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Abstract. This work is a follow-up and a complement to [J. Wang, V. Magron and J. B.
Lasserre, preprint, arXiv:1912.08899, 2019] where the TSSOS hierarchy was proposed for solving
polynomial optimization problems (POPs). The chordal-TSSOS hierarchy that we propose is a
new sparse moment-SOS framework based on term sparsity and chordal extension. By exploiting
term sparsity of the input polynomials we obtain a two-level hierarchy of semidefinite programming
relaxations. The novelty and distinguishing feature of such relaxations is to involve block matrices
obtained in an iterative procedure that performs chordal extension of certain adjacency graphs. The
graphs are related to the terms arising in the original data and not to the links between variables.
Various numerical examples demonstrate the efficiency and the scalability of this new hierarchy for
both unconstrained and constrained POPs. The two hierarchies are complementary. While the
former TSSOS [J. Wang, V. Magron and J. B. Lasserre, preprint, arXiv:1912.08899, 2019] has a
theoretical convergence guarantee (to the dense moment-SOS relaxation), the chordal-TSSOS has
superior performance but lacks this theoretical guarantee.
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1. Introduction. Consider the polynomial optimization problem (POP):

(Q) : f\ast = inf
\bfx 

\{ f(x) : x \in K \} ,

where f(x) \in \BbbR [x] = \BbbR [x1, . . . , xn] is a polynomial and K \subseteq \BbbR n is the basic semialge-
braic set

K := \{ x \in \BbbR n : gj(x) \geq 0, j = 1, . . . ,m\} 

for some polynomials gj(x) \in \BbbR [x], j = 1, . . . ,m. The so-called moment-SOS hier-
archy [16] (where SOS stands for sum of squares) is a powerful approach based on
certain specific positivity certificates of real algebraic geometry. It results in solving
a hierarchy of semidefinite program (SDP) relaxations of (Q) whose associated mono-
tone sequence of optimal values converges to f\ast from below; in fact the convergence
is even finite generically [25]. However, in view of the present status of SDP solvers,
the moment-SOS hierarchy does not scale well and is so far limited to problems of
modest size.

To address the issue of scalability, an important research direction is to define
alternative relaxations of (Q) with cheaper computational cost and still with good
convergence properties. One possibility is to define hierarchies of relaxations of (Q)
based on other positivity certificates. Such alternative positivity certificates are in
general weaker but their implementation is much easier as it results in LP-relaxations
(e.g., as in DSOS [1]), second-order cone relaxations (e.g., as in SDSOS [1]), or cheaper
SDP-relaxations (e.g., as in BSOS [18]).
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CHORDAL-TSSOS 115

Another possibility is to address sparsity often present in the description of large-
scale instances of (Q). One classical approach is to consider so-called correlative spar-
sity patterns, developed in [17, 34]. This is represented by the correlative sparsity
pattern (csp) graph, which grasps the links between variables. Concretely, the nodes
of a csp graph correspond to the variables and there is an edge between two nodes
(variables) if and only if these two variables appear in the same term of the objective
polynomial f or appear in the same polynomial gj involved in the description of K.
One then partitions the variables into cliques according to the maximal cliques of a
chordal extension of the csp graph to obtain a moment-SOS hierarchy for (Q) with
block SDP matrices. If each maximal clique has a small size, this will significantly
reduce the computational cost. This approach has been successfully applied for solv-
ing optimal powerflow problems [14], roundoff error bound analysis [21, 22], or more
recently to approximate the volume of sparse semialgebraic sets [28], to bound Lip-
schitz constants of deep networks [5], and to represent sparse positive definite forms
[20].

Nevertheless many POPs can be fairly sparse, but they do not exhibit a nontrivial
csp (i.e., the corresponding csp graph is complete). For instance, if f has a term
involving all variables or some constraint gj \geq 0 (e.g., 1  - \| x\| 2 \geq 0) involves all
variables, then the csp is trivial. Besides, even if a POP admits a nontrivial csp, some
maximal cliques of the csp graph (after a chordal extension) may still have a large
size (say, over 20), which makes the resulting SDP problem still hard to solve.

However, instead of exploiting sparsity from the perspective of variables, one can
also exploit sparsity from the perspective of terms as described in [31, 32]. This is
the route followed in this paper.

Novelty with respect to [32]. In [32] we exploited the term sparsity occurring
in the description of (Q) to define a sparsity-adapted version of the moment-SOS
hierarchy, which scales much better with the size of the initial problem (Q). Roughly
speaking, the sparsity considered in [32] can be also represented by a graph, which is
called a term sparsity pattern (tsp) graph. But unlike the csp graph, the nodes of a
tsp graph correspond to monomials (not variables) and the edges of the graph grasp
the links between monomials in the SOS representation of positive polynomials. In
[32], we designed an iterative procedure to enlarge the tsp graph in order to iteratively
exploit the term sparsity in (Q). Each iteration consists of two steps: (i) a support-
extension operation and (ii) a block-closure operation on adjacency matrices.

We first propose to replace the second step from [32] by a chordal-extension
operation. In doing so we obtain a sequence

G1 \subseteq G2 \subseteq \cdot \cdot \cdot \subseteq Gr

of graphs, where ``Gi \subseteq Gi+1"" means that Gi is a subgraph of Gi+1. The main
difference with [32] is that (ii) now consists of performing an approximately minimum
chordal extension instead of performing completion of the connected components for
each graph. Then combining this iterative procedure with the standard moment-
SOS hierarchy results in a two-level moment-SOS hierarchy with block SDP matrices.
When the sizes of blocks are small, then the associated SDP relaxations are drastically
much cheaper to solve.

To some extent, the term sparsity (focusing on monomials) is finer than the cor-
relative sparsity (focusing on variables). If a POP is sparse in the sense of correlative
sparsity (i.e., the csp graph is not complete), then it must be sparse in the sense of
term sparsity (i.e., the tsp graph is not complete), while the converse is not necessarily
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116 JIE WANG, VICTOR MAGRON, AND JEAN-BERNARD LASSERRE

true. So the basic idea for solving large-scale POPs is as follows: first exploit correla-
tive sparsity to obtain a coarse decomposition in terms of variables with cliques, and
second exploit term sparsity for subsystems involving each clique of variables. This
idea has been successfully carried out in [33].

Contribution. We propose a new sparse moment-SOS framework based on term
sparsity and chordal graphs, following the route of our previous paper [32]. It is in
deep contrast to the approach based on the sole correlative sparsity and provides a
new item in the arsenal of sparsity-exploiting techniques for moment-SOS hierarchies
of POPs. More precisely, note the following:

\bullet We provide an iterative procedure that exploits term sparsity in POPs. The
case of unconstrained polynomial optimization is treated in section 3 and the case of
constrained polynomial optimization is treated in section 4. In the constrained case, it
results in a two-level moment-SOS hierarchy that we call the chordal-TSSOS hierarchy
(as the ``TSSOS"" terminology was used in our prior work [32]), which depends on two
parameters: the relaxation order d and the sparse order k. The resulting SDP has
block SDP matrices, which is the crucial feature of the chordal-TSSOS hierarchy. It is
shown that the chordal-TSSOS hierarchy always provides tighter lower bounds than
the SDSOS relaxation.

\bullet We also give an algorithm in section 4 to reduce any initial monomial basis used
in the chordal-TSSOS hierarchy as an optional preprocessing step, which applies to
not only unconstrained POPs but also constrained POPs.

\bullet In section 5 we provide a computational cost estimate for the first step (i.e.,
k = 1) of the chordal-TSSOS hierarchy via a careful analysis of the structure of tsp
graphs.

\bullet In section 6 we provide various numerical experiments to illustrate that POPs
of significantly large size (up to 200 variables) and without correlative sparsity can
be solved by our chordal-TSSOS hierarchy.

The chordal-TSSOS hierarchy should be considered as a complement to TSSOS
[32] rather than just a variant. Indeed on the one hand, TSSOS has a guarantee that
the optimal values converge to the same optimal value with the dense moment-SOS
relaxation [32] and has good efficiency reported in [32] when compared to other hi-
erarchies. On the other hand, while chordal-TSSOS lacks a theoretical convergence
guarantee (to the dense moment-SOS relaxation), in practice it has superior perfor-
mance and converges in many cases, as observed in the numerical experiments. Hence
a user should start with chordal-TSSOS and possibly turns to TSSOS if convergence
does not occur.

2. Notation and preliminaries.

2.1. SOS polynomials. Let x = (x1, . . . , xn) be a tuple of variables and \BbbR [x] =
\BbbR [x1, . . . , xn] be the ring of real n-variate polynomials. For a subset A \subseteq \BbbN n, we
denote by conv(A ) the convex hull of A . A polynomial f \in \BbbR [x] can be written as
f(x) =

\sum 
\bfitalpha \in A f\bfitalpha x

\bfitalpha with A \subseteq \BbbN n and f\bfitalpha \in \BbbR ,x\bfitalpha = x\alpha 1
1 \cdot \cdot \cdot x\alpha n

n . The support of f is
defined by supp(f) = \{ \bfitalpha \in A | f\bfitalpha \not = 0\} , and the Newton polytope of f is defined as
New(f) = conv(\{ \bfitalpha : \bfitalpha \in supp(f)\} ). We will use | \cdot | to denote the cardinality of a set.

For a finite set A \subseteq \BbbN n, let xA be the | A | -dimensional column vector consisting
of elements x\bfitalpha ,\bfitalpha \in A (fix any ordering on \BbbN n). For a positive integer r, the set of
r \times r symmetric matrices is denoted by Sr and the set of r \times r positive semidefinite
(PSD) (resp., positive definite) matrices is denoted by Sr

+ (resp., Sr
++). Let us denote

by \langle A,B\rangle \in \BbbR the trace inner-product, defined by \langle A,B\rangle = Tr(ATB).
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CHORDAL-TSSOS 117

Given a polynomial f(x) \in \BbbR [x], if there exist polynomials f1(x), . . . , ft(x) such
that

(2.1) f(x) =

t\sum 
i=1

fi(x)
2,

then we say that f(x) is a sum of squares (SOS) polynomial. Clearly, an SOS de-
composition of a given polynomial provides a certificate for its global nonnegativity.
For d \in \BbbN , let \BbbN n

d := \{ \bfitalpha = (\alpha i) \in \BbbN n | 
\sum n

i=1 \alpha i \leq d\} . Assume that f \in \BbbR [x] is a
polynomial of degree 2d. If we choose the standard monomial basis x\BbbN n

d , then the
SOS condition (2.1) is equivalent to the existence of a PSD matrix Q, which is called
a Gram matrix [6] for f , such that

(2.2) f(x) = (x\BbbN n
d )TQx\BbbN n

d .

