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Nonnegative Polynomials and Circuit Polynomials\ast 

Jie Wang\dagger 

Abstract. The concept of sums of nonnegative circuit (SONC) polynomials was recently introduced as a new
certificate of nonnegativity especially for sparse polynomials. In this paper, we explore the re-
lationship between nonnegative polynomials and SONCs. As a first result, we provide sufficient
conditions for nonnegative polynomials with general Newton polytopes to be a SONC, which gener-
alizes the previous result on nonnegative polynomials with simplex Newton polytopes. Second, we
prove that every SONC admits a SONC decomposition without cancellation. In other words, SONC
decompositions preserve sparsity of nonnegative polynomials, which is dramatically different from
the classical sum of squares decompositions and is a key property to design efficient algorithms for
sparse polynomial optimization based on SONC decompositions.
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1. Introduction. A real polynomial f \in \BbbR [x] = \BbbR [x1, . . . , xn] is called a nonnegative poly-
nomial if its evaluation on every real point is nonnegative. All nonnegative polynomials form
a convex cone, denoted by PSD. Certifying nonnegativity of multivariate polynomials is a
central problem of real algebraic geometry and also has a deep connection with polynomial
optimization. A classical approach for handling this problem is using sum of squares (SOS)
decompositions. From the perspective of computation, a common algorithm for checking
whether a polynomial admits an SOS decomposition relies on a semidefinite program (SDP)
involving a positive semidefinite matrix of size

\bigl( 
n+d
n

\bigr) 
, where n is the number of variables and

2d is the degree of the polynomial [15]. Hence, the size of the corresponding SDP problem
increases combinatorially with n, d, which greatly limits the scalability of this approach given
the current state of SDP solvers. To address the issue of scalability, one possibility is to
exploit the structure in the polynomial data, such as symmetry [3], correlative sparsity [21],
term sparsity [23, 25, 26], and correlative-term sparsity [27], just to name a few. Another
possibility is to rely on other nonnegativity certificates. Such alternative nonnegativity cer-
tificates are in general more restrictive but cheaper to implement, e.g., (scaled) diagonally
dominant sums of squares [1]. However, a common drawback shared by these approaches
is that their computational complexity depends on the polynomial degree. As an attempt
to overcome this, Iliman and de Wolff proposed the concept of sums of nonnegative circuit
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(SONC) polynomials as a new nonnegativity certificate of polynomials [5]. A circuit polyno-
mial is of the form

\sum 
\bfitalpha \in A c\bfitalpha x

\bfitalpha  - dx\bfitbeta \in \BbbR [x], where c\bfitalpha > 0 for all \bfitalpha \in A , A \subseteq (2\BbbN )n
comprises the vertices of a simplex, and \bfitbeta lies in the relative interior of this simplex. The
support of a circuit polynomial is called a circuit. The study of circuit polynomials dates back
to 1980s by Reznick [18] in the special case of simplicial agiforms. After over two decades of
quiescence, a nonnegativity condition for circuit polynomials was given by Paneta, Koeppl,
and Craciun in the study of biochemical reaction networks [13], and the subject was brought
back to people's view. A related certificate, sums of AGE (SAGE) polynomials, was also re-
cently proposed by Murray, Chandrasekaranin and Wiermann, [9], where an AGE polynomial
is defined by a nonnegative polynomial with at most one term that can take negative values
(called a negative term). The set of nonnegative polynomials that admit SONC decompo-
sitions forms a convex cone, i.e., the SONC cone, and the set of nonnegative polynomials
that admit SAGE decompositions forms a convex cone, i.e., the SAGE cone. SONC has been
used to solve sparse polynomial optimization via geometric programming [2, 6, 14, 20] by
Dressler and others or via second order cone programming [8, 24] by the author and Magron.
SAGE has been used to solve sparse polynomial/signomial optimization via relative entropy
programming [9, 10] by Murray, Chandrasekaran, and Wiermann. From the perspective of
theory, it is then natural to ask the following:

1. Which types of nonnegative polynomials lie in the SONC cone? Can we provide
sufficient conditions for a nonnegative polynomial to admit a SONC decomposition in
terms of the support?

2. What is the relationship bewtween the SONC cone and the SAGE cone?
In [5], Iliman and de Wolff proved that if the Newton polytope of a polynomial f is a

simplex and there exists a point such that all terms of f except for those corresponding to
the vertices of the Newton polytope take negative values on this point, then f is nonnegative
if and only if f admits a SONC decomposition (see Theorem 2.8). The first contribution of
the present paper is that we generalize this conclusion to polynomials with general Newton
polytopes. In particular, we prove that a polynomial with one negative term is nonnegative
if and only if it admits a SONC decomposition (Theorem 1.1).

Theorem 1.1. Let f =
\sum m

i=1 cix
\bfitalpha i  - d0x

\bfitbeta \in \BbbR [x] with \bfitalpha i \in (2\BbbN )n, ci > 0, i = 1, . . . ,m.
Then f is nonnegative if and only if f lies in the SONC cone.

Note that Theorem 1.1 tells us that any AGE polynomial admits a SONC decomposi-
tion. As an immediate corollary, we obtain that the SAGE cone and the SONC cone are
actually identical. Taking a step further, we also provide sufficient conditions for nonnegative
polynomials with multiple negative terms admitting a SONC decomposition in terms of the
combinatorial structure of supports (Theorem 1.2). Below we say that a vertex of a polytope
is simple if this vertex lies on precisely d edges with d being the dimension of the polytope.

Theorem 1.2. Let f =
\sum m

i=1 cix
\bfitalpha i  - 

\sum l
j=1 djx

\bfitbeta j \in \BbbR [x] with \bfitalpha i \in (2\BbbN )n, ci > 0, i =
1, . . . ,m, and dj < 0, j = 1, . . . , l. Assume that some vertex of the Newton polytope of f
is simple and all \bfitbeta j lie in the same side of every hyperplane determined by points among
\{ \bfitalpha 1, . . . ,\bfitalpha m\} (in the affine subspace spanned by the support of f). Then f is nonnegative if
and only if f lies in the SONC cone.
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From the perspective of computation, computing SONC decompositions encounters the
potential obstacle of enumerating exponentially many circuits since the number of lattice
points contained in the Newton polytope grows exponentially with the number of variables
and the polynomial degree. In order to develop efficient algorithms for certifying nonnega-
tivity and polynomial optimization based on SONC decompositions, a core issue that must
be addressed is, Which circuits are really needed when one seeks a SONC decomposition for
a given polynomial? As the second contribution of this paper, we clarify an important fact
that every SONC can decompose into a SONC polynomial by merely using the support of
the original polynomial. In other words, SONC decompositions preserve the sparsity of poly-
nomials. Actually, more is true. We prove that every SONC admits a SONC decomposition
without cancellation via a connection with sums of binomial squares (SBS) (Theorem 1.3).
This is dramatically different from the SOS decomposition of nonnegative polynomials, for
which extra support and cancellation are needed in general.

