote the set of polynomials in variables 𝒙 with

real coefficients, R𝑑 [𝒙] denote the set of polynomials with de-

gree up to 𝑑 . A basic semialgebraic set K ⊆ R𝑛 is of the form

{𝒙 ∈ R𝑛 : 𝑝1 (𝒙) ⊲ 0, . . . , 𝑝𝑚 (𝒙) ⊲ 0}, where 𝑝𝑖 (𝒙) ∈ R[𝒙] and ⊲ ∈
{≥, >}. A basic semialgebraic set is considered closed when its defin-
ing polynomials contain only non-strict inequalities. Semialgebraic

sets are formed as unions of basic semialgebraic sets. i.e.,

⋃𝑛
𝑖=1K𝑖 ,

where each K𝑖 is a basic semialgebraic set. For any (semialgebraic)

set 𝑆 ⊆ R𝑛 , cl(𝑆) denotes the closure of 𝑆 .

2.1 Safety Verification Problems
We consider a class of dynamical systems featuring differential

dynamics governed by ordinary differential equations (ODEs) of

autonomous type:

¤𝒙 = 𝒇 (𝒙) (1)

where 𝒙 ∈ R𝑛 is the state vector, ¤𝒙 denotes its temporal derivative

𝑑𝑥/𝑑𝑡 , and 𝒇 : R𝑛 → R𝑛 is a polynomial vector field, i.e., each

component 𝑓𝑖 of 𝒇 is a polynomial. Since a polynomial vector field

is locally Lipschitz continuous, ODE (1) admits an unique solution
(or trajectory), denoted as 𝜉𝒙0

: R≥0 → R𝑛 , from any initial state

𝒙0 ∈ R𝑛 , such that

i) 𝜉𝒙0
(0) = 𝒙0, ii)

d𝜉𝒙
0

d𝑡

��
𝑡=𝑡 ′ = 𝒇 (𝜉𝒙0

(𝑡 ′)), ∀𝑡 ′ ∈ R≥0 .
Given a polynomial 𝑝 (𝒙) ∈ R[𝒙], the Lie derivative of 𝑝 (𝒙) w.r.t.

a vector filed 𝑓 is denoted by 𝔏𝒇 𝑝 (𝒙) =̂ ⟨ 𝜕
𝜕𝒙 𝑝 (𝒙),𝒇 (𝒙)⟩. Intuitively,

Lie derivative 𝔏𝒇 𝑝 captures the evolution of 𝑝 along the vector field

𝑓 .

Safety Verification Problems. Given dynamical system Eq. (1) with

domainX ⊆ R𝑛 , initial setI ⊂ X, and unsafe setU ⊂ X, the safety
verification problem asks whether U is reachable from any state in

I within X. Formally, let R denote the reachable set

R =̂ {𝒙 ∈ X : ∃𝑡 ∈ R≥0, ∃𝒙0 ∈ I, such that

𝒙 = 𝜉𝒙0
(𝑡) ∧ ∀𝜏 ∈ [0, 𝑡] . 𝜉𝒙0

(𝜏) ∈ X},

the system is said to be safe ifU ∩ R = ∅, and unsafe otherwise.
The safety verification problem can be readily addressed when

the computability of the reachable setR is established. Nevertheless,

for the majority of nonlinear systems, the direct computation, or

even approximate estimation, of reachable sets typically proves

intractable.

In this paper, we restrict our focus to the case when X, I, and
U are closed basic semialgebraic sets described by

I =

{
𝒙 ∈ X : 𝑔I𝑖 (𝒙) ≥ 0, for 𝑖 ∈ N[1,𝑚𝑖 ]

}
,

U =

{
𝒙 ∈ X : 𝑔U𝑖 (𝒙) ≥ 0, for 𝑖 ∈ N[1,𝑚𝑢 ]

}
,

X =

{
𝒙 ∈ X : 𝑔X𝑖 (𝒙) ≥ 0, for 𝑖 ∈ N[1,𝑚𝑥 ]

}
.

2.2 Sum-of-Squares Relaxations
Sum-of-squares relaxation is a well-established technique for solv-

ing polynomial optimization problems. In what follows, we intro-

duce fundamental concepts and theorems pertinent to this tech-

nique. For interested readers, we recommend [15, 46] for a detailed

treatment of this topic.

Sum-of-Squares Polynomials. Given 𝑆 ⊆ R𝑛 , we say 𝑝 (𝒙) ∈ R[𝒙]
is nonnegative (resp. strictly positive) over 𝑆 if 𝑝 (𝒙) ≥ 0 (resp. 𝑝 (𝒙) >
0) for any 𝒙 ∈ 𝑆 . Sum-of-squares polynomials forms an important

subset of polynomials that are nonnegative globally over R𝑛 . A
polynomial 𝑝 (𝒙) ∈ R[𝒙] is said to be a sum-of-squares polynomial

if it can be expressed as 𝑝 (𝒙) = ∑𝑚
𝑖=1 𝑝𝑖 (𝒙)2, where 𝑝𝑖 (𝒙) ∈ R[𝒙]

for each 𝑖 . Similar to R[𝒙] and R𝑑 [𝒙], we use Σ[𝒙] and Σ𝑑 [𝒙] to
denote the set of sum-of-squares polynomials and sum-of-squares

polynomials of degree up to 𝑑 in variables 𝒙 , respectively.

Putinar’s Theorem. Let K be a closed basic semialgebraic set

described by

K =̂
{
𝒙 ∈ R𝑛 : 𝑝1 (𝒙) ≥ 0, . . . , 𝑝𝑚 (𝒙) ≥ 0

}
. (2)

The set of polynomials

QM(𝑝1, 𝑝2, . . . , 𝑝𝑚) =̂ {𝜎0 +
𝑚∑︁
𝑖=1

𝜎𝑖𝑝𝑖 | 𝜎𝑖 ∈ Σ[𝒙] for 𝑖 ∈ N[0,𝑚] }

is called the quadratic module generated by description polyno-

mials of K . A quadratic module QM is Archimedean, or satisfies
Archimedean condition, if 𝑁 − ∥𝒙 ∥2 ∈ QM for some constant 𝑁 ∈ N.

Since a sum-of-squares polynomial 𝜎 (𝒙) ∈ Σ[𝒙] is nonnegative
over R𝑛 , the following result trivially holds.

Lemma 1. Given K as defined in Eq. (2), then

𝑓 (𝒙) ∈ QM(𝑝1, . . . , 𝑝𝑚) =⇒ 𝑓 (𝒙) ≥ 0 over K .

An important result in real algebraic geometry is Putinar’s Posi-

tivstellensatz, which states that, under Archimedean condition, the

quadratic module QM(𝑝1, . . . , 𝑝𝑚) contains all polynomials strictly

positive over K .

Theorem 2 (Putinar’s Positivstellensatz [46, 58]). Given K
as defined in Eq. (2) and a polynomial 𝑓 ∈ R[𝒙], if QM(𝑝1, . . . , 𝑝𝑚)
is Archimedean, then

𝑓 (𝒙) > 0 over K =⇒ 𝑓 (𝒙) ∈ QM(𝑝1, . . . , 𝑝𝑚) .

We would like to make two remarks regarding the above theo-

rem.

(1) First, it’s crucial to note that in Theorem 2, we require

𝑓 (𝒙) > 0 over K , whereas in Lemma 1, we have 𝑓 (𝒙) ≥ 0

overK . This distinction will be significant in our theoretical

analysis in Section 3 and Section 4. Nonetheless, in practical

computations, numerical solvers cannot distinguish between

≥ and >, so this distinction can be disregarded in practice.