When f is sparse (i.e., f contains only a few amount of monomials in x\BbbN n
2d), the size

of Q can be reduced by computing a possibly smaller monomial basis. In fact, the set
\BbbN n

d in (2.2) can be replaced by the integer points in half of the Newton polytope of f ,
i.e., by

(2.3) B =
1

2
New(f) \cap \BbbN n \subseteq \BbbN n

d .

See [26] for a proof. We refer to this as the Newton polytope method. For convenience,
we abuse notation in what follows and denote by B (\bfitbeta ) instead of xB (x\bfitbeta ) a monomial
basis (a monomial).

Let f(x) =
\sum 

\bfitalpha \in A f\bfitalpha x
\bfitalpha with supp(f) = A and B be a monomial basis. For any

\bfitalpha \in B+B := \{ \bfitbeta +\bfitgamma | \bfitbeta ,\bfitgamma \in B\} , associate it with a (0, 1)-binary matrix A\bfitalpha \in S| B| 

such that [A\bfitalpha ]\bfitbeta \bfitgamma = 1 if and only if \bfitbeta + \bfitgamma = \bfitalpha for all \bfitbeta ,\bfitgamma \in B. Then f is an SOS

polynomial if and only if there exists Q \in S
| B| 
+ such that the following coefficient

matching condition holds:

(2.4) \langle A\bfitalpha , Q\rangle = f\bfitalpha \forall \bfitalpha \in B + B,

where we set f\bfitalpha = 0 if \bfitalpha /\in A .

2.2. Moment-SOS relaxations for POPs. With y = (y\bfitalpha )\bfitalpha \in \BbbN n being a se-
quence indexed by the standard monomial basis \BbbN n of \BbbR [x], let L\bfy : \BbbR [x] \rightarrow \BbbR be the
linear functional

f =
\sum 
\bfitalpha 

f\bfitalpha x
\bfitalpha \mapsto \rightarrow L\bfy (f) =

\sum 
\bfitalpha 

f\bfitalpha y\bfitalpha .

Given a monomial basis B, the moment matrix MB(y) associated with B and y is
the matrix with rows and columns indexed by B such that

MB(y)\bfitbeta \bfitgamma := L\bfy (x
\bfitbeta x\bfitgamma ) = y\bfitbeta +\bfitgamma \forall \bfitbeta ,\bfitgamma \in B.

If B is the standard monomial basis \BbbN n
d , we also denote MB(y) by Md(y).

Consider the unconstrained polynomial optimization problem:

(2.5) (P0) : \lambda \ast := inf
\bfx 
\{ f(x) : x \in \BbbR n\} 

with f(x) \in \BbbR [x] of degree 2d. Let B be a monomial basis. Then the moment SDP
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118 JIE WANG, VICTOR MAGRON, AND JEAN-BERNARD LASSERRE

relaxation of (P0) is [16]

(2.6) (P) :
\lambda mom := inf L\bfy (f)

s.t. MB(y) \succeq 0,
y\bfzero = 1.

The dual SDP problem of (2.6) is

(2.7) (P)\ast :
sup \lambda ,
s.t. \langle Q,A\bfitalpha \rangle + \lambda \delta \bfzero \bfitalpha = f\bfitalpha \forall \bfitalpha \in B + B,

Q \succeq 0,

where \delta \bfzero \bfitalpha is the usual Kronecker symbol.
Suppose g =

\sum 
\bfitalpha g\bfitalpha x

\bfitalpha \in \BbbR [x] and let y = (y\bfitalpha )\bfitalpha \in \BbbN n be given. For any positive
integer d, the localizing matrix Md(gy) associated with g and y is the matrix with
rows and columns indexed by \BbbN n

d such that

Md(gy)\bfitbeta \bfitgamma := L\bfy (gx
\bfitbeta x\bfitgamma ) =

\sum 
\bfitalpha 

g\bfitalpha y\bfitalpha +\bfitbeta +\bfitgamma \forall \bfitbeta ,\bfitgamma \in \BbbN n
d .

Consider the constrained polynomial optimization problem:

(2.8) (Q0) : \lambda \ast := inf
\bfx 
\{ f(x) : x \in K\} ,

where f(x) \in \BbbR [x] is a polynomial and K \subseteq \BbbR n is the basic semialgebraic set

(2.9) K = \{ x \in \BbbR n : gj(x) \geq 0, j = 1, . . . ,m\} 

for some polynomials gj(x) \in \BbbR [x], j = 1, . . . ,m.

Let dj := \lceil deg(gj)/2\rceil , j = 1, . . . ,m and let \^d \geq max\{ \lceil deg(f)/2\rceil , d1, . . . , dm\} be

a positive integer. Then the Lasserre's hierarchy indexed by \^d of primal moment SDP
relaxations of (Q0) is defined by [16]:

(2.10) (Q \^d) :

\lambda \^d := inf L\bfy (f)
s.t. M \^d(y) \succeq 0,

M \^d - dj
(gjy) \succeq 0, j = 1, . . . ,m,

y\bfzero = 1.

We call \^d the relaxation order.
Set g0 := 1 and d0 := 0. For each j, writing M \^d - dj

(gjy) =
\sum 

\bfitalpha Dj
\bfitalpha y\bfitalpha for

appropriate symmetric matrices \{ Dj
\bfitalpha \} , we can write the dual of (2.10) as

(2.11) (Q \^d)
\ast :

sup \lambda ,

s.t.

m\sum 
j=0

\langle Qj , D
j
\bfitalpha \rangle + \lambda \delta \bfzero \bfitalpha = f\bfitalpha \forall \bfitalpha \in \BbbN n

2 \^d
,

Qj \succeq 0, j = 0, . . . ,m.

2.3. Chordal graphs and sparse matrices. We introduce some basic notions
from graph theory. An (undirected) graph G(V,E) or simply G consists of a set of
nodes V and a set of edges E \subseteq \{ \{ vi, vj\} | (vi, vj) \in V \times V \} . If G is a graph, we
also use V (G) and E(G) to indicate the set of nodes of G and the set of edges of G,
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CHORDAL-TSSOS 119

The blue area indicates the positions of possible nonzero entries.

Fig. 1. The block structure of matrices in SG.

respectively. For two graphs G,H, we say that G is a subgraph of H if V (G) \subseteq V (H)
and E(G) \subseteq E(H), denoted by G \subseteq H. For a graph G(V,E), a cycle of length
k is a set of nodes \{ v1, v2, . . . , vk\} \subseteq V with \{ vk, v1\} \in E and \{ vi, vi+1\} \in E for
i = 1, . . . , k  - 1. A chord in a cycle \{ v1, v2, . . . , vk\} is an edge \{ vi, vj\} that joins two
nonconsecutive nodes in the cycle.

A graph is called a chordal graph if all its cycles of length at least four have a
chord. Chordal graphs include some common classes of graphs, such as complete
graphs, line graphs, and trees, and have applications in sparse matrix theory. Note
that any nonchordal graphG(V,E) can always be extended to a chordal graphG(V,E)
by adding appropriate edges to E, which is called a chordal extension of G(V,E). A
clique C \subseteq V of G is a subset of nodes where \{ vi, vj\} \in E for any vi, vj \in C. If a
clique C is not a subset of any other clique, then it is called a maximal clique. It is
known that maximal cliques of a chordal graph can be enumerated efficiently in linear
time in the number of nodes and edges of the graph. See, e.g., [3, 8, 10] for details.

Given a graph G(V,E), a symmetric matrix Q with row and column indices
labeled by V is said to have sparsity pattern G if Q\bfitbeta \bfitgamma = Q\bfitgamma \bfitbeta = 0 whenever \bfitbeta \not = \bfitgamma 
and \{ \bfitbeta ,\bfitgamma \} /\in E. Let SG be the set of symmetric matrices with sparsity pattern G.
A matrix in SG exhibits a block structure (after an appropriate permutation of rows
and columns) as illustrated in Figure 1. Each block corresponds to a maximal clique
of G. The maximal block size is the maximal size of maximal cliques of G, namely,
the clique number of G. Note that there might be overlaps between blocks because
different maximal cliques may share nodes.

Given a maximal clique C of G(V,E), we define a matrix PC \in \BbbR | C| \times | V | as

(2.12) [PC ]i\bfitbeta =

\Biggl\{ 
1 if C(i) = \bfitbeta ,

0 otherwise,

where C(i) denotes the ith node in C, sorted in the ordering compatibly with V . Note
that QC = PCQPT

C \in S| C| extracts a principal submatrix QC defined by the indices
in the clique C from a symmetry matrix Q, and Q = PT

CQCPC inflates a | C| \times | C| 
matrix QC into a sparse | V | \times | V | matrix Q.

The PSD matrices with sparsity pattern G form a convex cone

(2.13) S
| V | 
+ \cap SG = \{ Q \in SG | Q \succeq 0\} .

When the sparsity pattern graph G is chordal, the cone S
| V | 
+ \cap SG can be decomposed

as a sum of simple convex cones, as stated in the following theorem.
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Theorem 2.1 (see [30, Theorem 9.2]). Let G(V,E) be a chordal graph and
assume that C1, . . . , Ct are all the maximal cliques of G(V,E). Then a matrix Q \in 
S
| V | 
+ \cap SG if and only if there exist Qk \in S

| Ck| 
+ for k = 1, . . . , t such that Q =\sum t

k=1 P
T
Ck

QkPCk
.

Given a graph G(V,E), let \Pi G be the projection from S| V | to the subspace SG,
i.e., for Q \in S| V | ,

(2.14) \Pi G(Q)\bfitbeta \bfitgamma =

\Biggl\{ 
Q\bfitbeta \bfitgamma if \{ \bfitbeta ,\bfitgamma \} \in E or \bfitbeta = \bfitgamma ,

0 otherwise.

We denote by \Pi G(S
| V | 
+ ) the set of matrices in SG that have a PSD completion,

i.e.,

(2.15) \Pi G(S
| V | 
+ ) = \{ \Pi G(Q) | Q \in S

| V | 
+ \} .

One can check that the PSD completable cone \Pi G(S
| V | 
+ ) and the PSD cone S

| V | 
+ \cap 

SG form a pair of dual cones in SG; see [30, section 10.1] for a proof. Moreover, for

a chordal graph G, the decomposition result for the cone S
| V | 
+ \cap SG in Theorem 2.1

leads to the following characterization of the PSD completable cone \Pi G(S
| V | 
+ ).