Theorem 1.3. If a polynomial f lies in the SONC cone, then f decompose into a SONC
without cancellation.

Theorem 1.3 provides a significant step toward bypassing the bottleneck of enumerating all
circuits in the computation of SONC decompositions. In fact, this result also implies that the
complexity of SONC/SAGE certificates does not depend on the polynomial degree, a sharp
contrast with SOS-based certificates.

The rest of this paper is organized as follows. In section 2, we recall some basic facts about
SONC. After that we consider the problem of which types of nonnegative polynomials lie in
the SONC cone. We deal with the case of nonnegative polynomials with one negative term in
section 3 and deal with the case of general nonnegative polynomials in section 4. In section
5, we prove that every SONC decomposes into a SONC polynomial without cancellation.
Conclusions and discussions are given is section 6.

2. Preliminaries.

2.1. Notation and nonnegative polynomials. Let \BbbR [x] = \BbbR [x1, . . . , xn] be the ring of
real n-variate polynomials. Let \BbbR \ast be the set of nonzero real numbers, \BbbR >0 the set of positive
real numbers, and \BbbR \geq 0 the set of nonnegative real numbers. We use boldface to indicate a
(column) vector, e.g., \bfitalpha = [\alpha 1, . . . , \alpha n]

\intercal . For a finite set A \subseteq \BbbN n, we denote by cone(A ) the
conic hull of A , by conv(A ) the convex hull of A , and by V (A ) the vertices of the convex
hull of A . We also denote by V (P ) the vertex set of a polytope P . We consider a polynomial
f \in \BbbR [x] supported on a finite set A \subseteq \BbbN n, i.e., f is of the form f(x) =

\sum 
\bfitalpha \in A c\bfitalpha x

\bfitalpha with
c\bfitalpha \in \BbbR ,x\bfitalpha = x\alpha 1

1 \cdot \cdot \cdot x\alpha n
n . The support of f is supp(f) := \{ \bfitalpha \in A | c\bfitalpha \not = 0\} and the Newton

polytope of f is defined as New(f) := conv(supp(f)). For a polytope P , we use P \circ to denote
the relative interior of P . For a positive integer m, let [m] := \{ 1, . . . ,m\} .

A polynomial f \in \BbbR [x] which is nonnegative over \BbbR n is called a nonnegative polyno-
mial. The class of nonnegative polynomials is denoted by PSD, which forms a closed convex
cone.

A nonnegative polynomial must satisfy the following necessary conditions.

Proposition 2.1 (see [18, Theorem 3.6]). Let A \subseteq \BbbN n and f =
\sum 

\bfitalpha \in A c\bfitalpha x
\bfitalpha \in \BbbR [x] with

supp(f) = A . Then f is nonnegative only if the following hold:
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1. V (A ) \subseteq (2\BbbN )n.
2. If \bfitalpha \in V (A ), then the corresponding coefficient c\bfitalpha is positive.

For the remainder of this paper, we assume for simplicity that the monomial factor of any
polynomial f is 1, that is, if f = x\bfitalpha \prime 

(
\sum 

c\bfitalpha x
\bfitalpha ) such that

\sum 
c\bfitalpha x

\bfitalpha \in \BbbR [x] and \bfitalpha \prime \in \BbbN n, then
x\bfitalpha \prime 

= 1. Otherwise, we can always factor out the monomial factor.

2.2. Circuit polynomials. Following [18], a subset A \subseteq (2\BbbN )n is called a trellis if A
comprises the vertices of a simplex.

Definition 2.2 (see [5]). Let A be a trellis and f \in \BbbR [x]. Then f is called a circuit poly-
nomial if it is of the form

(2.1) f(x) =
\sum 
\bfitalpha \in A

c\bfitalpha x
\bfitalpha  - dx\bfitbeta 

with c\bfitalpha \in \BbbR >0 and \bfitbeta \in conv(A )\circ . The support of a circuit polynomial is called a circuit.

Example 2.3. The Motzkin polynomial f = 1+x4y2+x2y4 - 3x2y2 is a nonnegative circuit
polynomial.

For a circuit polynomial f =
\sum 

\bfitalpha \in A c\bfitalpha x
\bfitalpha  - dx\bfitbeta , since \bfitbeta \in conv(A )\circ , \bfitbeta admits a unique

convex representation: \bfitbeta =
\sum 

\bfitalpha \in A \lambda \bfitalpha \bfitalpha with \lambda \bfitalpha > 0 and
\sum 

\bfitalpha \in A \lambda \bfitalpha = 1. Then we define the
corresponding circuit number as \Theta f :=

\prod 
\bfitalpha \in A (c\bfitalpha /\lambda \bfitalpha )

\lambda \bfitalpha . It is known that the nonnegativity
of a circuit polynomial is decided by its circuit number alone.

Theorem 2.4 (see [5, Theorem 3.8]). Let f =
\sum 

\bfitalpha \in A c\bfitalpha x
\bfitalpha  - dx\bfitbeta \in \BbbR [x] be a circuit

polynomial and \Theta f its circuit number. Then f is nonnegative if and only if either \bfitbeta \in (2\BbbN )n
and d \leq \Theta f or \bfitbeta /\in (2\BbbN )n and | d| \leq \Theta f .

Remark 2.5. We also view a monomial square (i.e., x\bfitalpha with \bfitalpha \in (2\BbbN )n) as a nonnegative
circuit polynomial.

The following proposition characterizes the zeros of a circuit polynomial when the Newton
polytope is full-dimensional.