(2) Second, whenK is bounded, we can ensure that Archimedean

condition holds by using the “big-ball trick”. Given thatK is

bounded, there always exists an 𝑁 ∈ N such that

K ⊆
{
𝒙 ∈ R𝑛 : 𝑁 − ∥𝒙 ∥2 ≥ 0

}
.

This allowing us to assume the description polynomials of

K contain a redundant constraint 𝑁 − ∥𝒙 ∥2 ≥ 0. In this

manner, the quadratic module QM(𝑝1, . . . , 𝑝𝑚, 𝑁 − ∥𝒙 ∥2)
always satisfies Archimedean condition.

Theorem 2 signifies a computationally feasible method for iden-

tifying polynomials that exhibit strict positivity over a fundamental

semialgebraic set, while ensuring completeness. This method can

be applied to polynomial optimization problems. Considering, for

3
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example, the problem that minimizing a polynomial 𝑓 (𝒙) ∈ R[𝒙]
over a bounded semialgebraic set K as defined in Eq. (2), that is

1{
max 𝛾

𝑠.𝑡 . ∀𝒙 ∈ K : 𝑓 (𝒙) − 𝛾 > 0.
(3)

Utilizing Theorem 2, we can reformulate the optimization prob-

lem (3) into a new program that incorporates sum-of-squares con-

straints:
max 𝛾

𝑠.𝑡 . 𝑓 (𝒙) − 𝛾 = 𝜎0 (𝒙) +
𝑚∑︁
𝑖=1

𝜎𝑖 (𝒙)𝑝𝑖 (𝒙) + 𝜎𝑚+1 (𝒙) (𝑁 − ∥𝒙 ∥2),

𝜎𝑖 (𝒙) ∈ Σ[𝒙], for 𝑖 ∈ N[0,𝑚+1] .

(4)

Sum-of-Squares Relaxations. Solving optimization programProg. (4)

directly is intractable, as we lack knowledge regarding the degrees

of both 𝑓 (𝒙) and 𝜎𝑖 (𝒙) for 𝑖 ∈ N[0,𝑚+1] . However, it is always
possible to approximate Prog. (4) (and its optimal value) by solving

a series of new programs, with each new program representing

a relaxation of Prog. (4) [53]. The main idea is to impose restric-

tions on the maximum degree of constraints. For example, given

𝑑 ∈ N such that 𝑑 ≥ max{deg(𝑓 ), deg(𝑝1), . . . , deg(𝑝𝑚)}, the 𝑑-th
relaxation of Prog. (4) is defined as follows:



max 𝛾

𝑠.𝑡 . 𝑓 (𝒙) − 𝛾 = 𝜎0 (𝒙) +
𝑚∑︁
𝑖=1

𝜎𝑖 (𝒙)𝑝𝑖 (𝒙) + 𝜎𝑚+1 (𝒙) (𝑁 − ∥𝒙 ∥2),

𝑓 (𝒙) ∈ R𝑑 [𝒙], 𝜎0 (𝒙) ∈ Σ𝑑 [𝒙], 𝜎𝑚+1 ∈ Σ𝑑−2 [𝒙],

𝜎𝑖 (𝒙) ∈ Σ𝑑−deg(𝑝𝑖 ) [𝒙], for 𝑖 ∈ N[1,𝑚] .

(5)

where the decision variables consist of the variable 𝛾 as well as

the unknown coefficients in 𝜎𝑖 (𝒙). In Section 5, we elucidate the

process of converting Prog. (5) into a semidefinite program. This

transformation enables efficient polynomial-time solutions, leverag-

ing techniques such as interior-point methods. Furthermore, as the

degree bound 𝑑 increases, the series of sum-of-squares relaxations

in Prog. (5) yields progressively more precise approximations for

the optimal value of Prog. (3).

3 BARRIER CERTIFICATE CONDITIONS AS
POLYNOMIAL FEASIBLE PROBLEMS

In this section, we commence by revisiting various definitions of

barrier certificates. Subsequently, from a computational standpoint,

we rephrase the problem of synthesizing barrier certificates as a

category of polynomial feasibility problems. Following this, we

explain why existing methods are conservative when considering

unbounded regions and proceed to formalize the primary problem

addressed in this paper.

3.1 Barrier Certificates
A differential invariant is a subset Φ ⊆ X such that any trajectory

starting from Φ stays within Φ forever.

1
In this paper, we do not distinguish between sup and max in optimization programs.

Definition 3 (Differential invariant). A set Φ ⊆ R𝑛 is a
differential invariant of the system (1) if and only if

∀𝒙0 ∈ Φ,∀𝑡 ∈ R≥0 . 𝜉𝒙0
(𝑡) ∈ Φ.

Utilizing the concept of differential invariants, we can verify

the safety of a system without explicitly computing the reachable

set. The key idea is to find a differential invariant Inv ⊂ X such

that I ⊆ Inv and U ⊆ X\Inv. According to its definition, Inv
serves as an over-approximation of the reachable set R, thereby
substantiating safety of the system.

Barrier certificates encapsulate the conditions requisite for a zero

sub-level set of the form{
𝒙 ∈ R𝑛 : 𝐵(𝒙) ≤ 0

}
,

to become a differential invariant, where 𝐵(𝒙) : X → R is a real-

valued differentiable function. To ensure computational tractabil-

ity, the function 𝐵(𝒙) is commonly constrained to polynomial

forms. Among various certificates, the non-convex barrier certifi-

cate stands out as the first simple yet efficacious barrier condition.

Theorem 4 (Non-Convex Barrier Certificates [56]). Given
system (1) with sets X, I, andU, the system is safe if there exists a
non-convex barrier certificate, namely a polynomial 𝐵(𝒙) : X → R
satisfying the following conditions2:

∀𝒙 ∈ I . 𝐵(𝒙) ≤ 0, (6)

∀𝒙 ∈ U . 𝐵(𝒙) > 0, (7)

∀𝒙 ∈ X. 𝐵(𝒙) = 0 =⇒ 𝔏𝒇 𝐵(𝒙) < 0. (8)

Intuitively, conditions (6) and (7) demand that the barrier 𝐵(𝒙)
separates I fromU, while Eq. (8) imposes constraints on the Lie

derivatives of points located on the boundary of 𝐵(𝒙), thereby
encoding the requirement that the zero sub-level set of 𝐵(𝒙) serves
as a differential invariant.

The set of all barriers that satisfy Eqs. (6) to (8) comprises a

non-convex set, primarily due to the constraint 𝐵(𝒙) = 0 in Eq. (8).

This non-convexity poses challenges when attempting to find a

non-convex barrier numerically. To resolve this issue, [56] further

strengthens Eq. (8) into a convex condition

∀𝒙 ∈ X. 𝔏𝒇 𝐵(𝒙) ≤ 0, (9)

and refers functions that satisfying constraints Eqs. (6), (7) and (9)

as convex barrier certificates.
Subsequent research in barrier certificates primarily addresses

the relaxation of conditions (8) and (9), aiming to enhance expres-

siveness while preserving the invariant property. In what follows,

we recall two important results pertaining to these two research

directions.

Theorem 5 (General Convex Barrier Certificates [18]).