Theorem 2.2 (see [30, Theorem 10.1]). Let G(V,E) be a chordal graph and
assume that C1, . . . , Ct are all the maximal cliques of G(V,E). Then a matrix Q \in 
\Pi G(S

| V | 
+ ) if and only if Qk = PCk

QPT
Ck

\succeq 0 for k = 1, . . . , t. Moreover, a matrix

Q \in \Pi G(S
| V | 
++) if and only if Qk = PCk

QPT
Ck

\succ 0 for k = 1, . . . , t.

For more details about sparse matrices and chordal graphs, the reader may refer
to [30].

3. The chordal-TSSOS hierarchy: Unconstrained case. In this section,
we describe an iterative procedure to exploit term sparsity for the primal (2.6) and
dual (2.7) SDP relaxations of unconstrained POPs.

Let f(x) =
\sum 

\bfitalpha \in A f\bfitalpha x
\bfitalpha \in \BbbR [x] with supp(f) = A (without loss of generality

assuming 0 \in A ) and B be a monomial basis. In the following, we will consider
graphs with V := B as the set of nodes. Suppose that G(V,E) is such a graph. We
define the support of G by

supp(G) := \{ \bfitbeta + \bfitgamma | (\bfitbeta ,\bfitgamma ) \in V \times V, \{ \bfitbeta ,\bfitgamma \} \in E\} .

We further define two operations on G: support extension and chordal extension. The
support extension of G, denoted by SE(G), is the graph with nodes B and with edges

E(SE(G)) := \{ \{ \bfitbeta ,\bfitgamma \} | (\bfitbeta ,\bfitgamma ) \in V \times V, \bfitbeta \not = \bfitgamma , \bfitbeta + \bfitgamma \in supp(G)\} .

Example 3.1. Consider the graph G(V,E) with

V = \{ 1, x1, x2, x3, x2x3, x1x3, x1x2\} and E = \{ \{ 1, x2x3\} , \{ x2, x1x3\} \} .

Then E(SE(G)) = \{ \{ 1, x2x3\} , \{ x2, x1x3\} , \{ x2, x3\} , \{ x1, x2x3\} , \{ x3, x1x2\} \} . See Fig-
ure 2 for the support extension SE(G) of G.

Any specific chordal extension of G is denoted by G.
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1 x1 x2 x3

x2x3 x1x3 x1x2

The dashed edges are added after support extension.

Fig. 2. The support extension SE(G) of G.

x1

x2

x3

x4

x5

x6

The dashed edges are added after chordal extension.

Fig. 3. The chordal extension G of G.

Example 3.2. Consider the graph G(V,E) with V = \{ x1, x2, x3, x4, x5, x6\} and
E = \{ \{ x1, x2\} , \{ x2, x3\} , \{ x3, x4\} , \{ x4, x5\} , \{ x5, x6\} , \{ x6, x1\} \} . See Figure 3 for the
chordal extension G of G.

Remark 3.3. For a graph G(V,E), the chordal extension of G is usually not
unique. A chordal extension with the least number of edges is called a minimum
chordal extension. Finding a minimum chordal extension of a graph is an NP-complete
problem in general. Fortunately, several heuristic algorithms, such as the minimum
degree ordering, are known to efficiently produce a good approximation [2, 11]. In
this paper, we always use an approximately minimum chordal extension for a graph.

In what follows, we assume that for graphs G,H with the same set of nodes, if
E(G) \subseteq E(H), then E(G) \subseteq E(H). This assumption is reasonable since any chordal
extension of H must be also a chordal extension of G.

Let f(x) \in \BbbR [x] with supp(f) = A (without loss of generality assuming 0 \in A )
and B be a monomial basis with r = | B| . We define G0(V,E0) to be the graph with
V = B and

(3.1) E0 = \{ \{ \bfitbeta ,\bfitgamma \} | (\bfitbeta ,\bfitgamma ) \in V \times V, \bfitbeta \not = \bfitgamma , \bfitbeta + \bfitgamma \in A \cup (2B)\} ,

where 2B = \{ 2\bfitbeta | \bfitbeta \in B\} . We call G0 the tsp graph associated with f .
For k \geq 1, we recursively define a sequence of graphs (Gk(V,Ek))k\geq 1 by

(3.2) Gk := SE(Gk - 1).

If f is sparse, by replacing MB(y) \succeq 0 with the weaker condition MB(y) \in 
\Pi Gk

(Sr
+) in (2.6), we obtain a sparse moment SDP relaxation of (P0) (2.5) for each
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122 JIE WANG, VICTOR MAGRON, AND JEAN-BERNARD LASSERRE

k \geq 1:

(3.3) (Pk) :
\lambda k := inf L\bfy (f)

s.t. MB(y) \in \Pi Gk
(Sr

+),
y\bfzero = 1.

We call k the sparse order. By construction, one has Gk \subseteq Gk+1 for all k \geq 1 and
therefore the sequence of graphs (Gk(V,Ek))k\geq 1 stabilizes after a finite number of
steps.

Remark 3.4. The intuition behind the support-extension operation is that once
one position related to y\bfitalpha in the moment matrix MB(y) is ``activated"" in the sparsity
pattern, then all positions related to y\bfitalpha in MB(y) should be ``activated."" Theorems
2.1 and 2.2 provide the rationale behind the mechanism of the chordal-extension
operation.

Theorem 3.5. The sequence (\lambda k)k\geq 1 is monotone nondecreasing and \lambda k \leq \lambda mom

for all k.

Proof. Because Gk \subseteq Gk+1, each maximal clique of Gk is a subset of some maxi-
mal clique of Gk+1. Thus by Theorem 2.2, we have that (Pk) is a relaxation of (Pk+1)
(and also a relaxation of (P)). This yields the desired conclusions.

As a consequence of Theorem 3.5, we obtain the following hierarchy of lower
bounds for the optimum of the original problem (P0):

(3.4) \lambda 1 \leq \lambda 2 \leq \cdot \cdot \cdot \leq \lambda mom \leq \lambda \ast .

We say that (3.3) (and its associated sequence (3.4)) is the chordal-TSSOS hierarchy
for (P0).

The maximal chordal extension of a graph is the one that completes every con-
nected component of the graph. If we use the maximal chordal extension in (3.2),
then we retrieve the TSSOS hierarchy developed in [32] (which will be referred to as
the block-TSSOS hierarchy in this paper). It was shown in [32] that the sequence of
optima of the block-TSSOS hierarchy always converges to the optimum of the dense
moment-SOS relaxation.

Unlike the block-TSSOS hierarchy, in theory there is no guarantee that the
chordal-TSSOS hierarchy of lower bounds (\lambda k)k\geq 1 converges to the value \lambda mom. The
following is an example.

Example 3.6. Consider the polynomial f = x2
1  - 2x1x2 + 3x2

2  - 2x2
1x2 + 2x2

1x
2
2  - 

2x2x3 +6x2
3 +18x2

2x3  - 54x2x
2
3 +142x2

2x
2
3 [15]. The monomial basis computed by the

Newton polytope method is \{ 1, x1, x2, x3, x1x2, x2x3\} . We have E0 = \{ \{ 1, x1x2\} , \{ 1,
x2x3\} , \{ x1, x1x2\} , \{ x1, x2\} , \{ x2, x3\} , \{ x2, x2x3\} , \{ x3, x2x3\} \} . Figure 4 shows the tsp
graph G0 (without dashed edges) and its chordal extension G1 (with dashed edges)
for f . The graph sequence (Gk)k\geq 1 stabilizes at k = 1. Solving the SDP problem
(P1) associated with G1, we obtain \lambda 1 \approx  - 0.00355 while we have \lambda mom = \lambda \ast = 0.

Remark 3.7. Even though there is no theoretical guarantee that the sequence of
optimal values of the chordal-TSSOS hierarchy converges to the optimal value of the
dense moment-SOS relaxation for (P0), in practice the convergence takes place in
many cases as we shall see in the numerical experiments.
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x1 x2 x3

x1x2 1 x2x3

Fig. 4. The tsp graph G0 and its chordal extension G1 for Example 3.6.

For each k \geq 1, the dual SDP problem of (3.3) is

(3.5) (Pk)\ast :
sup \lambda ,
s.t. \langle Q,A\bfitalpha \rangle + \lambda \delta \bfzero \bfitalpha = f\bfitalpha \forall \bfitalpha \in supp(Gk) \cup (2B),

Q \in Sr
+ \cap SGk

,

where A\bfitalpha is defined by (2.4).

Proposition 3.8. For each k \geq 1, there is no duality gap between (Pk) and
(Pk)\ast .

Proof. This easily follows from Proposition 3.1 of [16] for the dense case and
Theorem 2.2.

Comparison with SDSOS [1]. The following definition of SDSOS polynomials
has been introduced and studied in [1]. A symmetric matrix Q \in Sr is diagonally
dominant if Qii \geq 

\sum 
j \not =i | Qij | for i = 1, . . . , r and is scaled diagonally dominant if

there exists a positive definite r \times r diagonal matrix D such that DQD is diagonally
dominant. We say that a polynomial f(x) \in \BbbR [x] is a scaled diagonally dominant
sum of squares (SDSOS) polynomial if it admits a Gram matrix representation (2.2)
with a scaled diagonally dominant Gram matrix Q. We denote the set of SDSOS
polynomials by SDSOS.

Following [1], by replacing the nonnegativity condition in (P0) with the SDSOS
condition, one obtains the SDSOS relaxation of (P) and (P0):

(SDSOS) : \lambda sdsos := sup
\lambda 
\{ \lambda : f(x) - \lambda \in SDSOS\} .

Theorem 3.9. With the above notation, one has \lambda 1 \geq \lambda sdsos.

Proof. Let f \in \BbbR [x] with A = supp(f) and B be a monomial basis with r = | B| .
Assume that f \in SDSOS, i.e., f admits a scaled diagonally dominant Gram matrix
Q \in \BbbS r+ indexed by B. We then construct a Gram matrix \~Q for f by

\~Q\bfitbeta \bfitgamma =

\Biggl\{ 
Q\bfitbeta \bfitgamma if \bfitbeta + \bfitgamma \in A \cup (2B),

0 otherwise.