Proposition 2.6 (see [5, Proposition 3.4 and Corollary 3.9]). Let f =
\sum n

i=0 cix
\bfitalpha i  - \Theta fx

\bfitbeta \in 
\BbbR [x] be a circuit polynomial, \Theta f the circuit number, and \bfitbeta =

\sum n
i=0 \lambda i\bfitalpha i with \lambda i > 0 and\sum n

i=0 \lambda i = 1. Then f has exactly one zero x\ast in \BbbR n
>0 which satisfies

(2.2)
c0x

\bfitalpha 0
\ast 

\lambda 0
= \cdot \cdot \cdot = cnx

\bfitalpha n
\ast 

\lambda n
= \Theta fx

\bfitbeta 
\ast .

Moreover, if x is any zero of f , then | x| = x\ast , i.e., | xi| = (x\ast )i for i = 1, . . . , n.

Proof. Consider f \prime = \lambda 0f/(c0x
\bfitalpha 0). One can see that the zeros in \BbbR n

>0 of f coincide with
the zeros in \BbbR n

>0 of f \prime . By Proposition 3.4 in [5], f \prime and hence f have exactly one zero x\ast 
in \BbbR n

>0 which satisfies x\bfitalpha i - \bfitalpha 0
\ast = (\lambda ic0)/(ci\lambda 0) for i = 1, . . . , n. Let s = (c0x

\bfitalpha 0
\ast )/\lambda 0 = \cdot \cdot \cdot =

(cnx
\bfitalpha n
\ast )/\lambda n. Then s =

\sum n
i=0 \lambda is =

\sum n
i=0 cix

\bfitalpha i
\ast = \Theta fx

\bfitbeta 
\ast and so (2.2) is proved. The last

statement of the theorem follows from Corollary 3.9 in [5].

Remark 2.7. Note that in Proposition 2.6, x\ast \in \BbbR n
>0 and the circuit number \Theta f are

uniquely determined by (2.2).
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We shall say that a polynomial is a SONC polynomial if it is a SONC polynomial. For a
nonnegative polynomial, an explicit representation as a SONC polynomial provides a certifi-
cate of its nonnegativity, which is called a SONC decomposition. The set of SONCs forms a
closed convex cone called the SONC cone.

The following theorem from [5] adapted to our notation gives a characterization for a
nonnegative polynomial to be a SONC when the Newton polytope is a simplex.

Theorem 2.8 (see [5, Corollary 7.5]). Let f =
\sum n

i=0 cix
\bfitalpha i  - 

\sum l
j=1 djx

\bfitbeta j \in \BbbR [x] be nonneg-
ative with \bfitalpha i \in (2\BbbN )n, ci \in \BbbR >0, i = 0, . . . , n such that New(f) is a simplex and \bfitbeta j \in New(f)\circ 

for j = 1, . . . , l. If there exists a point \bfitv = [vk] \in (\BbbR \ast )n such that dj\bfitv 
\bfitbeta j > 0 for all j, then f

lies in the SONC cone.

3. Nonnegative polynomials with one negative term. Following the line of Theorem 2.8,
we now study which types of nonnegative polynomials with general Newton polytopes lie in
the SONC cone. The well-known Hilbert's classification on the coincidence of nonnegative
polynomials and sums of squares is according to the number of variables and the degree of
polynomials. We will see that the related classification for SONCs depends on the combinator-
ical structure of supports of polynomials. In this section, we deal with the case of nonnegative
polynomials with one negative term (by a negative term we refer to a term that takes a neg-
ative value at some point), i.e., polynomials of the form fd =

\sum m
i=1 cix

\bfitalpha i  - dx\bfitbeta \in \BbbR [x] with
\bfitalpha i \in (2\BbbN )n, ci \in \BbbR >0, i = 1, . . . ,m and \bfitbeta /\in V (New(fd)). Let \partial New(fd) denote the boundary
of New(fd). We first reduce the case of \bfitbeta \in \partial New(fd) to the case \bfitbeta \in New(fd)

\circ by the
following lemma.

Lemma 3.1. Let fd =
\sum m

i=1 cix
\bfitalpha i  - dx\bfitbeta \in \BbbR [x] with \bfitalpha i \in (2\BbbN )n, ci \in \BbbR >0, i = 1, . . . ,m,

and \bfitbeta \in \partial New(fd). Furthermore, let F be the minimal face of New(fd) containing \bfitbeta . Then
fd is nonnegative if and only if the restriction of fd to the face F is nonnegative.

Proof. The necessity follows from [18, Theorem 3.6]. For the sufficiency, note that the
restriction to the face F contains the term  - dx\bfitbeta and this restriction is nonnegative. Moreover,
all other terms in fd are monomial squares. Hence fd is nonnegative.

From now on, we assume \bfitbeta \in New(fd)
\circ . Without loss of generality, we further make

the assumption that the Newton polytope of fd is full-dimensional, i.e., dim(New(fd)) = n.
Otherwise, we can reduce to this case by applying an appropriate monomial transformation
to fd [13].

To begin with, we give a characterization for fd to be nonnegative as well as the positive
zeros of fd in a similar manner as Theorem 2.4 and Proposition 2.6. It turns out that fd
behaves just like a circuit polynomial.

It is not hard to see that the set \{ d \in \BbbR | fd is nonnegative\} is nonempty and is bounded
from above. So it has a supremum. Let

(3.1) d\ast \triangleq sup\{ d \in \BbbR | fd is nonnegative\} .

The quantity d\ast is an analogue of the circuit number for fd.

Proposition 3.2. Let fd =
\sum m

i=1 cix
\bfitalpha i  - dx\bfitbeta \in \BbbR [x] with \bfitalpha i \in (2\BbbN )n, ci \in \BbbR >0, i = 1, . . . ,m

such that \bfitbeta \in New(fd)
\circ , dim(New(fd)) = n, and let d\ast be defined as (3.1). Then fd is
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nonnegative if and only if either \bfitbeta \in (2\BbbN )n and d \leq d\ast or \bfitbeta /\in (2\BbbN )n and | d| \leq d\ast . Moreover,
fd\ast has exactly one zero in \BbbR n

>0.