Given system (1) with sets X, I, andU, the system is safe if there ex-
ists a general convex barrier certificate, namely a polynomial 𝐵(𝒙) ∈
R[𝒙] satisfying Eq. (6), Eq. (7), and the following condition

∀𝒙 ∈ X. 𝔏𝒇 𝐵(𝒙) ≤ 𝜔 (𝐵(𝒙)), (10)

where 𝜔 : R→ R is the derivative of some continuously differential
function 𝑏 such that 𝑏′ = 𝜔 (𝑏), 𝑏 (𝑥 (0)) ≤ 0, and 𝑏 (𝒙 (𝑡)) ≤ 0 for
all 𝑡 ∈ R≥0.
2
The original formulation of condition (8) wrote 𝔏𝒇 𝐵 (𝒙 ) ≤ 0, which is incorrect. See

Footnote (5) in [66] for more details.
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Theorem 5 was initially introduced in [18] as a general approach

for relaxing the condition specified in Eq. (9), all the while preserv-

ing the convex nature of convex barrier certificates. In practice, to

apply Theorem 5, one must predefine the function 𝜔 (·). A straight-

forward yet effective choice is to define 𝜔 (𝑥) = 𝜆𝑥 , where 𝜆 is a

real constant number. In this case, the definition simplifies to what

is commonly referred to as exponential-type barrier certificates, as
introduced in [43].

Theorem 6 (Invariant Barrier Certificates [70]). Give sys-
tem (1) with sets X, I, and U, the system is safe if there exists an
invariant barrier certificate, namely a polynomial 𝐵(𝒙) ∈ R[𝒙] sat-
isfying Eqs. (6) and (7), and the following condition

∀𝒙 ∈ X.

𝑁𝐵,𝑓∧
𝑖=1

( 𝑖−1∧
𝑗=0

𝔏
𝑗

𝒇
𝐵(𝒙) = 0 =⇒ 𝔏𝑖

𝒇 𝐵(𝒙) ≤ 0

)
, (11)

where 𝑁𝐵,𝒇 ≥ 1 is an integer (determined by 𝐵(·) and 𝑓 ) serves as
the completeness threshold, and the operator 𝔏𝑖

𝒇
denotes the 𝑖-th order

Lie derivative defined inductively as

𝔏𝑖
𝒇 𝐵(𝒙) =̂

{
𝐵(𝒙), 𝑖 = 0,

⟨ 𝜕
𝜕𝒙𝔏

𝑖−1
𝒇

𝐵(𝒙),𝒇 (𝒙)⟩, 𝑖 ≥ 1.

Theorem 6 gives the necessary and sufficient condition for a

polynomial 𝐵(𝒙) satisfying Eq. (6) and Eq. (7) to be a differential

invariant, and therefore is theweakest possible (non-convex) barrier

certificate condition.

Remark. In this paper, our focus lies on the scenario wherein a
differential invariant is characterized by the zero sub-level set of a
single polynomial. It is worth noting that the condition for a general
semialgebraic set to be a differential invariant can be represented in
similar forms [47], thereby making the method presented in this paper
applicable in such cases as well.

3.2 Polynomial Feasible Problems
In the following, we abstract away from distinctions among various

definitions of barrier certificates and concentrate on the general

procedure of resolving constraints. Clearly, the synthesis of a barrier

certificate amounts to address the subsequent polynomial feasibility

problem, which includes constraints related to nonnegativity and

strict positivity of polynomials:
find 𝒂

𝑠 .𝑡 . 𝑓𝑖 (𝒙 ; 𝒂) ≥ 0 on K𝑖 , 𝑖 ∈ I,
𝑓𝑗 (𝒙 ; 𝒂) > 0 on K𝑗 , 𝑗 ∈ J,

(12)

where, for any 𝑟 ∈ I ∪ J, 𝑓𝑟 (𝒙 ; 𝒂) is a polynomial in variable 𝒙 with

parameters 𝒂, and K𝑟 is a basic closed semialgebraic set defined by

K𝑟 =̂
{
𝒙 ∈ R𝑛 : 𝑝𝑟,1 (𝒙) ≥ 0, . . . , 𝑝𝑟,𝑚𝑟

(𝒙) ≥ 0

}
. (13)

Here we permit the polynomials 𝑝𝑟,𝑘 to incorporate parameters 𝒂
for 𝑘 ∈ N[1,𝑚𝑟 ] , but refrain from explicitly specifying these param-

eters in our notation for simplicity
3
.

By utilizing Lemma 1 and Theorem 2, we can derive the sufficient

condition and the necessary condition for Prog. (12), respectively.

3
Polynomials 𝑝𝑟,𝑘 will contain unknown parameters when we want to synthesize a

non-convex barrier, as, for example, constraint ∀𝒙 ∈ X. 𝐵 (𝒙 ) = 0 =⇒ 𝔏𝒇 𝐵 (𝒙 ) < 0

can be equivalently formulated as ∀𝒙 ∈ X ∩ {𝒙 ∈ R𝑛 | 𝐵 (𝒙 ) = 0} . 𝔏𝒇 𝐵 (𝒙 ) < 0.

Theorem 7 (Sufficient Condition). For any 𝜖0 ∈ R>0, if 𝒂0 is
a solution of Prog. (14), then 𝒂0 is also a solution to Prog. (12).

find 𝒂

𝑠 .𝑡 . 𝑓𝑖 (𝒙 ; 𝒂) = 𝜎𝑖,0 (𝒙) +
𝑚𝑖∑︁
𝑘=1

𝜎𝑖,𝑘 (𝒙)𝑝𝑖,𝑘 (𝒙), for 𝑖 ∈ I,

𝑓𝑗 (𝒙 ; 𝒂) − 𝜖0 = 𝜎 𝑗,0 (𝒙) +
𝑚 𝑗∑︁
𝑘=1

𝜎 𝑗,𝑘 (𝒙)𝑝 𝑗,𝑘 (𝒙), for 𝑗 ∈ J

𝜎𝑖,𝑘 ∈ Σ[𝒙], for 𝑖 ∈ I, 𝑘 ∈ N[0,𝑚𝑖 ]
𝜎 𝑗,𝑘 ∈ Σ[𝒙], for 𝑗 ∈ J, 𝑘 ∈ N[0,𝑚 𝑗 ] .

(14)

Proof. By directly applying Lemma 1. □

Under Archimedean condition, a necessary condition follows

directly form Theorem 2.

Theorem 8 (Necessary Condition, the Bounded Case). Sup-
pose K𝑟 ⊆

{
𝒙 ∈ R𝑛 : 𝑁 − ∥𝒙 ∥2 ≥ 0

}
for all 𝑟 ∈ I ∪ J. For any

𝜖0 ∈ R>0, if 𝒂0 is a solution to Prog. (12), then 𝒂0 is also a solu-
tion of Prog. (15):

find 𝒂

𝑠 .𝑡 . 𝑓𝑖 (𝒙 ; 𝒂) + 𝜖0 = 𝜎𝑖,0 (𝒙) +
𝑚𝑖∑︁
𝑘=1

𝜎𝑖,𝑘 (𝒙)𝑝𝑖,𝑘 (𝒙)

+ 𝜎𝑖,𝑚𝑖+1 (𝒙) (𝑁 − ∥𝒙 ∥2), for 𝑖 ∈ I,

𝑓𝑗 (𝒙 ; 𝒂) = 𝜎 𝑗,0 (𝒙) +
𝑚 𝑗∑︁
𝑘=1

𝜎 𝑗,𝑘 (𝒙)𝑝 𝑗,𝑘 (𝒙)

+ 𝜎 𝑗,𝑚 𝑗+1 (𝒙) (𝑁 − ∥𝒙 ∥2), for 𝑗 ∈ J,
𝜎𝑖,𝑘 ∈ Σ[𝒙], for 𝑖 ∈ I, 𝑘 ∈ N[0,𝑚𝑖+1]
𝜎 𝑗,𝑘 ∈ Σ[𝒙], for 𝑗 ∈ J, 𝑘 ∈ N[0,𝑚 𝑗+1] .