It is easy to see that we still have f = (xB)T \~QxB. Note that we only replace off-
diagonal entries by zeros in Q to obtain \~Q and replacing off-diagonal entries by zeros
does not affect the scaled diagonal dominance of a matrix. Hence \~Q is also a scaled
diagonally dominant matrix. Moreover, we have \~Q \in Sr

+ \cap SG1
by construction. It

follows that (SDSOS) is a relaxation of (P1)\ast . Hence \lambda 1 \geq \lambda sdsos.

The next result states that \lambda 1 = \lambda mom always holds in the quadratic case.
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124 JIE WANG, VICTOR MAGRON, AND JEAN-BERNARD LASSERRE

Theorem 3.10. Suppose that the objective function f \in \BbbR [x] in (P0) is a qua-
dratic polynomial. Then \lambda 1 = \lambda mom.

Proof. Assume that supp(f) = A . Since f is quadratic, we may take B =
\{ e0, e1, . . . , en\} as a monomial basis, where e0 = 0 and \{ ei\} ni=1 is the standard basis
of \BbbR n. Let G0 be the tsp graph associated with f . We only need to prove that if f
admits a PSD Gram matrix, then f admits a Gram matrix in Sn+1

+ \cap SG0 . Suppose
that Q = [qij ]

n
i,j=0 is a PSD Gram matrix for f indexed by B. Note that for all i, j,

if \{ ei, ej\} \not \in E(G0), then we must have ei + ej /\in A , which implies qij = 0. It follows
that Q \in SG0

as desired.

4. The chordal-TSSOS hierarchy: Constrained case. In this section, we
describe an iterative procedure to exploit term sparsity for the primal-dual moment-
SOS hierarchy (2.10)--(2.11) of the constrained POP (Q0) defined in (2.8)--(2.9). Let

A = supp(f) \cup 
m\bigcup 
j=1

supp(gj).

Let dj := \lceil deg(gj)/2\rceil , j = 1, . . . ,m and d := max\{ \lceil deg(f)/2\rceil , d1, . . . , dm\} . Fix

a relaxation order \^d \geq d in Lasserre's hierarchy (2.10). Let g0 = 1, d0 = 0, and
Bj, \^d = \BbbN n

\^d - dj
be the standard monomial basis for j = 0, . . . ,m. We define a graph

G
(0)

0, \^d
(V0, \^d, E

(0)

0, \^d
) with V0, \^d = B0, \^d and

(4.1) E
(0)

0, \^d
= \{ \{ \bfitbeta ,\bfitgamma \} | (\bfitbeta ,\bfitgamma ) \in V0, \^d \times V0, \^d, \bfitbeta \not = \bfitgamma , \bfitbeta + \bfitgamma \in A \cup (2B0, \^d)\} .

We call G0 the tsp graph associated with (Q0).

For k \geq 1, we recursively define a sequence of graphs (G
(k)

j, \^d
(Vj, \^d, E

(k)

j, \^d
))k\geq 1 with

Vj, \^d = Bj, \^d for j = 0, . . . ,m by

(4.2) G
(k)

0, \^d
:= SE(G

(k - 1)

0, \^d
) and G

(k)

j, \^d
:= F

(k)

j, \^d
, j = 1, . . . ,m,

where F
(k)

j, \^d
is the graph with V (F

(k)

j, \^d
) = Bj, \^d and

E(F
(k)

j, \^d
) =\{ \{ \bfitbeta ,\bfitgamma \} | (\bfitbeta ,\bfitgamma ) \in Bj, \^d \times Bj, \^d, \bfitbeta \not = \bfitgamma ,

(4.3)

(supp(gj) + \bfitbeta + \bfitgamma ) \cap (supp(G
(k - 1)

0, \^d
) \cup (2B0, \^d)) \not = \emptyset \} , j = 1, . . . ,m.

Let rj :=
\bigl( n+\^d - dj

\^d - dj

\bigr) 
. Therefore by replacing M \^d - dj

(gjy) \succeq 0 with the weaker

condition M \^d - dj
(gjy) \in \Pi 

G
(k)

j, \^d

(S
rj
+ ) for j = 0, . . . ,m in (2.10), we obtain the following

sparse SDP relaxation of (Q \^d) and (Q0) for each k \geq 1:

(4.4) (Qk
\^d
) :

\lambda 
(k)
\^d

:= inf L\bfy (f),

s.t. M \^d(y) \in \Pi 
G

(k)

0, \^d

(Sr0
+ ),

M \^d - dj
(gjy) \in \Pi 

G
(k)

j, \^d

(S
rj
+ ), j = 1, . . . ,m,

y\bfzero = 1.
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We call k the sparse order. By construction, one has G
(k)

j, \^d
\subseteq G

(k+1)

j, \^d
for all j, k.

Therefore, for every j, the sequence of graphs (G
(k)

j, \^d
)k\geq 1 stabilizes after a finite number

of steps.

Theorem 4.1. Fixing a relaxation order \^d \geq d, the sequence (\lambda 
(k)
\^d
)k\geq 1 is mono-

tone nondecreasing and \lambda 
(k)
\^d

\leq \lambda \^d for all k (with \lambda \^d as in (2.10)).

Proof. For all j, k, because G
(k)

j, \^d
\subseteq G

(k+1)

j, \^d
, each maximal clique of G

(k)

j, \^d
is a sub-

set of some maximal clique of G
(k+1)

j, \^d
. Hence by Theorem 2.2, (Qk

\^d
) is a relaxation of

(Qk+1
\^d

) (and also a relaxation of (Q \^d)). Therefore, (\lambda 
(k)
\^d
)k\geq 1 is monotone nondecreas-

ing and \lambda 
(k)
\^d

\leq \lambda \^d for all k.

Theorem 4.2. Fixing a sparse order k \geq 1, the sequence (\lambda 
(k)
\^d
) \^d\geq d is monotone

nondecreasing.

Proof. The conclusion follows if we can show that G
(k)

j, \^d
\subseteq G

(k)

j, \^d+1
for all j, \^d

since by Theorem 2.2 this implies that (Qk
\^d
) is a relaxation of (Qk

\^d+1
). Let us prove

G
(k)

j, \^d
\subseteq G

(k)

j, \^d+1
by induction on k. For k = 1, from (4.1), we have E

(0)

0, \^d
\subseteq E

(0)

0, \^d+1
,

which implies that G
(1)

j, \^d
\subseteq G

(1)

j, \^d+1
for j = 0, . . . ,m. Now assume that G

(k)

j, \^d
\subseteq G

(k)

j, \^d+1
,

j = 0, . . . ,m hold for a given k \geq 1. Then from (4.2) and (4.3) and by the induction

hypothesis, we have G
(k+1)

j, \^d
\subseteq G

(k+1)

j, \^d+1
for j = 0, . . . ,m, which completes the induction

and also completes the proof.

Combining Theorem 4.1 with Theorem 4.2, we have the following two-level hier-
archy of lower bounds for the optimum of (Q0):

(4.5)

\lambda 
(1)
d \leq \lambda 

(2)
d \leq \cdot \cdot \cdot \leq \lambda d

\geq \geq \geq 

\lambda 
(1)
d+1 \leq \lambda 

(2)
d+1 \leq \cdot \cdot \cdot \leq \lambda d+1

\geq \geq \geq 

...
...

...
...

\geq \geq \geq 

\lambda 
(1)
\^d

\leq \lambda 
(2)
\^d

\leq \cdot \cdot \cdot \leq \lambda \^d

\geq \geq \geq 

...
...

...
...

The array of lower bounds (4.5) (and its associated SDP-relaxations (4.4)) is what we
call the chordal-TSSOS moment-SOS hierarchy (in short chordal-TSSOS hierarchy)
associated with (Q0).

For each k \geq 1, the dual of (Qk
\^d
) reads as

(4.6) (Qk
\^d
)\ast :

sup \lambda ,
s.t.

\sum m
j=0\langle Qj , D

j
\bfitalpha \rangle + \lambda \delta \bfzero \bfitalpha = f\bfitalpha ,

\forall \bfitalpha \in 
\bigcup m

j=0(supp(gj) + supp(G
(k)

j, \^d
)) \cup (2B0, \^d),

Qj \in S
rj
+ \cap S

G
(k)

j, \^d

, j = 0, . . . ,m,

where Dj
\bfitalpha is defined in section 2.1.
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Proposition 4.3. Let f \in \BbbR [x] and K be as in (2.9). Assume that K has a
nonempty interior. Then there is no duality gap between (Qk

\^d
) and (Qk

\^d
)\ast for any

\^d \geq d and k \geq 1.

Proof. By the duality theory of convex programming, this easily follows from
Theorem 4.2 of [16] for the dense case and Theorem 2.2.

Remark 4.4. As in the unconstrained case, there is no theoretical guarantee that

the sequence of optimal values (\lambda 
(k)
\^d
)k\geq 1 of the chordal-TSSOS hierarchy converges

to the optimal value \lambda \^d of the dense moment-SOS relaxation for (Q0). However, as
we shall observe in the numerical experiments, the convergence takes place in many
cases.

By the same argument as for Theorem 3.10, we can prove the following.

Proposition 4.5. For quadratically constrained quadratic programs (QCQP), the

equality \lambda 
(1)
1 = \lambda 1 holds.

Remark 4.6. Our above treatment easily extends to include equality constraints.

Obtaining a possibly smaller monomial basis B (B0, \^d). The chordal-

TSSOS hierarchy depends on the chosen monomial basis B (B0, \^d) and therefore its
choice can affect the overall efficiency of the hierarchy. For instance, for unconstrained
POPs, the Newton polytope method usually provides a monomial basis smaller than
the standard monomial basis. However, this method does not apply to constrained
POPs. Here as an optional pretreatment of POPs, we provide an iterative procedure
which not only enables us to obtain a monomial basis B smaller than the one given
by the Newton polytope method for unconstrained POPs in many cases, but can also
be applied to constrained POPs. It sometimes leads to a monomial basis B0, \^d smaller
than the standard one.

We start with the unconstrained case. Let f \in \BbbR [x] with A = supp(f) and B
the monomial basis given by the Newton polytope method. Set B0 := \emptyset . For p \geq 1,
we iteratively define a sequence of monomial sets (Bp)p\geq 1 by

(4.7) Bp := \{ \bfitbeta \in B | \exists \bfitgamma \in B s.t. \bfitbeta + \bfitgamma \in A \cup (2Bp - 1)\} .

Consequently, we obtain an increasing chain of monomial sets:

B1 \subseteq B2 \subseteq B3 \subseteq \cdot \cdot \cdot \subseteq B.

Clearly, the above chain will stabilize in a finite number of steps. Each Bp can serve
as a candidate monomial basis. Particularly, we have the following.