Proof. First, if \bfitbeta \in (2\BbbN )n and d \leq 0, then fd is obviously nonnegative since it is a sum
of monomial squares. If \bfitbeta /\in (2\BbbN )n and d \leq 0, then fd is nonnegative if and only if f - d is
nonnegative. Thus without loss of generality, we may assume d > 0. Since the only negative
term of fd is  - dx\bfitbeta , fd is nonnegative over \BbbR n if and only if fd is nonnegative over \BbbR n

>0.
Therefore, by the definition of d\ast , fd is nonnegative if and only if d \leq d\ast .

To prove the second statement, let us consider f \prime =
\sum m

i=1 cix
\bfitalpha i - \bfitbeta . It is not hard to see

d\ast = inf\bfx \in \BbbR n
>0

f \prime . Because dim(New(fd)) = n and \bfitbeta \in New(fd)
\circ , we have dim(conv(\{ \bfitalpha 1  - 

\bfitbeta , . . . ,\bfitalpha m  - \bfitbeta \} )) = n and 0 \in cone(\{ \bfitalpha 1  - \bfitbeta , . . . ,\bfitalpha m  - \bfitbeta \} )\circ . Therefore, by Theorem 3.4 in
[13], f \prime attains its minimum over \BbbR n

>0 at a unique minimizer. Since the minimizers of f \prime over
\BbbR n
>0 coincide with the zeros of fd\ast in \BbbR n

>0, it follows that fd\ast has exactly one zero in \BbbR n
>0.

For a nonnegative polynomial fd =
\sum m

i=1 cix
\bfitalpha i  - dx\bfitbeta with \bfitbeta \in New(fd)

\circ , let C be the
set of all circuits T \cup \{ \bfitbeta \} with T \subseteq \{ \bfitalpha 1, . . . ,\bfitalpha m\} . In the rest of this section, we will prove
that fd decomposes into a SONC polynomial that are supported on circuits in C . We first
consider the decomposition of fd\ast and then get the decomposition of fd from that of fd\ast . By
using undetermined coefficients, the existence of such a decomposition of fd\ast is reduced to
the existence of a nonnegative solution for a particular linear system, which can be further
reduced to the existence of a nonnegative solution for a tuple of subsystems by virtue of the
following result, known as Helly's theorem.

Theorem 3.3 (Helly [4]). Let X1, . . . , Xr be a finite collection of convex subsets of \BbbR s with
r > s. If the intersection of every s + 1 of these sets is nonempty, then the whole collection
has a nonempty intersection.

Next, using Helly's theorem, we prove a result concerning the existence of nonnegative
solutions to a particular class of linear systems for later use, which might be also of independent
interest. To state the result, we need the following notation. Let A = [aij ] \in \BbbR m\times r, b = [bi] \in 
\BbbR m, and z = (z1, . . . , zr)

\intercal be a set of variables. Then for each j \in [r], we write \=zj := z \smallsetminus zj ,
\=bj := [bi]i \mathrm{w}\mathrm{i}\mathrm{t}\mathrm{h} aij=0 (namely, removing the entries with aij \not = 0 from b) and denote by Aj

the submatrix of A by deleting all of the ith rows with aij \not = 0 and the jth column from A
such that Aj\=zj = \=bj is the subsystem of Az = b after removing the equations involving the
variable zj .

Lemma 3.4. Let A = [aij ] \in \BbbR m\times r, b = [bi] \in \BbbR m, and z = (z1, . . . , zr)
\intercal be a set of

variables. Assume that Az = b is consistent, rank(A) > 1, and rank(Aj) = rank(A)  - 1
for all j \in [r]. Then Az = b has a nonnegative solution if and only if Aj\=zj = \=bj has a
nonnegative solution for j = 1, . . . , r.

Proof. Let t = rank(A) > 1. Then the system of linear equations Az = b has r  - t free
variables. Without loss of generality, let the r  - t free variables be \{ z1, . . . , zr - t\} so that we
can solve for \{ zr - t+1, . . . , zr\} from Az = b to obtain zi = hi(z1, . . . , zr - t) with hi being a
linear function, i = r  - t + 1, . . . , r. Then Az = b has a nonnegative solution if and only if
the set
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\{ (z1, . . . , zr - t) \in \BbbR r - t | zi \geq 0 for i \in [r  - t] and

zi = hi(z1, . . . , zr - t) \geq 0 for i \in \{ r  - t+ 1, . . . , r\} \} 
(3.2)

is nonempty. Define Xi := \{ (z1, . . . , zr - t) \in \BbbR r - t | zi \geq 0\} for i = 1, . . . , r  - t and Xi :=
\{ (z1, . . . , zr - t) \in \BbbR r - t | hi(z1, . . . , zr - t) \geq 0\} for i = r  - t + 1, . . . , r, which are all convex
subsets of \BbbR r - t. Therefore, by Theorem 3.3, the intersection of all Xi, i.e., (3.2), is nonempty
if and only if the intersection of every r  - t + 1 of these sets is nonempty. Because of t > 1,
the latter is in turn equivalent to the fact that the intersection of every r  - 1 of these sets is
nonempty, that is, the set

\{ (z1, . . . , zr - t) \in \BbbR r - t | zi \geq 0 for i \in [r  - t] \setminus \{ j\} and

zi = hi(z1, . . . , zr - t) \geq 0 for i \in \{ r  - t+ 1, . . . , r\} \} 
(3.3)

is nonempty for j = 1, . . . , r  - t and the set

\{ (z1, . . . , zr - t) \in \BbbR r - t | zi \geq 0 for i \in [r  - t] and

zi = hi(z1, . . . , zr - t) \geq 0 for i \in \{ r  - t+ 1, . . . , r\} \setminus \{ j\} \} 
(3.4)

is nonempty for j = r  - t+ 1, . . . , r.
For j = 1, . . . , r - t, (3.3) is nonempty if and only if Az = b has a solution with \=zj \in \BbbR r - 1

\geq 0

and zj \in \BbbR , which is equivalent to the condition that Aj\=zj = \=bj has a nonnegative solution
since rank(Aj) = rank(A) - 1. For j = r - t+1, . . . , r, (3.4) is nonempty if and only if Az = b
has a solution with \=zj \in \BbbR r - 1

\geq 0 and zj \in \BbbR , which is also equivalent to the condition that

Aj\=zj = \=bj has a nonnegative solution since rank(Aj) = rank(A)  - 1. Put all of the above
together and we deduce that Az = b has a nonnegative solution if and only if Aj\=zj = \=bj has
a nonnegative solution for j = 1, . . . , r as desired.