(15)

Proof. By directly applying Theorem 2. □

Most existingworks on barrier certificates, such as [18, 43, 56, 66],

primarily focus on utilizing the sufficient condition in the form of

Prog. (14). Although [70] discusses the necessary condition, it still

relies on the sufficient condition in practical computation. The

preference for the sufficient condition stems from two reasons.

First, when the redundant polynomial 𝑁 − ∥𝒙 ∥2 is included in

the description polynomials of K𝑟 , for 𝑟 ∈ I ∪ J, Prog. (14) and
Prog. (15) coincide as 𝜖0 approaches 0. Therefore, there is not much

loss in expressiveness for utilizing the sufficient condition. Second,

employing the necessary condition requires an additional verifica-

tion step to rule out fake solutions, as 𝑓𝑖 (𝒙; 𝒂) ≥ 0 is replaced by

𝑓𝑖 (𝒙 ; 𝒂) + 𝜖0 ≥ 0.

However, when K𝑟 are allowed to be unbounded, the sufficient

condition remains available but becomes conservative since the “big-

ball trick” can not be employed. Consequently, algorithms relying

on Prog. (14) may fail to identify potential solutions. One possible

approach is to iteratively solve Prog. (15) while gradually increasing

the value of 𝑁 until a solution is found (the obtained solution can

be verified over the unbounded domain). This method is evidently

impractical since it necessitates solving a program for each value

of 𝑁 and offers no guarantee of termination.
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To summarize, the main problem this paper aims to solve is that:

How can we derive a necessary condition for Prog. (12) with
unbounded sets and utilize it in barrier certificate synthesis?

4 NECESSARY CONDITIONS FOR
POLYNOMIAL FEASIBLE PROBLEMS WITH
UNBOUNDED SETS

In this section, we examine several approaches that can be em-

ployed to address the previously mentioned problem. Among these

techniques, the primary focus of this paper is the homogenization

approach, which is introduced in Section 4.1. Subsequently, we

delve into a discussion of two alternative approaches and offer a

comparative analysis with the homogenization approach.

4.1 Homogenization Approach
We first fix some notations. Let 𝑥0 be a fresh variable and de-

note 𝒙̃ = (𝑥0, 𝒙). Given a polynomial 𝑝 (𝒙) of degree 𝑑 , the homoge-
nization of 𝑝 (𝒙) w.r.t. variable 𝑥0 is a new polynomial 𝑝 defined by

𝑝 (𝒙̃) =̂ 𝑥𝑑
0
𝑝 (𝑥1/𝑥0, . . . , 𝑥𝑛/𝑥0). Suppose K is a semialgebraic set as

described in Eq. (2), we introduce two related sets as follows:

˜K =̂
{
𝒙̃ ∈ R𝑛+1 : 𝑝1 (𝒙̃) ≥ 0, . . . , 𝑝𝑚 (𝒙̃) ≥ 0

}
,

˜K𝑏 =̂ ˜K ∩
{
𝒙̃ ∈ R𝑛+1 : 𝑥0 ≥ 0, ∥𝒙̃ ∥2 = 1

}
.

It is straightforward to see that the projection map

𝜑 :

{
𝒙̃ ∈ R𝑛+1 : 𝑥0 > 0, ∥𝒙̃ ∥2 = 1

}
→ R𝑛, (𝑥0, 𝒙) ↦→

𝒙

𝑥0

defines an one-to-one mapping between
˜K𝑏\

{
𝒙̃ ∈ R𝑛+1 : 𝑥0 = 0

}
and K . By employing the inverse mapping 𝜑−1

, we can transform

a potentially unbounded set into a bounded set located on the unit

sphere within R𝑛+1. Moreover, note that points with 𝑥0 = 0 in

R𝑛+1 correspond to points at infinity in R𝑛 . This encourages us to
take the points at infinity into consideration. The related concept

is captured by the following definition.

Definition 9 (closed at infinity [52]). A basic semialgebraic
set K is closed at∞ if

𝑐𝑙 ( ˜K ∩
{
𝒙̃ ∈ R𝑛+1 : 𝑥0 > 0

}
) = ˜K ∩

{
𝒙̃ ∈ R𝑛+1 : 𝑥0 ≥ 0

}
.

We would like to emphasize that closure at infinity is a generic

property for semialgebraic set, and its manifestation may be contin-

gent upon the selection of descriptive polynomials [35]. To check

whether a semialgebraic set is closed at∞, one can rely on Thm. 2.11

in [35].

Example 10. [40] Consider two semialgebraic sets

𝑆1 =
{
(𝑥1, 𝑥2) ∈ R2 : 𝑥1 − 𝑥2

2
≥ 0

}
,

𝑆2 =
{
(𝑥1, 𝑥2) ∈ R2 : 𝑥1 − 𝑥2

2
≥ 0, 𝑥1 ≥ 0

}
.

It is easy to check 𝑆1 = 𝑆2. However, the set 𝑆2 is closed at∞ while 𝑆1
is not, since

(0,−1, 0) ∈ 𝑆1 ∩
{
𝒙̃ ∈ R𝑛+1 : 𝑥0 ≥ 0

}
,

(0,−1, 0) ∉ 𝑐𝑙 (𝑆1 ∩
{
𝒙̃ ∈ R𝑛+1 : 𝑥0 > 0

}
) .

The following theorem constitutes the foundational element of

the homogenization formulation.

Theorem 11 ([40, Lem 3.2]). When K is closed at∞,

𝑓 (𝒙) ≥ 0 over K ⇐⇒ ˜𝑓 (𝒙̃) ≥ 0 over ˜K𝑏

Utilizing Theorem 11, we can derive a necessary condition for

Prog. (12).

Theorem 12. SupposeK𝑟 is closed at∞ for each 𝑟 ∈ I∪ J. For any
𝜖0 ∈ R>0, if 𝒂0 is a solution of Prog. (12), then 𝒂0 is also a solution of
the following program:

find 𝒂

𝑠 .𝑡 . ˜𝑓𝑟 (𝒙̃ ; 𝒂) + 𝜖0 = 𝜎𝑟,0 (𝒙̃) +
𝑚𝑟∑︁
𝑘=1

𝜎𝑟,𝑘 (𝒙̃)𝑝𝑟,𝑘 (𝒙̃) + 𝜎𝑟,𝑚𝑟+1 (𝒙̃) · 𝑥0

+ 𝜏𝑟 (𝒙̃) (∥𝒙̃ ∥ − 1), for 𝑟 ∈ I ∪ J,
𝜎𝑟,𝑘 (𝒙̃) ∈ Σ[𝒙̃], for 𝑟 ∈ I ∪ J, 𝑘 ∈ N[0,𝑚𝑟+1] ,

𝜏𝑟 (𝒙̃) ∈ R[𝒙̃]

(16)

Proof. If 𝒂0 is a solution to Prog. (12), then we have

𝑓𝑟 (𝒙 ; 𝒂0) ≥ 0 over K𝑟 , for 𝑟 ∈ I ∪ J.

By Theorem 11, we further obtain

˜𝑓𝑟 (𝒙̃ ; 𝒂0) ≥ 0 over
˜K𝑟
𝑏
, for 𝑟 ∈ I ∪ J.