Proposition 4.7. Let f \in \BbbR [x] and B\ast = \cup p\geq 1Bp. If f \in SDSOS, then f is an
SDSOS polynomial in the monomial basis B\ast .

Proof. Let B be the monomial basis given by the Newton polytope method with
r = | B| . If f \in SDSOS, then there exists a scaled diagonally dominant Gram matrix
Q \in \BbbS r+ indexed by B such that f = (xB)TQxB. Let s = | B\ast | . We then construct a

Gram matrix \~Q \in Ss
+ indexed by B\ast for f as follows:

\~Q\bfitbeta \bfitgamma =

\Biggl\{ 
Q\bfitbeta \bfitgamma if \bfitbeta + \bfitgamma \in A \cup (2B\ast ),

0 otherwise.

One can easily check that we still have f = (xB\ast )T \~QxB\ast . Let \^Q be the principal
submatrix of Q by deleting the rows and columns whose indices are not in B\ast , which
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is also a scaled diagonally dominant matrix. By construction, \~Q is obtained from
\^Q by replacing certain off-diagonal entries by zeros. Since replacing off-diagonal en-
tries by zeros does not affect the scaled diagonal dominance of a matrix, \~Q is also a
scaled diagonally dominant matrix. It follows that f is an SDSOS polynomial in the
monomial basis B\ast .

Remark 4.8. By Proposition 4.7, if we use the monomial basis B\ast for (Pk) (3.3)
and (Pk)\ast (3.5), we still have the hierarchy of optimal values:

\lambda sdsos \leq \lambda 1 \leq \lambda 2 \leq \cdot \cdot \cdot \leq \lambda mom \leq \lambda \ast .

Remark 4.9. For unconstrained POPs, one may take an initial monomial basis B
via the Newton polytope method in Algorithm 4.1.

Algorithm 4.1 \ttG \tte \ttn \tte \ttr \tta \ttt \tte \ttB \tta \tts \tti \tts .

Require: A and an initial monomial basis B
Ensure: An increasing chain of potential monomial bases (Bp)p\geq 1

1: Set B0 := \emptyset ;
2: Let p = 0;
3: while p = 0 or Bp \not = Bp - 1 do
4: p := p+ 1;
5: Set Bp := \emptyset ;
6: for each pair \{ \bfitbeta ,\bfitgamma \} of B do
7: if \bfitbeta + \bfitgamma \in A \cup (2Bp - 1) then
8: Bp := Bp \cup \{ \bfitbeta ,\bfitgamma \} ;
9: end if

10: end for
11: end while
12: return (Bp)p\geq 1;

This method enables us to obtain a monomial basis that may be strictly smaller
than the monomial basis given by the Newton polytope method as the following
example shows.

Example 4.10. Consider the polynomial f = 1 + x + x8. The monomial basis
given by the Newton polytope method is B = \{ 1, x, x2, x3, x4\} . By the above iterative
procedure, we compute that B1 = \{ 1, x, x4\} and B2 = \{ 1, x, x2, x4\} . It turns out
that f has no SOS representations with B1 while B2 can serve as a monomial basis
to represent f as an SOS.

For the constrained case we use the notation of section 4. Fix a relaxation order
\^d and a sparse order k of the chordal-TSSOS hierarchy. Then each iteration breaks
into two steps.

For step 1, let the maximal cliques of G
(k)

j, \^d
(4.2) be C

(k)
j,1 , C

(k)
j,2 , . . . , C

(k)
j,lj

for j =

0, . . . ,m. Let

(4.8) F = supp(f) \cup 
m\bigcup 
j=1

(supp(gj) +

lj\bigcup 
i=1

(C
(k)
j,i + C

(k)
j,i )).

Then call the algorithm \ttG \tte \ttn \tte \ttr \tta \ttt \tte \ttB \tta \tts \tti \tts with A = F and B = B0, \^d to generate a

new monomial basis B\prime 
0, \^d

.
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For step 2, with the new monomial basis B\prime 
0, \^d

, we compute a new sparsity pattern

graph (G
(k)

j, \^d
)\prime for j = 0, . . . ,m. Then go back to step 1.

Continue the iterative procedure until B\prime 
0, \^d

= B0, \^d.

5. Computational cost discussion. In this section, we provide an estimate for
the computational cost associated with the chordal-TSSOS hierarchy of POPs with
sparse order k = 1. For ease of exposition we only consider the unconstrained case
(3.5). We use the standard monomial basis B = \BbbN n

d for the discussion in order to
obtain a quantitative comparison of computational costs.

Let f \in \BbbR [x] be of degree 2d and G0 the tsp graph associated with f . Let (Gk)k\geq 1

be defined by (3.2). By Theorem 2.1, the complexity of (3.5) depends on the sizes of
maximal cliques of Gk and the number of equality constraints, i.e., | supp(Gk)\cup (2B)| .
Since we rely on an approximately minimum chordal extension, only a small number
of edges are added to G0 in the process of obtaining G1 from the chordal extension
of G0. In this case, the complexity of (3.5) for k = 1 depends mainly on the sizes of
maximal cliques of G0 and | supp(G0) \cup (2B)| .

For any \bfitalpha = (\alpha i) \in \BbbN n, we call \bfitalpha (mod 2) = (\alpha i (mod 2)) \in \{ 0, 1\} n the sign type
of \bfitalpha . We say that \bfitalpha is even if the sign type of \bfitalpha is 0 and is odd otherwise.

Proposition 5.1. Let G0(V,E0) be the tsp graph associated with f . Then for
any \bfitbeta ,\bfitgamma \in V with the same sign type, one has \{ \bfitbeta ,\bfitgamma \} \in E0.

Proof. Since \bfitbeta and \bfitgamma have the same sign type, \bfitbeta + \bfitgamma is even, i.e., \bfitbeta + \bfitgamma \in 2B,
and therefore \{ \bfitbeta ,\bfitgamma \} \in E0 by (3.1).

Proposition 5.1 implies that the nodes of G0 with the same sign type have pairwise
edges and hence form a clique of G0.

Proposition 5.2. Let C be a subset of \BbbN n
d such that the elements of C have the

same sign type. Then | C| \leq 
\bigl( n+\lfloor d

2 \rfloor 
\lfloor d

2 \rfloor 

\bigr) 
.

Proof. Let y = (y1, . . . , yn) be a set of variables and s be the sign type of the
elements in C. It follows that any \bfitalpha \in C is a nonnegative integer solution of the
following system:

(5.1)

\Biggl\{ 
y1 + y2 + \cdot \cdot \cdot + yn \leq d,

y (mod 2) = s.

Define \=y = (\=y1, \cdot \cdot \cdot , \=yn) by

\=yi =

\Biggl\{ 
yi

2 if yi (mod 2) = 0,
yi - 1
2 if yi (mod 2) = 1.

Let o be the number of subscripts i such that si = 1. Then the nonnegative integer
solution of (5.1) is in a one-to-one correspondence to the nonnegative integer solution
of the following system:

(5.2) \=y1 + \=y2 + \cdot \cdot \cdot + \=yn \leq 
\biggl\lfloor 
d - o

2

\biggr\rfloor 
.

Since the number of nonnegative integer solutions to (5.2) is
\bigl( n+\lfloor d - o

2 \rfloor 
\lfloor d - o

2 \rfloor 

\bigr) 
, we conclude

that the number of nonnegative integer solutions to (5.1) is also
\bigl( n+\lfloor d - o

2 \rfloor 
\lfloor d - o

2 \rfloor 

\bigr) 
. Therefore,

we have | C| \leq 
\bigl( n+\lfloor d - o

2 \rfloor 
\lfloor d - o

2 \rfloor 

\bigr) 
\leq 

\bigl( n+\lfloor d
2 \rfloor 

\lfloor d
2 \rfloor 

\bigr) 
as o is a nonnegative integer.
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1x2
1

x2
2 x2

3

x1 x2 x3

x2x3 x1x3 x1x2

The green edges are even and the red edges are odd.

Fig. 5. The tsp graph G0 of f .

Table 1
Computational cost comparison for the sparse and dense SDP relaxations of unconstrained POPs.

Maximal size of SDP blocks \#SDP blocks \#Equality constraints

Sparse \sim 
\bigl( n+\lfloor d

2
\rfloor 

\lfloor d
2
\rfloor 

\bigr) 
\leq 

\bigl( n+d
d

\bigr) 
\sim | supp(f)| +

\bigl( n+d
d

\bigr) 
Dense

\bigl( n+d
d

\bigr) 
1

\bigl( n+2d
2d

\bigr) 

Combining Proposition 5.1 with Proposition 5.2, we conclude that the size of any

clique of G0 whose nodes have the same sign type is no more than
\bigl( n+\lfloor d

2 \rfloor 
\lfloor d

2 \rfloor 

\bigr) 
.

Suppose G(V,E) is a graph with V = B. We say that an edge \{ \bfitbeta ,\bfitgamma \} \in E is even
if \bfitbeta + \bfitgamma is even and is odd if \bfitbeta + \bfitgamma is odd. In other words, an even edge connects
two nodes of the same sign type and an odd edge connects two nodes of different
sign types. From the definition of G0, odd edges of G0 correspond to odd vectors in
supp(f). If f is sufficiently sparse such that the odd edges of G0 are not too many,
then because of the above discussion, the maximal size of maximal cliques of G0 is

close to
\bigl( n+\lfloor d

2 \rfloor 
\lfloor d

2 \rfloor 

\bigr) 
.

It is known that for a chordal graph whose edge set is nonempty, the number
of maximal cliques is less than the number of nodes [9]. Therefore, the number of
maximal cliques of G0 is bounded by | B| =

\bigl( 
n+d
d

\bigr) 
.

By construction, we have | supp(G0) \cup (2B)| = | supp(f) \cup (2B)| \leq | supp(f)| +\bigl( 
n+d
d

\bigr) 
.

Example 5.3. Consider the polynomial f = 1 + x4
1 + x4

2 + x4
3  - x2

1x
2
2  - x2

1x
2
3  - 

x2
2x

2
3 + x2x3. See Figure 5 for the tsp graph G0 of f . There are six maximal cliques

for G0, which are of sizes 4, 2, 2, 1, 1, 1, respectively.

On the other hand, for the dense SDP relaxation (2.7) of (3.5), there is only one
SDP matrix which is of size

\bigl( 
n+d
d

\bigr) 
and the number of equality constraints is

\bigl( 
n+2d
2d

\bigr) 
.