Example 3.5. Consider the linear system S = \{ z1+z2 = 1, z3+z4 = 2, z2+z3 = 1, z1+z4 =
2, z1 + z2 + z3 + z4 = 3\} . One can check that S satisfies the hypotheses of Lemma 3.4 with
r = 4, t = 3. We see at once that all subsystems \{ z3 + z4 = 2, z2 + z3 = 1\} , \{ z3 + z4 =
2, z1 + z4 = 2\} , \{ z1 + z2 = 1, z1 + z4 = 2\} , \{ z1 + z2 = 1, z2 + z3 = 1\} admit a nonnegative
solution. Thus by Lemma 3.4 we conclude that S has a nonnegative solution.

Lemma 3.4 assumes the consistency of Az = b. It is known that the system of linear
equations Az = b is consistent if and only if b belongs to the image of A. For later use, we
give a more concrete description concerning the consistency of Az = b here, whose correctness
is obvious, and thus we omit the proof.

Lemma 3.6. Let A = [aij ] \in \BbbR m\times r, b = [bj ] \in \BbbR m, and z = (z1, . . . , zr)
\intercal be a set of

variables. Assume that the row vectors of the matrix C span the cokernel of A (i.e., the left
null space of A). Then Az = b is consistent if and only if Cb = 0.

Now we are ready to prove that fd\ast lies in the SONC cone.

Lemma 3.7. Let fd =
\sum m

i=1 cix
\bfitalpha i  - dx\bfitbeta \in \BbbR [x] with \bfitalpha i \in (2\BbbN )n, ci \in \BbbR >0, i = 1, . . . ,m,

such that \bfitbeta \in New(fd)
\circ , dim(New(fd)) = n, and let d\ast be defined as (3.1). Then fd\ast lies in

the SONC cone.
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Proof. If m = n + 1, then fd is a circuit polynomial and of course fd\ast lies in the SONC
cone. Assume now m > n+ 1. By Proposition 3.2, fd\ast has exactly one zero in \BbbR n

>0, which is
denoted by x\ast . Let

\{ \Delta 1, . . . ,\Delta r\} := \{ \Delta | \Delta is a simplex ,\bfitbeta \in \Delta \circ , V (\Delta ) \subseteq \{ \bfitalpha 1, . . . ,\bfitalpha m\} \} 

and Ik := \{ i \in [m] | \bfitalpha i \in V (\Delta k)\} for k = 1, . . . , r. We complete the proof by constructing a
SONC decomposition supported on the simplices \{ \Delta k\} k for fd\ast .

First, we assume dim(\Delta k) = n so that | Ik| = n + 1 for k = 1, . . . , r. For each \Delta k, since
\bfitbeta \in \Delta \circ 

k, we can write \bfitbeta =
\sum 

i\in Ik \lambda ik\bfitalpha i, where
\sum 

i\in Ik \lambda ik = 1, \lambda ik > 0, i \in Ik. Inspired by
Proposition 2.6 and using undetermined coefficients, we may consider the following system of
linear equations in variables \{ cik\} i,k and \{ sk\} k:

(3.5)

\left\{       
cikx

\bfitalpha i
\ast 

\lambda ik
= sk for i \in Ik, k = 1, . . . , r,\sum 

i\in Ik

cik = ci for i = 1, . . . ,m.

Eliminate the variables \{ cik\} i,k from (3.5) and we obtain

(3.6)
\sum 
i\in Ik

\lambda iksk = cix
\bfitalpha i
\ast for i = 1, . . . ,m.

If (3.6) has a nonnegative solution, then we can retrieve a SONC decomposition for fd\ast from
this nonnegative solution as follows. Assume that \{ s\ast 1, . . . , s\ast r\} is a nonnegative solution to
(3.6). Substitute \{ s\ast 1, . . . , s\ast r\} into the system of equations (3.5), and we have cik = \lambda iks

\ast 
k/x

\bfitalpha i
\ast 

for i \in Ik, k = 1, . . . , r. Let dk = s\ast k/x
\bfitbeta 
\ast and fk =

\sum 
i\in Ik cikx

\bfitalpha i  - dkx
\bfitbeta for k = 1, . . . , r. Then

by (3.5) and by Proposition 2.6, dk is the circuit number of fk and hence fk is a nonnegative

circuit polynomial for all k. By (3.5),
\sum r

k=1 dkx
\bfitbeta 
\ast =

\sum r
k=1

\sum 
i\in Ik cikx

\bfitalpha i
\ast =

\sum m
i=1 cix

\bfitalpha i
\ast = d\ast x\bfitbeta 

\ast ,
which implies

\sum r
k=1 dk = d\ast . It follows that fd\ast =

\sum r
k=1 fk lies in the SONC cone as desired.

So our remaining task is to prove that (3.6) has a nonnegative solution.
Claim. The linear system (3.6) in variables \{ s1, . . . , sr\} has a nonnegative solution.
Proof of the claim. Denote the coefficient matrix of (3.6) by A = [aik] \in \BbbR m\times r (satisfying

aik = \lambda ik if i \in Ik and aik = 0 otherwise) and denote the coefficient matrix of

(3.7)
\sum 
i\in Ik

\lambda iksk = cix
\bfitalpha i
\ast for i \in [m] \setminus Ij

by Aj for each j \in [r]. Note that (3.7) is obtained from (3.6) by removing the equations
involving the variable sj . In order to invoke Lemma 3.4 to prove that (3.6) has a nonnegative
solution, we need to check the following hypotheses:

1. rank(A) > 1;
2. rank(Aj) = rank(A) - 1 for each j \in [r];
3. (3.6) is consistent.
Fix j \in [r]. For every i \in [m] \smallsetminus Ij , since \bfitbeta \in \Delta \circ 

j , there exists a facet F of \Delta j such that
\bfitbeta \in conv(V (F ) \cup \{ \bfitalpha i\} )\circ . Let conv(V (F ) \cup \{ \bfitalpha i\} ) = \Delta pi for some pi \in [r] (see Figure 1). It is
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\bfitalpha i

\Delta j
\Delta pi

\bfitbeta 

F

Figure 1. Illustration for the correspondence between \bfitalpha i and \Delta pi for i \in [m]\smallsetminus Ij

not hard to see pi1 \not = pi2 whenever i1 \not = i2. For every k \in [r]\smallsetminus (\{ j\} \cup \{ pi | i \in [m]\smallsetminus Ij\} ), let
sk = 0 in (3.7) and then by construction we obtain

(3.8) \lambda ipispi = cix
\bfitalpha i
\ast for i \in [m] \setminus Ij .