Thus, according to Theorem 2, for any 𝜖0 > 0 and any 𝑟 ∈ I ∪ J,
function

˜𝑓𝑟 (𝒙̃ ; 𝒂0) + 𝜖0 can be expressed as

˜𝑓𝑟 (𝒙̃ ; 𝒂) + 𝜖0 = 𝜎𝑟,0 (𝒙̃) +
𝑚𝑟∑︁
𝑘=1

𝜎𝑟,𝑘 (𝒙̃)𝑝𝑟,𝑘 (𝒙̃) + 𝜎𝑟,𝑚𝑟+1 (𝒙̃) · 𝑥0

+ (𝜎𝑟,+ (𝒙̃) − 𝜎𝑟,− (𝒙̃)) (∥𝒙̃ ∥ − 1),

note that the equality constraint ∥𝒙 ∥2−1 = 0 is treated as ∥𝒙 ∥2−1 ≥
0 ∧ ∥𝒙 ∥2 − 1 ≤ 0. Since any polynomial can be represented as

a difference of two sum-of-squares polynomials, we can replace

𝜎𝑟,+ (𝒙̃) − 𝜎𝑟,− (𝒙̃) by a new polynomial 𝜏 (𝒙̃) ∈ R[𝒙̃] and hence

Prog. (16) is obtained. □

The following example illustrates the power of homogenization.

Example 13. Let 𝒙 = (𝑥1, 𝑥2). It is well-known that Motzkin’s
polynomial𝑀 (𝒙) = 𝑥2

1
𝑥4
2
+ 𝑥4

1
𝑥2
2
− 3𝑥2

1
𝑥2
2
+ 1 is positive semidefinite,

that is, 𝑀 (𝒙) ≥ 0 for any 𝒙 ∈ R2, but is not a sum-of-squares
polynomial. This means that 𝑀 (𝒙) ∉ QM(1) = Σ[𝒙]. Nevertheless,
by using homogenization and employing a numerical solver, we can
find 𝜎 ∈ Σ[𝒙̃] and 𝜏 ∈ R[𝒙̃] such that

𝑀̃ (𝒙̃) = 𝜎 · 𝑥0 + 𝜏 · (∥𝒙̃ ∥ − 1)

which implies that 𝑀̃ (𝒙̃) ∈ QM(𝑥0, ∥𝒙̃ ∥−1, 1−∥𝒙̃ ∥). Moreover, if one
is not satisfied with numerical solutions, we can utilize the technique
described in [61] to prove the existence of a real solution near the
numerical solution.

4.2 Comparison with Other Approaches
In this part, we explore two alternative methodologies that can be

employed to establish necessary conditions for polynomial feasible

problems involving unbounded sets. Both of these approaches are

based on representation theorems that extend Putinar’s Positivstel-

lensatz.
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Necessary Condition based on S-K Theorem. Given a set of poly-

nomials 𝑝1, . . . , 𝑝𝑚 and an index set I ⊆ N[1,𝑚] . Let 𝑝I =̂
∏

𝑖∈I 𝑝𝑖 ,
the set

P(𝑝1, . . . , 𝑝𝑚) =̂


∑︁
I⊆N[1,𝑚]

𝜎I𝑝I : 𝜎I ∈ Σ[𝒙]


is called a preordering generated by 𝑝1, . . . , 𝑝𝑚 . The following theo-

rem presents a generalization of Theorem 2 and does not rely on

Archimedean condition.

Theorem 14 (Stengle-Krivine Theorem[46, 67]). Given 𝑓 ∈
R[𝒙] and a semialgebraic set K as defined in Eq. (2), then
𝑓 (𝒙) > 0 over K ⇐⇒ ∃𝑔, ℎ ∈ P(𝑝1, . . . , 𝑝𝑚). 𝑓 𝑔 = 1 + ℎ,

𝑓 (𝒙) ≥ 0 over K ⇐⇒ ∃𝑙 ∈ N, ∃𝑔, ℎ ∈ P(𝑝1, . . . , 𝑝𝑚). 𝑓 𝑔 = 𝑓 2𝑙 + ℎ.
Since Theorem 14 explicitly distinguishes between 𝑓 (𝒙) > 0

and 𝑓 (𝒙) ≥ 0, it can be utilized to derive a necessary and sufficient
condition for the polynomial feasible problem with unbounded sets.

However, a problem arises in the “≥" case, as it requires to fix 𝑙 ∈ N
in advance. While there exists a theoretical bound on 𝑙 that depends

on the dimension 𝑛 and the degree of polynomials 𝑝1, . . . , 𝑝𝑚 , it

is worth noting that this particular threshold frequently proves

impractically large for practical computational applications. Due to

this limitation, we choose to utilize exclusively the initial assertion

in Theorem 14 to derive a necessary condition, whose proof is quite

similar to that of Theorem 12.

Theorem 15. If 𝒂0 is a solution to Prog. (12), then 𝒂0 is a solution
to the following program.

find 𝒂

𝑠 .𝑡 .
∑︁

I𝑖⊆N[1,𝑚𝑖 ]

𝜎I𝑖 (𝒙)𝑝I𝑖 (𝒙) · (𝑓𝑖 (𝒙 ; 𝒂) + 𝜖0) =

1 +
∑︁

I′
𝑖
⊆N[1,𝑚𝑖 ]

𝜎I′
𝑖
(𝒙)𝑝I′

𝑖
(𝒙), for 𝑖 ∈ I,∑︁

J𝑗 ⊆N[1,𝑚𝑗 ]

𝜎J𝑗 (𝒙)𝑝J𝑗 (𝒙) · 𝑓𝑗 (𝒙 ; 𝒂) =

1 +
∑︁

J′
𝑗
⊆N[1,𝑚𝑗 ]

𝜎J′
𝑗
(𝒙)𝑝J′

𝑗
(𝒙), for 𝑗 ∈ J,

𝜎I𝑖 , 𝜎I′𝑖
∈ Σ[𝒙], for 𝑖 ∈ I

𝜎J𝑗 , 𝜎J′𝑗
∈ Σ[𝒙], for 𝑗 ∈ J.

(17)

Necessary Condition based on P-V Theorem. Another representa-
tion theorem extends Theorem 2 by leveraging the denseness of

sum-of-squares polynomials. Specifically, when 𝑓 is nonnegative

over a basic semialgebraic set K as defined in Eq. (2), the quadratic

module QM(𝑝1, . . . , 𝑝𝑚) must contain a polynomial that is close

to 𝑓 , although not necessarily equals to 𝑓 .

Theorem 16 (Putinar-Vasilescu Positivstellensatz [59]).

Given a semialgebraic set K as defined in Eq. (2) and define 𝜃 =̂ 1 +
∥𝒙 ∥2. Let 𝑓 ∈ R[𝒙] and 𝑑 ∈ N such that 2𝑑 > deg(𝑓 ), then for all
𝜖 > 0, there exists 𝑘 ∈ N such that

𝑓 (𝒙) ≥ 0 over K =⇒ 𝜃2𝑘 (𝑓 (𝒙) + 𝜖𝜃𝑑 ) ∈ QM(𝑝1, . . . , 𝑝𝑚).
The ideal case is that 𝜖 = 𝑘 = 0, where Theorem 16 degenerates

to Theorem 2. Following a similar argument of Theorem 12, we can

obtain the following necessary condition.