Thus we obtain Table 1 for the computational cost of the sparse (with sparse
order k = 1) and dense SDP relaxations of (3.5).

We illustrate the above discussion by an explicit example.

Example 5.4. For n \geq 1, let

(5.3) fn =

n\sum 
i=1

(x2
i + x4

i ) +

n\sum 
i=1

n\sum 
k=1

(xi  - xk)
4.

The tsp graph G0 for fn (see Figure 6) has 1 maximal clique of size n+1 (involving the
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x2
jx2

k

x2
i

1

xixjxixk

xjxk

x1 x2 xn\cdot \cdot \cdot 

This is a subgraph of G0. The whole graph G0 is obtained by putting all such subgraphs

together.

Fig. 6. The tsp graph G0 of fn.

Table 2
Computational cost comparison for the sparse and dense SDP relaxations of minimizing fn.

\#SDP blocks \#Equality constraints

Sparse 3\times n(n - 1)
2

, 1\times n, (n+ 1)\times 1
3n(n - 1)

2
+ 2n+ 1

Dense
\bigl( n+2

2

\bigr) 
\times 1

\bigl( n+4
4

\bigr) 

nodes 1, x2
1, . . . , x

2
n),

n(n - 1)
2 maximal cliques of size 3 (involving the nodes x2

i , x
2
j , xixj

for each pair \{ i, j\} , i \not = j), and n maximal cliques of size 1 (involving the node xi for
each i). Note that G0 is already a chordal graph. So we have G1 = G0.

The computational cost for the sparse (with sparse order k = 1) and dense SDP
relaxations of minimizing fn is displayed in Table 2. In the column ``\#SDP blocks,""
i\times j means j SDP blocks of size i.

6. Numerical experiments. In this section, we present numerical results of
the proposed chordal-TSSOS hierarchies (3.3)--(3.5) and (4.4)--(4.6) for both uncon-
strained and constrained POPs, respectively. Our tool, named TSSOS, is implemented
in Julia and constructs instances of the dual SDP problems (3.5) and (4.6) via JuMP
[7], then relies on MOSEK [24] to solve them. TSSOS utilizes the Julia packages
LightGraphs [4] to handle graphs. TSSOS also implements the block-TSSOS hierar-
chy developed in [32]. In the following subsections, we compare the performance of
TSSOS with that of GloptiPoly [12], Yalmip [19], and SparsePOP [35]. As for TSSOS,
GloptiPoly and Yalmip use MOSEK as an SDP solver. SparsePOP uses SDPT3 [29] as
an SDP solver. We use the default accuracy 1\times 10 - 8 for both MOSEK and SDPT3.

Our TSSOS tool is available on the following website:
https://github.com/wangjie212/TSSOS.

All numerical examples were computed on an Intel Core i5-8265U@1.60GHz CPU
with 8GB RAM memory. The timing includes the time for preprocessing (to get the
block-structure in TSSOS), the time for modeling SDP, and the time for solving SDP.
Although the modeling part in Julia is usually faster than that in MATLAB, typically
the time for solving SDP is dominant on the tested examples in this paper and exceeds
the preprocessing time and the modeling time by one order of magnitude.

The notation that we use is listed in Table 3.
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CHORDAL-TSSOS 131

Table 3
The notation.

n the number of variables

2d the degree

s the number of terms

\^d the relaxation order of Lasserre's hierarchy

k the sparse order of the (block-) chordal-TSSOS hierarchy

bs the size of initial monomial bases by the Newton polytope method

rbs the size of reduced monomial bases by Algorithm 4.1

mb
the maximal size of SDP blocks or whose kth entry is the maximal

size of SDP blocks of the chordal-TSSOS hierarchy at sparse order k

opt
the optimal value or whose kth entry is the optimal value

of the chordal-TSSOS hierarchy at sparse order k

time
the running time (in seconds) or whose kth entry is the running time

(in seconds) of the chordal-TSSOS hierarchy at sparse order k

0 a number whose absolute value is less than 1\times 10 - 5

- out of memory

6.1. Unconstrained polynomial optimization problems. We first present
the numerical results for randomly generated polynomials of two types. The first type
is of the SOS form. More concretely, we consider the polynomial

f =

t\sum 
i=1

f2
i \in randpoly1(n, 2d, t, p) ,

constructed as follows: first randomly choose a subset of monomials M from x\BbbN n
d with

probability p, and then randomly assign the elements of M to f1, . . . , ft with random
coefficients between  - 1 and 1. We generate 18 random polynomials F1, . . . , F18 from
6 different classes,1 where

F1, F2, F3 \in randpoly1(8, 8, 30, 0.1),

F4, F5, F6 \in randpoly1(8, 10, 25, 0.04),

F7, F8, F9 \in randpoly1(9, 10, 30, 0.03),

F10, F11, F12 \in randpoly1(10, 12, 20, 0.01),

F13, F14, F15 \in randpoly1(10, 16, 30, 0.003),

F16, F17, F18 \in randpoly1(12, 12, 50, 0.01).

Table 4 displays the numerical results on these polynomials. We only present the
results of the first three steps (i.e., k = 1, 2, 3) of the chordal-TSSOS hierarchy since
for all instances except F3, the sequence of graphs (Gk)k\geq 1 stabilizes in three steps.
Note that the time spent to compute a monomial basis is included in the running
time of the chordal-TSSOS hierarchy at sparse order k = 1. This explains why the
running time is less important at k = 2 for F2, F3, and F4.

In Table 5, we compare the performance of TSSOS, GloptiPoly, Yalmip, and
SparsePOP when achieving the same optimum on these polynomials. We present

1The polynomials can be downloaded at https://wangjie212.github.io/jiewang/code.html.
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Table 4
The results for randomly generated polynomials of type I.

n 2d s bs rbs mb opt Time

F1 8 8 64 106 49 4 0 0.24

F2 8 8 102 122 76 6, 6 0, 0 0.34, 0.08

F3 8 8 104 150 95 6, 8, 11 0, 0, 0 0.36, 0.05, 0.08

F4 8 10 103 202 75 5, 5 0, 0 0.58, 0.04

F5 8 10 85 201 70 4 0 0.53

F6 8 10 111 128 60 7 0 0.38

F7 9 10 101 145 66 5 0 0.50

F8 9 10 166 178 81 5 0 0.72

F9 9 10 161 171 78 8 0 0.79

F10 10 12 271 223 94 8 0 2.2

F11 10 12 253 176 88 9 0 1.6

F12 10 12 261 204 94 8 0 1.8

F13 10 16 370 1098 125 9 0 15

F14 10 16 412 800 139 9 0 14

F15 10 16 436 618 146 9 0 12

F16 12 12 488 330 187 8 0 8.4

F17 12 12 351 264 150 8 0 5.7

F18 12 12 464 316 179 8 0 7.4

Table 5
Comparison with GloptiPoly, Yalmip, and SparsePOP for randomly generated polynomials of

type I.

TSSOS
GloptiPoly Yalmip SparsePOP

Chordal Block

Time mb Time

F1 0.24 1.7 306 10 105 24

F2 0.34 4.6 348 13 140 130

F3 0.36 8.8 326 19 153 175

F4 0.58 4.8 - 92 233 323

F5 0.53 4.2 - 72 201 1526

F6 0.38 5.2 - 22 140 134

F7 0.50 3.2 - 44 153 324

F8 0.72 6.5 - 143 - -

F9 0.79 5.9 - 109 186 284

F10 2.2 12 - 474 - -

F11 1.6 9.2 - 147 160 318

F12 1.8 12 - 350 168 404

F13 15 36 - - - -

F14 14 305 - - - -

F15 12 207 - - - -

F16 8.4 61 - - - -

F17 5.7 17 - - - -

F18 7.4 22 - - - -

the performance of TSSOS for both ``chordal"" and ``block"" approaches. In Yalmip,
we turn the option ``sos.newton"" on to compute a monomial basis by the Newton
polytope method. Since SparsePOP uses a different SDP solver, we also provide the
data of maximal sizes of SDP blocks produced by SparsePOP for comparison.
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CHORDAL-TSSOS 133

As the tables illustrate, TSSOS is significantly faster and scales better than Glop-
tiPoly, Yalmip, and SparsePOP. Note also that TSSOS produces much smaller SDP
blocks than SparsePOP. Moreover, one can see that the chordal-TSSOS hierarchy
performs much better than the block-TSSOS hierarchy.

The second type of randomly generated problems are polynomials whose Newton
polytopes are scaled standard simplices. More concretely, we consider polynomials
defined by

f = c0 +

n\sum 
i=1

cix
2d
i +

s - n - 1\sum 
j=1

c\prime jx
\bfitalpha j \in randpoly2(n, 2d, s) ,

constructed as follows: we randomly choose coefficients ci between 0 and 1, as well
as s - n - 1 vectors \bfitalpha j in \BbbN n

2d - 1\setminus \{ 0\} with random coefficients c\prime j between  - 1 and 1.

We generate 18 random polynomials G1, . . . , G18 from 6 different classes,2 where

G1, G2, G3 \in randpoly2(8, 8, 15),

G4, G5, G6 \in randpoly2(9, 8, 20),

G7, G8, G9 \in randpoly2(9, 10, 15),

G10, G11, G12 \in randpoly2(10, 8, 20),

G13, G14, G15 \in randpoly2(11, 8, 20),

G16, G17, G18 \in randpoly2(12, 8, 25).

Table 6 displays the numerical results on these polynomials. We only present the
results of the first three steps (i.e., k = 1, 2, 3) of the chordal-TSSOS hierarchy since
it always converges to the same optimum with the dense moment-SOS relaxation in
three steps. It happens that the second (or the third) step of the chordal-TSSOS
hierarchy spends less time than the first one because it involves fewer SDP blocks
than the first one while the sizes of maximal SDP blocks are close.

In Table 7, we compare the performance of TSSOS, GloptiPoly, Yalmip, and
SparsePOP when achieving the same optimum on these polynomials. We present
the performance of TSSOS for both ``chordal"" and ``block"" approaches. In Yalmip,
we turn the option ``sos.congruence"" on to take sign-symmetries into account, which
allows one to handle slightly more polynomials than GloptiPoly.

Again as illustrated in the tables, TSSOS is significantly faster and scales better
than GloptiPoly, Yalmip, and SparsePOP. As above, TSSOS produces much smaller
SDP blocks than SparsePOP. In addition, the chordal-TSSOS hierarchy performs
much better than the block-TSSOS hierarchy.