It follows that rank(Aj) = m - | Ij | = m - (n+1) and furthermore, rank(A) \geq rank(Aj)+1 =
m - n, dim(coker(A)) = m - rank(A) \leq n. Let C := [\bfitalpha 1  - \bfitbeta , . . . ,\bfitalpha m  - \bfitbeta ]. Then,

CA =

\Biggl[ 
m\sum 
i=1

(\bfitalpha i  - \bfitbeta )ai1, . . . ,
m\sum 
i=1

(\bfitalpha i  - \bfitbeta )air

\Biggr] 

=

\left[  \sum 
i\in I1

(\bfitalpha i  - \bfitbeta )\lambda i1, . . . ,
\sum 
i\in Ir

(\bfitalpha i  - \bfitbeta )\lambda ir

\right]  
=

\left[  \sum 
i\in I1

\lambda i1\bfitalpha i  - \bfitbeta , . . . ,
\sum 
i\in Ir

\lambda ir\bfitalpha i  - \bfitbeta 

\right]  = [0, . . . ,0] .

So the row vectors of C belong to the cokernel of A. We have rank(C) = rank(\{ \bfitalpha i - \bfitbeta \} mi=1) = n
because \bfitbeta \in New(fd)

\circ and dim(New(fd)) = n. As dim(coker(A)) \leq n, we then conclude
that dim(coker(A)) = n and the row vectors of C span the cokernel of A. As a result,
rank(A) = m - n > 1 and rank(Aj) = rank(A) - 1. Because the zero x\ast is also a minimizer of
fd\ast , it satisfies \{ fd\ast (x\ast ) = 0,\nabla fd\ast (x\ast ) = 0\} (\nabla denotes the gradient with respect to x) which
gives

(3.9)

\left\{           
m\sum 
i=1

cix
\bfitalpha i
\ast  - d\ast x\bfitbeta 

\ast = 0,

m\sum 
i=1

ci\bfitalpha ix
\bfitalpha i
\ast  - d\ast \bfitbeta x\bfitbeta 

\ast = 0.

It follows that
\sum m

i=1 ci(\bfitalpha i  - \bfitbeta )x\bfitalpha i
\ast = 0, i.e., C \cdot [c1x\bfitalpha 1

\ast , . . . , cmx\bfitalpha m
\ast ]\intercal = 0. Thus by Lemma

3.6, (3.6) is consistent.
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Now by Lemma 3.4, in order to prove the claim, we only need to show that every subsystem
(3.7) in variables \{ s1, . . . , sr\} \smallsetminus \{ sj\} has a nonnegative solution for j = 1, . . . , r. Given j \in [r],
from (3.8) we have spi = cix

\bfitalpha i
\ast /\lambda ipi for i \in [m]\smallsetminus Ij . Hence

(3.10)

\left\{   sk = 0, for k \in [r] \setminus (\{ j\} \cup \{ pi | i \in [m] \setminus Ij\} ),

spi =
cix

\bfitalpha i
\ast 

\lambda ipi

for i \in [m] \setminus Ij

is a nonnegative solution to (3.7). So the claim is proved.
For the case that dim(\Delta k) = n does not hold for all k, note that all of the above results

remain valid for \bfitbeta \in \BbbR n. We then give \bfitbeta a small perturbation, say, \bfitdelta , such that dim(\Delta k) = n
holds for all k. Then the new linear system (3.6) for \bfitbeta + \bfitdelta has a nonnegative solution. Let
\bfitdelta \rightarrow 0. We obtain that (3.6) also has a nonnegative solution for \bfitbeta . Thus the theorem remains
true in this case.

We give an example to illustrate Lemma 3.7.

Example 3.8. Let fd = 1 + x4 + y4 + x6y4 + x4y6  - dx2y and d\ast = sup\{ d \in \BbbR >0 | 
fd is nonnegative\} . We have\biggl[ 

2
1

\biggr] 
=

1

4

\biggl[ 
0
0

\biggr] 
+

1

2

\biggl[ 
4
0

\biggr] 
+

1

4

\biggl[ 
0
4

\biggr] 
=

1

2

\biggl[ 
0
0

\biggr] 
+

1

3

\biggl[ 
4
0

\biggr] 
+

1

6

\biggl[ 
4
6

\biggr] 
=

5

8

\biggl[ 
0
0

\biggr] 
+

1

8

\biggl[ 
4
0

\biggr] 
+

1

4

\biggl[ 
6
4

\biggr] 
.

1 x4

y4

x4y6

x6y4

x2y

\Delta 1

\Delta 2
\Delta 3

The system of equations \{ fd = 0,\nabla fd = 0\} in variables \{ x, y, d\} has exactly one zero (x\ast \approx 
0.944112, y\ast \approx 0.708568, d\ast \approx 3.682248) in \BbbR 3

>0. The linear system (3.6) becomes

(3.11)

\left\{               

1
4s1 +

1
2s2 +

5
8s3 = 1,

1
2s1 +

1
3s2 +

1
8s3 = x4\ast ,

1
4s1 = y4\ast ,
1
4s3 = x6\ast y

4
\ast ,

1
6s2 = x4\ast y

6
\ast ,

which has a nonnegative solution (s1 \approx 1.00829, s2 \approx 0.603299, s3 \approx 0.714045). Thus from
the proof of Lemma 3.7, we obtain a SONC decomposition of fd\ast , which is
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fd\ast \approx (0.252072 + 0.634543x4 + y4  - 1.59646x2y)

+ (0.30165 + 0.253115x4 + x4y6  - 0.955222x2y)

+ (0.446278 + 0.112342x4 + x6y4  - 1.13057x2y).

Theorem 3.9. Let fd =
\sum m

i=1 cix
\bfitalpha i  - dx\bfitbeta \in \BbbR [x] with \bfitalpha i \in (2\BbbN )n, ci \in \BbbR >0, i = 1, . . . ,m

such that \bfitbeta \in New(fd)
\circ , dim(New(fd)) = n. Then fd is nonnegative if and only if fd lies in

the SONC cone.