Theorem 17. Suppose 𝒂0 is a solution of Prog. (12), and 𝑑 ∈ N a
constant integer such that 2𝑑 > deg(𝑓𝑟 ) for any 𝑟 , then there exists
𝑘𝑟 ∈ N for all 𝑟 ∈ I ∪ J such that 𝒂0 is a solution of the following
program:

find 𝒂

𝑠 .𝑡 . 𝜃2𝑘𝑟 (𝑓𝑟 (𝒙 ; 𝒂) + 𝜖𝜃𝑑 ) = 𝜎𝑟,0 (𝒙) +
𝑚𝑟∑︁
𝑘=1

𝜎𝑟,𝑘 (𝒙)𝑝𝑟,𝑘 (𝒙), 𝑟 ∈ I ∪ J

𝜎𝑟,𝑘 (𝒙) ∈ Σ[𝒙], for 𝑟 ∈ I ∪ J, 𝑘 ∈ N[0,𝑚𝑟+1]

(18)

Comparison. Both Theorem 15 and Theorem 17 encode a poly-

nomial feasible problem into constraints involving sum-of-squares

polynomials. Nevertheless, when we contrast these two methods

with the homogenization approach, it becomes apparent that they

are not practically viable for computational purposes.

The primary disadvantage of Theorem 15 is the exponential

increase in the number of introduced sum-of-squares polynomials.

For instance, if we consider K ⊂ R𝑛 as a polyhedron described

by 𝑛 linear inequalities, we would need to introduce 2
𝑛
unknown

sum-of-squares polynomials to characterize 𝑓 (𝒙; 𝒂) > 0 over K .

Clearly, this approach becomes impractical due to the exponential

increase in complexity.

Regarding Theorem 17, note that 𝑘𝑟 is unknown and depends

on polynomials 𝑓𝑟 , 𝑝𝑟,1, . . . , 𝑝𝑟,𝑘𝑚 as well as 𝜖 . Theoretical findings

have established the existence of a threshold value 𝑐 , such that

𝑘𝑟 ≥ 𝑐 for each 𝑟 ∈ I ∪ J implies Prog. (18) is solvable [49, Prop. 1].

However, it is worth noting that this threshold value is often im-

practically large for practical computations.

5 PRACTICAL COMPUTATIONS
In this section, we demonstrate how to use the sufficient condi-

tion (Theorem 7) and the necessary condition (Theorem 12) to

synthesize general convex barrier certificates (Theorem 5) in prac-

tice. We will briefly discuss the cases for synthesizing non-convex

barrier certificates and invariant barrier certificates, as they lead to

more complex optimization problems beyond SDP.

To synthesize a barrier certificate, we begin by selecting a tem-

plate, which is a parametric polynomial 𝐵(𝒙; 𝒂) with unknown

parameters 𝒂. This template serves as a representation for the bar-

rier certificate we aim to synthesize. For example, if we intend to

synthesize a barrier certificate 𝐵(𝒙) ∈ R[𝑥1, 𝑥2] of degree 2, we can
set 𝐵(𝒙 ; 𝒂) as

𝐵(𝒙 ; 𝒂) = 𝑎1𝑥
2

1
+ 𝑎2𝑥1𝑥2 + 𝑎3𝑥

2

2
+ 𝑎4𝑥1 + 𝑎5𝑥2 + 𝑎6,

which can represent any polynomial of degree 2. Without loss of

generality, we always assume that 𝐵(𝒙 ; 𝒂) is linear in 𝒂.
Note that a prerequisite for employing the homogenization ap-

proach is that the sets X, I, and U are closed at ∞. In the context

of safety verification, the description polynomials of these sets are

typically not too complex and the property can be checked manu-

ally by definition. When a semialgebraic set is not closed at ∞, we

need to find an alternative representation for this set, for example,

by adding redundant polynomials as in Example 10. In what follows,

we assume that X, I, andU are closed at ∞.

In order to leverage well-developed optimization techniques,

we transform the polynomial feasible problem Prog. (12) into an

optimization problem by introducing a real variable 𝛾 as the opti-

mization objective. The transformed problem can be formulated

7
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as:


max 𝛾

𝑠.𝑡 . 𝑓𝑖 (𝒙 ;𝒂) − 𝛾 ≥ 0 on K𝑖 , 𝑖 ∈ I,
𝑓𝑗 (𝒙 ;𝒂) − 𝛾 > 0 on K𝑗 , 𝑗 ∈ J.

(19)

It is evident that the original problem Prog. (12) is feasible if and

only if 𝛾∗ ≥ 0 where 𝛾∗ is the optimal value of Prog. (19).

Remark. A natural idea might be to treat 𝜖0 as a variable and at-
tempt to minimize it. However, minimizing 𝜖0 often leads to significant
numerical errors, since 𝜖0 can be made arbitrarily small by scaling the
coefficients of sum-of-squares polynomials and parameters 𝒂. There-
fore, we fix 𝜖0 to be a small positive constant (in our experiments,
10

−5), and instead maximize the newly introduced variable 𝛾 .

Sufficient Condition. Similar to Theorem 7. we can obtain a strength-

ened version of Eq. (19) by applying Lemma 1. Then, we derive a

series of sum-of-squares relaxations for the resulted optimization

problem given by



max 𝛾

𝑠.𝑡 . − 𝐵(𝒙 ; 𝒂) − 𝛾 = 𝜎I
0
(𝒙) +

𝑚𝑖∑︁
𝑖=1

𝜎I
𝑖 (𝒙)𝑔I𝑖 (𝒙),

𝐵(𝒙 ; 𝒂) − 𝜖0 − 𝛾 = 𝜎U
0
(𝒙) +

𝑚𝑢∑︁
𝑖=1

𝜎U
𝑖 (𝒙)𝑔U𝑖 (𝒙),

𝜔 (𝐵(𝒙 ; 𝒂)) − 𝔏𝒇 𝐵(𝒙 ; 𝒂) − 𝛾 = 𝜎X
0
(𝒙) +

𝑚𝑥∑︁
𝑖=1

𝜎X
𝑖 (𝒙)𝑔X𝑖 (𝒙),

𝜎I
0

∈ Σ𝑑1 [𝒙], 𝜎U
0

∈ Σ𝑑2 [𝒙], 𝜎X
0

∈ Σ𝑑3 [𝒙]

𝜎I
𝑖 ∈ Σ𝑑1−deg(𝑔

I
𝑖
) [𝒙], for 𝑖 ∈ N[1,𝑚𝑖 ] ,

𝜎U
𝑖 ∈ Σ𝑑2−deg(𝑔

U
𝑖
) [𝒙], for 𝑖 ∈ N[1,𝑚𝑢 ] ,

𝜎X
𝑖 ∈ Σ𝑑3−deg(𝑔

X
𝑖
) [𝒙], for 𝑖 ∈ N[1,𝑚𝑥 ] .

(20)

where 𝑑1, 𝑑2, and 𝑑3 are degree bounds for the three polynomial

equality constraints respectively. Naturally, we require 𝑑1, 𝑑2, and

𝑑3 are large enough such that sum-of-squares constraints above are

well-defined.