The Broyden banded function [34] is defined by

f\mathrm{B}\mathrm{b}(x) =

n\sum 
i=1

(xi(2 + 5x2
i ) + 1 - 

\sum 
j\in Ji

(1 + xj)xj)
2,

where Ji = \{ j | j \not = i,max(1, i - 5) \leq j \leq min(n, i+ 1)\} . Table 8 displays the results
of the Broyden banded function for the chordal-TSSOS hierarchy and SparsePOP.
The optimums are always 0. One can see that the tsp leads to much smaller SDP
blocks than the csp (19 against 120 when n \geq 8) and thus saves more computational
cost.

2The polynomials can be downloaded at https://wangjie212.github.io/jiewang/code.html.
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Table 6
The results for randomly generated polynomials of type II.

n 2d s \mathrm{b}\mathrm{s} \mathrm{r}\mathrm{b}\mathrm{s} \mathrm{m}\mathrm{b} \mathrm{o}\mathrm{p}\mathrm{t} \mathrm{T}\mathrm{i}\mathrm{m}\mathrm{e}

G1 8 8 15 495 235 21, 23, 28  - 0.5758, - 0.5758, - 0.5758 0.36, 0.21, 0.28

G2 8 8 15 495 328 31, 33, 37  - 34.69, - 34.69, - 34.69 0.51, 0.57, 1.7

G3 8 8 15 495 258 21, 23, 31 0.7073, 0.7073, 0.7073 0.31, 0.23, 0.36

G4 9 8 20 715 415 31, 41, 127  - 801.7, - 801.7, - 801.7 1.0, 1.8, 184

G5 9 8 20 715 342 28, 31, 40  - 0.8064, - 0.8064, - 0.8064 0.63, 0.45, 1.1

G6 9 8 20 715 340 25, 43, 61  - 1.698, - 1.698, - 1.698 0.76, 1.4, 3.6

G7 9 10 15 2002 1254 38, 41, 55  - 1.295, - 1.295, - 1.295 6.6, 5.2, 15

G8 9 10 15 2002 894 26, 28, 40  - 0.6622, - 0.6622, - 0.6622 5.0, 1.8, 3.5

G9 9 10 15 2002 888 28, 31, 31 0.5180, 0.5180, 0.5180 4.9, 1.4, 2.3

G10 10 8 20 1001 454 31, 36, 42  - 0.4895, - 0.4895, - 0.4895 1.2, 0.73, 0.92

G11 10 8 20 1001 414 26, 33, 60 0.1732, 0.1798, 0.1867 1.1, 0.87, 6.0

G12 10 8 20 1001 387 23, 37, 52 0.4943, 0.4943, 0.4943 1.0, 1.2, 2.4

G13 11 8 20 1365 299 21, 22, 22  - 3.963, - 3.963, - 3.963 1.7, 0.26, 0.30

G14 11 8 20 1365 412 27, 33, 42  - 2.184, - 2.184, - 2.184 1.8, 0.68, 3.3

G15 11 8 20 1365 458 27, 30, 37 0.0588, 0.0588, 0.0588 1.9, 0.59, 0.76

G16 12 8 25 1820 744 39, 58, 81  - 758.6, - 688.0, - 688.0 4.1, 5.8, 73

G17 12 8 25 1820 694 37, 51, 76  - 40.89, - 40.22, - 40.22 3.7, 3.7, 31

G18 12 8 25 1820 581 31, 40, 48  - 14.27, - 14.27, - 14.27 2.9, 1.3, 1.8

Table 7
Comparison with GloptiPoly, Yalmip, and SparsePOP for randomly generated polynomials of

type II.

TSSOS
GloptiPoly Yalmip SparsePOP

Chordal Block

Time mb Time

G1 0.36 8.5 346 31 330 271

G2 0.51 2.6 447 24 330 496

G3 0.31 1.0 257 6.0 330 178

G4 1.0 40 - - - -

G5 0.63 24 - 363 330 611

G6 0.76 31 - 141 330 578

G7 6.6 24 - 322 - -

G8 5.0 28 - 233 - -

G9 4.9 21 - 249 - -

G10 1.2 13 - - - -

G11 8.0 86 - 536 - -

G12 1.0 66 - - - -

G13 1.7 13 - 655 330 398

G14 1.8 37 - - 210 221

G15 1.9 36 - 340 330 293

G16 10 693 - - - -

G17 7.4 333 - - - -

G18 2.9 393 - - - -

Table 8
The results for the Broyden banded function.

n 6 7 8 9 10 11 12 13 14 15

mb
TSSOS 15 17 19 19 19 19 19 19 19 19

SparsePOP 84 120 120 120 120 120 120 120 120 120

Time
TSSOS 0.14 0.18 0.22 0.26 0.30 0.35 0.43 0.54 0.62 0.76

SparsePOP 1.4 4.0 11 18 28 48 69 126 190 230
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Table 9
The results for the modified generalized Rosenbrock function.

n

TSSOS

Chordal Block

mb opt Time mb opt Time

10 11 8.45 0.03 28, 56 8.45, 8.45 0.06, 0.32

20 21 18.35 0.12 58, 211 18.35, 18.35 1.2, 50

30 31 28.25 0.34 88, 466 28.25, - 9, -

40 41 38.15 0.87 118, 821 38.15, - 42, -

50 51 48.05 2.5 148, 1276 48.05, - 146, -

60 61 57.95 4.1 178, 1831 57.95, - 382, -

70 71 67.85 9.5 218, 2486 67.85, - 786, -

80 81 77.75 22 248, 3241 77.75, - 4467, -

90 91 87.65 28 278, 4096 - -

100 101 97.55 46 308, 5051 - -

120 121 117.35 105 368, 7261 - -

140 141 137.15 243 428, 9871 - -

160 161 156.95 504 488, 12881 - -

180 181 176.75 820 548, 16291 - -

200 201 196.55 1792 608, 20101 - -

In the final part of this subsection, we present the numerical results for the fol-
lowing two functions:

\bullet The modified generalized Rosenbrock function

f\mathrm{m}\mathrm{g}\mathrm{R}(x) = 1 +

n\sum 
i=1

(100(xi  - x2
i - 1)

2 + (1 - xi)
2) +

n\sum 
i=1

n\sum 
j=i+1

x2
ix

2
j ,

which is obtained from the generalized Rosenbrock function by adding monomial
terms such that the csp graph is complete.

\bullet The modified chained singular function

f\mathrm{m}\mathrm{c}\mathrm{s}(x) =
\sum 
i\in J

((xi + 10xi+1)
2 + 5(xi+2  - xi+3)

2 + (xi+1  - 2xi+2)
4

+ 10(xi  - 10xi+3)
4 +

n\sum 
i=1

n\sum 
j=i+1

x2
ix

2
j

with J = \{ 1, 3, 5, . . . , n - 3\} , which is obtained from the chained singular function by
adding the same monomial terms as above.

The results for the modified generalized Rosenbrock function and the chained
singular function are displayed in Tables 9 and 10, respectively. As the tables illus-
trate, the chordal-TSSOS hierarchy can handle these functions with variables up to
200 while the block-TSSOS hierarchy can handle these functions with variables no
more than 100 due to the memory constraint.

6.2. Constrained polynomial optimization problems. Now we present the
numerical results for constrained polynomial optimization problems. We first consider
six randomly generated polynomials H1, . . . ,H6 of type II3 as objective functions f

3The polynomials can be downloaded at https://wangjie212.github.io/jiewang/code.html.
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Table 10
The results for the modified chained singular function.

n

TSSOS

Chordal Block

mb opt Time mb opt Time

10 11  - 0.0003 0.06 24, 56  - 0.0006, - 0.0007 0.07, 0.42

20 21  - 0.0013 0.11 49, 211  - 0.0006, - 0.0007 0.77, 78

30 31  - 0.0004 0.37 74, 466  - 0.0002, - 3.9, -

40 41  - 0.0007 0.85 99, 821  - 0.0001, - 15, -

50 51  - 0.0021 2.1 124, 1276  - 0.0006, - 45, -

60 61  - 0.0021 4.7 149, 1831  - 0.0002, - 112, -

70 71  - 0.0030 7.6 174, 2486  - 0.0005, - 282, -

80 81  - 0.0040 19 199, 3241  - 0.0002, - 670, -

90 91  - 0.0034 23 224, 4096  - 0.0004, - 1768, -

100 101  - 0.0038 37 249, 5051 - -

120 121  - 0.0014 88 274, 7261 - -

140 141  - 0.0011 199 299, 9871 - -

160 161  - 0.0015 390 324, 12881 - -

180 181  - 0.0057 682 349, 16291 - -

200 201  - 0.0083 1126 374, 20101 - -

and minimize them over the two following semialgebraic sets: the unit ball

K = \{ (x1, . . . , xn) \in \BbbR n | g1 = 1 - (x2
1 + \cdot \cdot \cdot + x2

n) \geq 0\} 

and the unit hypercube

K = \{ (x1, . . . , xn) \in \BbbR n | g1 = 1 - x2
1 \geq 0, . . . , gn = 1 - x2

n \geq 0\} .

The results for the unit ball case are displayed in Table 11 (whose csp is clearly
trivial because the constraint of unit balls involves all the variables) and the results
for the unit hypercube case are displayed in Table 12 (only the results of the first three
steps of the chordal-TSSOS hierarchy are displayed). We compare the performance
of the chordal-TSSOS hierarchy with that of GloptiPoly (and SparsePOP in the unit
hypercube case). It can be seen that for each instance TSSOS is significantly faster
than GloptiPoly (and faster than SparsePOP in the unit hypercube case) without
compromising accuracy.

Next we present the numerical results of the following two functions over the unit
ball.

\bullet The Broyden tridiagonal function

f\mathrm{B}\mathrm{t}(x) = ((3 - 2x1)x1  - 2x2 + 1)2 +

n - 1\sum 
i=2

((3 - 2xi)xi  - xi - 1  - 2xi+1 + 1)2

+ ((3 - 2xn)xn  - xn - 1 + 1)2.

\bullet The generalized Rosenbrock function

f\mathrm{g}\mathrm{R}(x) = 1 +

n\sum 
i=1

(100(xi  - x2
i - 1)

2 + (1 - xi)
2).
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Table 11
The results for minimizing randomly generated polynomials of type II over unit balls. In this

table, the first entry of ``mb"" is the maximal size of SDP blocks corresponding to the moment matrix
M \^d(y) and the second entry is the maximal size of SDP blocks corresponding to the localizing matrix
M \^d - d1

(g1y).