Proof. The sufficiency is obvious. For the necessity, assume that fd is nonnegative. If
\bfitbeta \in (2\BbbN )n and d < 0, or d = 0, then fd is a sum of monomial squares and so fd lies in
the SONC cone. If \bfitbeta /\in (2\BbbN )n and d < 0, through a variable transformation xj \mapsto \rightarrow  - xj for
some odd number \beta j , we can always assume d > 0. Let d\ast be defined as (3.1). By Lemma
3.7 and its proof, fd\ast lies in the SONC cone and fd\ast admits a SONC decomposition: fd\ast =\sum r

k=1(
\sum 

i\in Ik cikx
\bfitalpha i  - dkx

\bfitbeta ), where
\sum 

i\in Ik cikx
\bfitalpha i  - dkx

\bfitbeta is a nonnegative circuit polynomial
with dk being the corresponding circuit number for all k (the sets Ik, k \in [r] are defined
in the proof of Lemma 3.7). Since fd is nonnegative, it follows that d \leq d\ast . We have
fd =

\sum r
k=1(

\sum 
i\in Ik cikx

\bfitalpha i  - d
d\ast dkx

\bfitbeta ), where
\sum 

i\in Ik cikx
\bfitalpha i  - d

d\ast dkx
\bfitbeta is a nonnegative circuit

polynomial for all k by Theorem 2.4. Thus fd lies in the SONC cone.

Remark 3.10. Theorem 3.9 is a generalization of Theorem 2.8 to the case of polynomials
with general Newton polytopes and with a unique negative term. We point out that a special
case of Theorem 3.9 concerning agiforms was proved by Reznick in 1989; see [18, Theorem
7.1].

Definition 3.11 (see [9]). An AGE polynomial is a nonnegative polynomial with at most
one negative term, namely, it is nonnegative and of the form

m\sum 
i=1

cix
\bfitalpha i  - dx\bfitbeta , where \bfitalpha i \in (2\BbbN )n, ci \in \BbbR +, i = 1, . . . ,m,

and either \bfitbeta \in \BbbN n \smallsetminus (2\BbbN )n or \bfitbeta \in (2\BbbN )n and d \geq 0.

The proof of Theorem 3.9 enables us to give a SONC decomposition without cancellation
for AGE polynomials.

Theorem 3.12. Let f =
\sum m

i=1 cix
\bfitalpha i  - dx\bfitbeta \in \BbbR [x] with \bfitalpha i \in (2\BbbN )n, ci \in \BbbR >0, i = 1, . . . ,m

be an AGE polynomial. Let

F := \{ \Delta | \Delta is a simplex,\bfitbeta \in \Delta \circ , V (\Delta ) \subseteq \{ \bfitalpha 1, . . . ,\bfitalpha m\} \} .

Then f admits a SONC decomposition:

(3.12) f =
\sum 
\Delta \in F

f\Delta +
\sum 
i\in I

cix
\bfitalpha i ,

where f\Delta is a nonnegative circuit polynomial supported on V (\Delta ) \cup \{ \bfitbeta \} for each \Delta and I =
\{ i \in [m] | \bfitalpha i /\in 

\bigcup 
\Delta \in F V (\Delta )\} .
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Proof. It follows from Lemma 3.1 and the proof of Theorem 3.9.

Murray, Chandrasekaran, and Wiermann proposed SAGE polynomials as a new non-
negativity certificate of polynomials in [9], where they considered not only polynomial non-
negativity but also signomial nonnegativity. Nonnegative polynomials that admit a SAGE
decomposition are called SAGE polynomials. The cone containing all SAGE polynomials is
called the SAGE cone. Due to Theorem 3.12, we immediately obtain the following result.

Corollary 3.13. The SONC cone coincides with the SAGE cone.

The coincidence of the SONC cone and the SAGE cone was also independently proved in
[9] by showing that any extreme ray of the SAGE cone is a nonnegative circuit polynomial
[9, Corollary 21]. The proof in [9] was provided in the context of signomials and stems from
convex duality. In contrast, our proof uses algebraic techniques and exploits the combinatorical
structure of the polynomial support in an essential way.

4. Nonnegative polynomials with multiple negative terms. In this section, we treat ar-
bitrary nonnegative polynomials, not just those with at most one negative term, and provide
sufficient conditions under which an arbitrary nonnegative polynomial admits a SONC decom-
position. The proof proceeds in a similar manner as that of Theorem 3.9. We first consider
the case that the polynomial lies on the boundary of the PSD cone since the general case will
be reduced to this case. As in the proof of Lemma 3.7, by using undetermined coefficients,
the existence of such a decomposition is reduced to the existence of a nonnegative solution
for a particular linear system, which is then further reduced to the existence of a nonnegative
solution for a tuple of subsystems by Lemma 3.4.

To state the theorem, we need a technical condition on the Newton polytope of a polyno-
mial. Let \Delta be a polytope of dimension d. We say that a vertex \bfitalpha of \Delta is simple if \bfitalpha lies on
precisely d edges.

Theorem 4.1. Let f =
\sum m

i=1 cix
\bfitalpha i  - 

\sum l
j=1 djx

\bfitbeta j \in \BbbR [x] with \bfitalpha i \in (2\BbbN )n, ci \in \BbbR >0, i =
1, . . . ,m, \bfitbeta j \in New(f)\circ , j = 1, . . . , l. Assume that some vertex of New(f) is simple, that all
\bfitbeta j lie in the same side of every hyperplane determined by points among \{ \bfitalpha 1, . . . ,\bfitalpha m\} (in the
affine subspace spanned by the support of f), and that there exists a point \bfitv = [vk] \in (\BbbR \ast )n

such that dj\bfitv 
\bfitbeta j > 0 for all j. Then f is nonnegative if and only if f lies in the SONC cone.

Proof. First assume dim(New(f)) = n (so m \geq n+ 1). Otherwise, we can reduce to this
case by applying an appropriate monomial transformation to f . If l = 1, then the conclusion
follows from Theorem 3.9. We assume now l > 1. The sufficiency is obvious. For the necessity,
suppose that f is nonnegative. After a variable transformation xk \mapsto \rightarrow  - xk for all k with vk < 0,
we can assume dj > 0 for all j. Let

(4.1) d\ast l \triangleq sup\{ \~dl \in \BbbR | \~f =
m\sum 
i=1

cix
\bfitalpha i  - 

l - 1\sum 
j=1

djx
\bfitbeta j  - \~dlx

\bfitbeta l is nonnegative\} .