Necessary Condition. As for the necessary condition, we first

derive the homogenization formulation of Eq. (19) based on Theo-

rem 11. Then, by applying Theorem 2, we obtain a relaxed version

of Eq. (19), whose sum-of-squares relaxations are given by

max 𝛾

𝑠.𝑡 . − 𝐵̃(𝒙̃ ; 𝒂) − 𝛾𝑥
deg𝐵

0
+ 𝜖0 = 𝜎I

0
(𝒙̃) +

𝑚𝑖∑︁
𝑖=1

𝜎I
𝑖 (𝒙̃)𝑔I𝑖 (𝒙̃)

+ 𝜎I
𝑚𝑖+1 (𝒙̃) · 𝑥0 + 𝜏

I (𝒙̃) (∥𝒙̃ ∥2 − 1),

𝐵̃(𝒙̃ ; 𝒂) − 𝛾𝑥
deg𝐵

0
+ 𝜖0 = 𝜎U

0
(𝒙̃) +

𝑚𝑢∑︁
𝑖=1

𝜎U
𝑖 (𝒙̃)𝑔U𝑖 (𝒙̃)

+ 𝜎U
𝑚𝑢+1 (𝒙̃) · 𝑥0 + 𝜏

U (𝒙̃) (∥𝒙̃ ∥2 − 1),

𝐻̃ (𝒙̃ ; 𝒂) − 𝛾𝑥
deg𝐻

0
+ 𝜖0 = 𝜎X

0
(𝒙̃) +

𝑚𝑥∑︁
𝑖=1

𝜎X
𝑖 (𝒙̃)𝑔X𝑖 (𝒙̃)

+ 𝜎X
𝑚𝑖+1 (𝒙̃) · 𝑥0 + 𝜏

X (𝒙̃) (∥𝒙̃ ∥2 − 1),

𝜎I
0

∈ Σ𝑑1 [𝒙̃], 𝜎U
0

∈ Σ𝑑2 [𝒙̃], 𝜎X
0

∈ Σ𝑑3 [𝒙̃],

𝜏I ∈ R𝑑1−2 [𝒙̃], 𝜏U ∈ R𝑑2−2 [𝒙̃], 𝜏X ∈ R𝑑3−2 [𝒙̃],

𝜎I
𝑚𝑖+1 ∈ Σ𝑑1−1 [𝒙̃], 𝜎U

𝑚𝑢+1 ∈ Σ𝑑2−1 [𝒙̃], 𝜎X
𝑚𝑥+1 ∈ Σ𝑑3−1 [𝒙̃],

𝜎I
𝑖 ∈ Σ𝑑1−deg(𝑔

I
𝑖
) [𝒙̃], for 𝑖 ∈ N[1,𝑚𝑖 ]

𝜎U
𝑖 ∈ Σ𝑑2−deg(𝑔

U
𝑖
) [𝒙̃], for 𝑖 ∈ N[1,𝑚𝑢 ]

𝜎X
𝑖 ∈ Σ𝑑3−deg(𝑔

X
𝑖
) [𝒙̃], for 𝑖 ∈ N[1,𝑚𝑥 ] .

(21)

where 𝐻 (𝒙 ; 𝒂) =̂ 𝜔 (𝐵(𝒙 ; 𝒂)) − 𝔏𝒇 𝐵(𝒙 ; 𝒂) and 𝑑1, 𝑑2, and 𝑑3 are de-
fined similar to Prog. (20).

It is important to note that relying solely on the necessary con-

dition can sometimes result in unsound solutions. However, in

practical applications, we can address these issues by ensuring that

𝜖0 is set to a sufficiently small value and by conducting posterior

verification.

Translating into SDP. Let m𝑑 (𝒙) be a column vector with all

monomials in 𝒙 of degree up to 𝑑 . For example, when 𝒙 = (𝑥1, 𝑥2),
m2 (𝒙) = (1, 𝑥1, 𝑥2, 𝑥2

1
, 𝑥1𝑥2, 𝑥

2

2
). Any polynomial 𝑝 (𝒙) ∈ R2𝑑 [𝒙]

can be represented by

𝑝 (𝒙) = m𝑑 (𝒙)⊤𝐶𝑝m𝑑 (𝒙), (22)

where𝐶𝑝 ∈ R(
𝑟+𝑑
𝑑 )×(𝑟+𝑑𝑑 )

is a real symmetric matrix called theGram
matrix. It is well-known that 𝑝 (𝒙) belongs to Σ2𝑑 [𝒙] if and only

if its Gram matrix 𝐶𝑝 is positive semidefinite, i.e., 𝒙⊤𝐶𝑝𝒙 ≥ 0 for

any 𝒙 ∈ R(
𝑟+𝑑
𝑑 )

, denoted 𝐶𝑝 ⪰ 0. Therefore, both Prog. (20) and

Prog. (21) can be translated in to a standard semidefinite program,

where the decision variables are the unknown coefficients of sum-

of-squares polynomials and parameters 𝒂.

Complexity. Roughly speaking, the complexity for solving sum-

of-squares relaxations depends on the number of monomials in

m𝑑 (𝒙), i.e.,
(𝑛+𝑑
𝑛

)
, which is an upper bound for unknown coeffi-

cients in the template and unknown sum-of-squares polynomials.

As for the homogenization formulation Prog. (21), since an extra

variable 𝑥0 is introduced, the number of monomials in unknown

sum-of-squares polynomials becomes

(𝑛+𝑑+1
𝑛

)
= (1 + 𝑑

𝑛+1 )
(𝑛+𝑑
𝑛

)
. In

practice, the sum-of-squares relaxation is tractable when 𝑑 and 𝑛

are relatively small (with

(𝑛+𝑑
𝑛

)
of up to a few hundreds [61]) and

such increase can be ignored. Furthermore, the efficiency can be

(significantly) improved by exploiting algebraic structures of the

dynamical systems [48].

8
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Table 1: Experimental results for synthesizing general convex barrier certificates.

Sufficient Necessary

system name dim deg(𝒇 ) unbounded deg(𝐵) time(s) verified time(s) verified

vector[66] 2 1 X 2 0.01 ! 0.03 !

I,U,X 2 0.01 % 0.06 !

barrier[56] 2 3 X 2 0.01 ! 0.14 %

I,U,X 2 0.01 % 0.19 !

lie-der[47] 2 1 X 1 0.01 % 0.04 !

I,U,X 3 0.02 ! 0.29 !

arch1[65] 2 5 X 4 0.06 % 0.51 !

I,U,X 1 0.01 ! 0.10 !

arch2[65] 2 2 X 3 0.02 ! 0.11 !

I,U,X 1 0.01 % 0.03 !

arch3[65] 2 3 X 2 0.01 ! 0.03 !

I,U,X 1 0.01 % 0.03 !

arch4[65] 2 2 X 3 0.01 % 0.07 !

U,X 2 0.01 % 0.12 !

nagumo[63] 2 3 X 2 0.01 ! 0.10 !

U,X 4 0.03 % 0.33 !

lotka[33] 3 2 X 5 0.22 % 2.39 ?
U,X 1 0.01 % 0.06 !

lorenz[22] 3 2 X 5 0.15 ? 1.57 ?
U,X 1 0.02 % 0.07 !

lyapunov[60] 3 3 X 5 0.15 % 2.32 ?
U,X 5 0.32 % 2.59 ?

dim: system dimension; deg(𝒇 ) : maximal flow-field degree; unbounded: the unbounded region(s) for each benchmark instance; deg(𝐵) : degree
of barrier certificate template, searched from 1; time: SDP solving time; verified: indicates whether the synthesized barrier certificates can be verified

by Mathematica.!: valid solution.%: no solution or invalid solution. ?: beyond the capacity of symbolic methods in Mathematica.

Taming Numerical Issues in SDP. Though SDP-based techniques

are widely used in verification and synthesis problems, the result

given by SDP solvers can be unreliable due to their inherent nu-

merical issues. In the following, we discuss several techniques to

mitigate such numerical problems with respect to our synthesis

problem.