(n, 2d, s) \^d
TSSOS GloptiPoly

k mb opt Time opt Time

H1 (6,8,10)

4

1 (28, 7)

0.1362

0.20

0.1362

8.02 (32, 12) 0.52

3 (37, 20) 0.86

5

1 (29, 28) 0.91

802 (35, 30) 3.0

3 (48, 45) 9.0

H2 (7,8,12)

4

1 (36, 8)

0.1373

0.36

0.1373 342 (36, 10) 0.52

3 (38, 15) 1.6

5

1 (36, 36) 1.9

- -2 (45, 36) 3.9

3 (59, 49) 34

H3 (8,8,15)

4

1 (45, 9)

0.1212

0.75

0.1212 2252 (45, 10) 1.3

3 (53, 25) 20

5

1 (45, 45) 5.3

- -2 (45, 45) 7.5

3 (59, 46) 94

H4 (9,6,15)

3

1 (10, 10)

0.8704

0.15

0.8704 162 (10, 10) 0.22

3 (10, 10) 0.25

4

1 (55, 10) 1.3

- -2 (55, 13) 2.0

3 (56, 19) 2.8

H5 (10,6,20)

3

1 (12, 11)

0.5966

0.22

0.5966 482 (13, 14) 0.42

3 (19, 16) 0.95

4

1 (66, 13) 2.5

- -2 (66, 23) 10

3 (75, 44) 88

H6 (11,6,20)

3

1 (12, 12)

0.1171

0.28

0.1171 1152 (15, 12) 0.36

3 (16, 13) 0.60

4

1 (78, 14) 4.4

- -2 (78, 15) 4.7

3 (78, 13) 7.5

Since the constraint of unit balls involves all the variables, the csp for these
problems is clearly trivial. The results for the generalized Rosenbrock function are
displayed in Table 13 and the results for the Broyden tridiagonal function are displayed
in Table 14. The relaxation order \^d is 2. We present the performance of TSSOS for
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Table 12
The results for minimizing randomly generated polynomials of type II over unit hypercubes. In

this table, the first entry of the fifth column ``mb"" is the maximal size of SDP blocks corresponding
to the moment matrix M \^d(y) and the second entry is the maximal size of SDP blocks corresponding
to the localizing matrices M \^d - dj

(gjy), j = 1, . . . , n.

(n, 2d, s) \^d
\mathrm{T}\mathrm{S}\mathrm{S}\mathrm{O}\mathrm{S} \mathrm{G}\mathrm{l}\mathrm{o}\mathrm{p}\mathrm{t}\mathrm{i}\mathrm{P}\mathrm{o}\mathrm{l}\mathrm{y} \mathrm{S}\mathrm{p}\mathrm{a}\mathrm{r}\mathrm{s}\mathrm{e}\mathrm{P}\mathrm{O}\mathrm{P}

k \mathrm{m}\mathrm{b} \mathrm{o}\mathrm{p}\mathrm{t} \mathrm{T}\mathrm{i}\mathrm{m}\mathrm{e} \mathrm{o}\mathrm{p}\mathrm{t} \mathrm{T}\mathrm{i}\mathrm{m}\mathrm{e} \mathrm{m}\mathrm{b} \mathrm{o}\mathrm{p}\mathrm{t} \mathrm{T}\mathrm{i}\mathrm{m}\mathrm{e}

H1 (6,8,10)

4

1 (28, 8)

 - 0.4400

0.33

 - 0.4400

19 126

 - 0.4400

9.82 (32, 12) 0.86

3 (37, 19) 1.4

5

1 (29, 28) 1.7

237 252 832 (35, 30) 6.1

3 (48, 45) 16

H2 (7,8,12)

4

1 (36, 9)

 - 0.1289

0.80

 - 0.1289 101 126

 - 0.1289

9.12 (36, 10) 0.94

3 (38, 13) 1.9

5

1 (36, 36) 3.6

- - 252 1292 (45, 36) 6.8

3 (59, 49) 61

H3 (8,8,15)

4

1 (45, 10)

 - 0.1465

1.0

 - 0.1465 433 210  - 0.1465 1032 (45, 11) 2.0

3 (53, 22) 24

5

1 (45, 45) 9.6

- - - - -2 (45, 45) 13

3 (59, 50) 112

H4 (9,6,15)

3

1 (10, 10)

0.1199

0.27

0.1199 27 35

0.1199

1.32 (10, 10) 0.30

3 (10, 10) 0.32

4

1 (55, 11) 2.1

- - 70 6.02 (55, 13) 2.8

3 (56, 19) 4.0

H5 (10,6,20)

3

1 (12, 11)

 - 0.2813

0.38

 - 0.2813 69 84  - 0.2822 142 (13, 12) 0.50

3 (19, 13) 0.70

4

1 (66, 14) 4.4

- - - - -2 (66, 23) 15

3 (75, 44) 80

H6 (11,6,20)

3

1 (12, 12)

 - 0.2316

0.47

 - 0.2316 211 84

 - 0.2316

5.92 (15, 12) 0.61

3 (16, 13) 0.76

4

1 (78, 13) 7.5

- - 210 1622 (78, 15) 9.9

3 (78, 13) 13

both ``chordal"" and ``block"" approaches. As the tables illustrate, again the chordal-
TSSOS hierarchy performs much better than the block-TSSOS hierarchy.

7. Conclusions and outlook. In this paper, a follow-up on our previous work
[32], we continue to exploit the tsp for a POP. Through the support-extension and
chordal-extension operations, we iteratively enlarge the tsp graph to obtain a chordal-
TSSOS hierarchy of sparse SDP relaxations for a POP. Various numerical examples
demonstrate the efficiency and the scalability of this new hierarchy for unconstrained
and constrained POPs.

There are still many questions left for further investigations:
(1) When relying on the dense moment-SOS hierarchy, one can extract the global

optimizers under certain flatness conditions of the moment matrix [13]. A similar
procedure exists for the sparse moment-SOS hierarchy based on correlative sparsity
[15, 17]. It is worth looking for a similar condition when using the chordal-TSSOS
hierarchy.
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Table 13
The results for the generalized Rosenbrock function. In this table, the first entry of ``mb"" is the

maximal size of SDP blocks corresponding to the moment matrix M \^d(y) and the second entry is the
maximal size of SDP blocks corresponding to the localizing matrix M \^d - d1

(g1y).

n

TSSOS

Chordal Block

k mb opt Time k mb opt Time

10 1 (11, 2) 8.35 0.05
1 (28, 10) 8.35 0.22

2 (56, 10) 8.35 0.32

20 1 (21, 2) 18.25 0.19
1 (58, 20) 18.25 8.2

2 (211, 20) 18.25 45

30 1 (31, 2) 28.15 0.49
1 (88, 30) 28.15 203

2 (466, 30) - -

40 1 (41, 2) 38.05 1.3
1 (118, 40) - -

2 (821, 40) - -

50 1 (51, 2) 47.95 4.0
1 (148, 50) - -

2 (1276, 50) - -

60 1 (61, 2) 57.85 6.6
1 (178, 60) - -

2 (1831, 60) - -

70 1 (71, 2) 67.75 18
1 (218, 70) - -

2 (2486, 70) - -

80 1 (81, 2) 77.65 26
1 (248, 78) - -

2 3241, 80) - -

90 1 (91, 2) 87.55 50
1 (278, 90) - -

2 (4096, 90) - -

100 1 (101, 2) 97.45 85
1 (308, 100) - -

2 (5051, 100) - -

120 1 (121, 2) 117.25 186
1 (368, 120) - -

2 (7261, 120) - -

140 1 (141, 2) 137.05 448
1 (428, 140) - -

2 (9871, 140) - -

160 1 (161, 2) 156.85 841
1 (488, 160) - -

2 (12881, 160) - -

180 1 (181, 2) 176.65 1495
1 (548, 180) - -

2 (16291, 180) - -

(2) We have the freedom to choose a specific chordal extension for the chordal-
extension operation. The computational cost of the chordal-TSSOS hierarchy as well
as its convergence (to the optimum of the dense relaxation) and convergence rate
highly depend on this choice. A good chordal extension leads to a hierarchy converging
quickly together with a low computational cost. In this paper, we have used an
approximately minimum chordal extension, which performs fairly well, at least on the
examples tested in this paper. However, as [27] suggests, an approximately minimum
chordal extension is not always optimal. Therefore one could explore more general
choices of chordal extensions to find a good one for specific POPs.

(3) The chordal-TSSOS hierarchy can be combined with other techniques for
handling large-scale POPs, e.g., correlative sparsity [34] or structured subsets [23].
This issue is the focus of our recent work [33].
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Table 14
The results for the Broyden tridiagonal function. In this table, the first entry of ``mb"" is the

maximal size of SDP blocks corresponding to the moment matrix M \^d(y) and the second entry is the
maximal size of SDP blocks corresponding to the localizing matrix M \^d - d1

(g1y).

n

TSSOS

Chordal Block

k mb opt Time k mb opt Time

10
1 (13, 5) 5.15 0.07 1 (38, 11) 5.15 0.20

2 (13, 5) 5.15 0.08 2 (66, 11) 5.15 0.32

20
1 (23, 5) 15.04 0.37 1 (78, 21) 15.04 11

2 (23, 7) 15.04 0.50 2 (231, 21) 15.04 73

30
1 (33, 5) 25.01 1.2 1 (118, 31) 25.01 174

2 (33, 7) 25.01 2.1 2 (496, 31) - -

40
1 (43, 5) 35.00 3.6 1 (158, 41) - -

2 (43, 7) 35.00 7.8 2 (861, 41) - -

50
1 (53, 5) 44.99 9.0 1 (198, 51) - -

2 (53, 7) 44.99 21 2 (1326, 51) - -

60
1 (65, 5) 54.99 18 1 (238, 61) - -

2 (65, 7) 54.99 48 2 (1891, 61) - -

70
1 (73, 5) 64.99 41 1 (278, 71) - -

2 (73, 7) 64.99 138 2 (2556, 71) - -

80
1 (83, 5) 74.99 67 1 (318, 81) - -

2 (83, 7) 74.99 240 2 (3321, 81) - -

90
1 (93, 5) 84.99 110 1 (348, 91) - -

2 (93, 7) 84.99 193 2 (4186, 91) - -

100
1 (103, 5) 94.98 188 1 (378, 101) - -

2 (103, 7) 94.98 299 2 (5151, 101) - -

120
1 (123, 4) 114.98 374 1 (458, 121) - -

2 (123, 8) 114.98 864 2 (7381, 121) - -
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