Anterior Validation: One robust approach to validate SDP

solving is to strengthen the constraints before solving them. As

proposed in [61] and extended in [28], this method requires the user

to first compute an upper bound 𝜖 for the numerical errors in the

results. Then, the original constraints 𝐶𝑝 ⪰ 0 are replaced by their

strengthened versions 𝐶𝑝 ⪰ 𝜖𝐼 . If the strengthened constraints are

solvable, then a sound solution is obtained. A disadvantage is that

the strengthening of constraints may rule out potential solutions.

Intermediate Enhancement: Different representation of poly-

nomials may impact the solution given by SDP solvers. In our

formulation, we use the standard monomial basis to represent a

polynomial and extract its Gram matrix. Alternatively, we can use

other non-trivial polynomial bases such as scaled monomial basis,

Bernstein basis, and Chebyshev basis. While using different mono-

mial basis does not alter the number of decision variables, there

may be significant differences in the numerical stability during

floating-point computation [15, Section 3.1.5].

Posterior Verification: When a numerical solution, say 𝐵̂(𝒙),
is returned by the solver, we can either check its soundness by

using exact symbolic methods [19] or prove there exists an actual

solution 𝐵(𝒙) nearby [61]. To check the soundness of 𝐵̂(𝒙), we can
use symbolic solvers, such as Redlog [23] or Z3 [21], to verify that

𝐵̂(𝒙) satisfies the corresponding barrier certificate conditions. This

method is relatively easier to employ. However, when the dimen-

sion or degree of 𝐵̂(𝒙) is too large, even checking the soundness

symbolically can be difficult. To prove the existence of a nearby

solution, one needs to consider the floating-point arithmetic and

verify the sum-of-squares polynomials satisfy the condition given

in [61, Prop. 2].

Certainly, we can also resort to SDP solvers with higher precision

to reduce numerical errors, such as multiple-precision or arbitrary-

precision solvers [42, 51]. However, the unsoundness caused by

numerical issues cannot be completely eliminated. Furthermore,

while exact SDP solvers [36] relies on symbolic methods and fun-

damentally avoids numerical problems, currently they can only

handle very small problem instances and are not suitable for our

synthesis problem.

Beyond SDP. For synthesizing of non-convex barrier certificates

or invariant barrier certificates, the homogenization approach and

9
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sum-of-squares relaxations are still applicable, but the resulted con-

straints are no longer SDP due to the arise of cross products of

parameters 𝒂 and unknown coefficients of sum-of-squares polyno-

mials. In general, synthesizing such barrier certificates amounts to

solving bilinear matrix inequalities, which is known to be NP-hard.

Different schemes have been proposed to solve these constraints

[17, 70].

6 EXPERIMENTS
Implementation. We implemented the barrier certificate synthe-

sis procedure in Julia programming language, interfaced with

SumOfSqares package [72] for formulating SOS relaxations and

Mosek solver [9] for solving the underlying SDP. All experiments

were performed on a 1.4GHz Intel Core i5 laptop with 8GB of RAM

running MacOS. The code and benchmarks are publicly available

online
4
.

Experiment Settings. The goal of our experiments was to com-

pare the differences between employing the sufficient condition

Theorem 7 and the necessary condition Theorem 12 to synthesize

barrier certificates over unbounded domains. To this end, we fo-

cused on general convex barrier certificates (see Theorem 5) and

collected a set of dynamical systems of dimension 2 and 3 from the

literature. For each benchmark system, we designed two problem

instances. In the first instance, we only let the domain X = R𝑛 be

unbounded, while in the second instance, we further let the initial

set I and/or the unsafe region U be unbounded (not necessar-

ily contain the original bounded counterparts). For each problem

instance, we searched for barrier certificates from degree 1 and re-

ported the minimum degree such that either Prog. (20) or Prog. (21)

is solvable.

In practical computation, we set 𝜔 (𝑥) = 𝜆𝑥 with 𝜆 = −1. The
selection of different value for 𝜆 was discussed in [43] and was

not a focus of this paper. When the degree deg(𝐵) was fixed, we
solved the sum-of-squares relaxations of Prog. (20) and Prog. (21)

respectively with 𝑑1 = 𝑑2 = deg(𝐵) + 4 and 𝑑3 = deg(𝔏𝒇 𝐵) + 4,

where the parameter 4 was an empirical parameter for obtaining a

close solution.

Furthermore, to mitigate numerical errors, we employed three

techniques in our algorithms: (1)We used the scaled monomial basis

as defined in [15, Sec. 3.1.5] instead of the standard monomial basis.

(2) We ignored those coefficients in the numerical solution 𝐵̂(𝒙)
with very small absolute values (less than 10

−5
). (3) We utilized

Mathematica to symbolically verify that the numerical solution

𝐵̂(𝒙) satisfies the barrier certificate conditions (Note that this step
also rules out unsound solutions caused by using the necessary

condition). The timeout for the verification procedure was set to

be 20 minutes.

Empirical Observations. Table 1 reports the experimental results,

we mainly compare the results from two perspectives.

Expressiveness: The necessary condition is much more ex-

pressive than the sufficient condition. Specifically, using necessary

condition succeeds in synthesizing barrier certificates for all but

one 2-dim problem instances, while using the sufficient condition

fails in more than half of them. We suspect that the exceptional case

4
The link is temporarily removed for the review process.

(i.e., the first benchmark of barrier) is due to numerical errors, as

Mathematica can not find a counter-example violating the barrier

certificate conditions when the absolute values of 𝑥1 and 𝑥2 are

less than 10
8
. For the second instance in lorenz and the second

instance in lotka, where barrier certificates of degree 1 exist, the
necessary condition can find a valid solution while the sufficient

condition can not. As for the rest 3-dim problem instances, both

methods fail to synthesis a barrier certificate when deg(𝐵) ≤ 4.

When deg(𝐵) = 5, the results returned by the sufficient condi-

tion can usually be proven wrong easily, which is not the case for

the necessary condition. In some sense, this also suggests that the

results given by the necessary condition are more likely to be valid.

Efficiency: It is evident that employing the necessary condition

leads to an increase in the time overhead for SDP solving across all

benchmarks. This observation aligns with our initial expectations,

as the homogenization formulation introduces a constant increase

in the number of sum-of-squares polynomials and a polynomial

growth in the size of Gram matrix. Nevertheless, when the dimen-

sions of systems and the degrees of barrier certificate templates

are not large, the constraints can still be solved efficiently within

comparable time. The efficiency loss resulting from these factors

is currently not a significant bottleneck. For systems of larger di-

mensions and templates of higher degrees, the time required for

posterior verification becomes considerably longer and dominates

the SDP solving procedure.

7 CONCLUSION
This paper addresses the problem of synthesizing barrier certificates

over unbounded regions. Previous approaches to this problem have

primarily relied on a sufficient condition, as the necessary condition

based on Putinar’s Positivstellensatz is only applicable in bounded

cases. Our main contribution lies in the generalization of the neces-

sary condition to unbounded cases, achieved through the utilization

of the homogenization approach derived from optimization theory.

The resulting constraints are less conservative when compared

to those obtained from the sufficient condition. Experimental re-

sults substantiate the efficacy of our approach, demonstrating its

enhanced expressiveness and ability to synthesize more barrier

certificates in comparison to existing methods.

While our paper primarily focuses on synthesizing barrier cer-

tificates for differential dynamical systems, it is crucial to note

that our method can be readily extended to other types of systems,

including hybrid systems and systems with control, disturbance,

or stochastic dynamics. Furthermore, our method can also be uti-

lized in related verification problems such as Lyapunov function

synthesis or program invariant generation.
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