Note that d\ast l is well-defined since the set in (4.1) is nonempty and is bounded from above.

Let f\ast =
\sum m

i=1 cix
\bfitalpha i  - 

\sum l - 1
j=1 djx

\bfitbeta j  - d\ast l x
\bfitbeta l . Then f\ast = 0 has a zero in \BbbR n

>0 [22, Lemma 4.2],
which is denoted by x\ast . The assumption that all \bfitbeta j lie in the same side of every hyperplane
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determined by points among \{ \bfitalpha 1, . . . ,\bfitalpha m\} implies that if a simplex \Delta with vertices coming
from \{ \bfitalpha 1, . . . ,\bfitalpha m\} contains some \bfitbeta j , then dim(\Delta ) = n and it contains all \bfitbeta j . Let

\{ \Delta 1, . . . ,\Delta r\} := \{ \Delta | \Delta is a simplex ,\bfitbeta j \in \Delta \circ , j \in [l], V (\Delta ) \subseteq \{ \bfitalpha 1, . . . ,\bfitalpha m\} \} 

and Ik := \{ i \in [m] | \bfitalpha i \in V (\Delta k)\} for k = 1, . . . , r. We have dim(\Delta k) = n for all k. For
every \bfitbeta j and every \Delta k, since \bfitbeta j \in \Delta \circ 

k, we can write \bfitbeta j =
\sum 

i\in Ik \lambda ijk\bfitalpha i, where
\sum 

i\in Ik \lambda ijk =
1, \lambda ijk > 0, i \in Ik. In a similar manner as we proved Lemma 3.7, let us consider the following
system of linear equations in variables \{ cijk\} i,j,k, \{ djk\} j,k and \{ sjk\} j,k:

(4.2)

\left\{                             

cijkx
\bfitalpha i
\ast 

\lambda ijk
= djkx

\bfitbeta j
\ast = sjk for i \in Ik, k = 1, . . . , r, j = 1, . . . , l,

r\sum 
k=1

djk = dj for j = 1, . . . , l  - 1,

r\sum 
k=1

dlk = d\ast l

l\sum 
j=1

\sum 
i\in Ik

cijk = ci for i = 1, . . . ,m.

Eliminate the variables \{ cijk\} i,j,k and \{ djk\} j,k from (4.2) and we obtain

(4.3)

\left\{                     

l\sum 
j=1

\sum 
i\in Ik

\lambda ijksjk = cix
\bfitalpha i
\ast for i = 1, . . . ,m,

r\sum 
k=1

sjk = djx
\bfitbeta j
\ast for j = 1, . . . , l  - 1,

r\sum 
k=1

slk = d\ast l x
\bfitbeta l
\ast .

If (4.3) has a nonnegative solution, then we can retrieve a SONC decomposition supported on
the simplices \{ \Delta k\} k for f\ast as follows. Assume that \{ s\ast jk\} j,k is a nonnegative solution to (4.3).
Substitute \{ s\ast jk\} j,k into the system of equations (4.2), and we have cijk = \lambda ijks

\ast 
jk/x

\bfitalpha i
\ast for i \in 

Ik, k = 1, . . . , r, j = 1, . . . , l. Let fjk =
\sum 

i\in Ik cijkx
\bfitalpha i  - djkx

\bfitbeta j for k = 1, . . . , r, j = 1, . . . , l - 1.
Then by (4.2) and by Proposition 2.6, djk is the circuit number of fjk and fjk is a nonnegative

circuit polynomial for all j, k. By (4.2), we have f =
\sum l - 1

j=1

\sum r
k=1 fjk +

\sum r
k=1(

\sum 
i\in Ik cilkx

\bfitalpha i  - 
dl
d\ast l
dlkx

\bfitbeta l). Since dl \leq d\ast l ,
\sum 

i\in Ik cilkx
\bfitalpha i  - dl

d\ast l
dlkx

\bfitbeta l is a nonnegative circuit polynomial for all

k by Theorem 2.4. Thus f lies in the SONC cone as desired. Our remaining task hence is to
prove the following claim.

Claim. The linear system (4.3) in variables \{ sjk\} j,k has a nonnegative solution.
Proof of the claim. Denote the coefficient matrix of (4.3) by A and denote the coefficient

matrix of
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(4.4)

\left\{                     

l\sum 
j=1

\sum 
i\in Ik

\lambda ijksjk = cix
\bfitalpha i
\ast for i \in [m] \setminus Iv,

r\sum 
k=1

sjk = djx
\bfitbeta j
\ast for j \in [l  - 1] \setminus \{ u\} ,

r\sum 
k=1

slk = d\ast l x
\bfitbeta l
\ast if u \not = l

by Auv for every u \in [l] and every v \in [r]. Note that (4.4) is obtained from (4.3) by removing
the equations involving the variable suv. In order to invoke Lemma 3.4 to prove that (4.3)
has a nonnegative solution, we need to check the following hypotheses:

1. rank(A) > 1;
2. rank(Auv) = rank(A) - 1 for every u \in [l] and every v \in [r];
3. (4.3) is consistent.
Fix u \in [l] and v \in [r]. For every i \in [m]\smallsetminus Iv, since \bfitbeta u \in \Delta \circ 

v, there exists a facet F of \Delta v

such that \bfitbeta u \in conv(V (F )\cup \{ \bfitalpha i\} )\circ . Let conv(V (F )\cup \{ \bfitalpha i\} ) = \Delta pi for some pi \in [r]. It holds
that pi1 \not = pi2 whenever i1 \not = i2. For every pair (j, k) such that j = u, k \in [r]\smallsetminus (\{ v\} \cup \{ pi | i \in 
[m]\smallsetminus Iv\} ) or j \in [l]\smallsetminus \{ u\} , k \in [r]\smallsetminus \{ v\} , let sjk = 0 in (4.4), and then we obtain

(4.5)

\left\{     
\lambda iupisupi = cix

\bfitalpha i
\ast for i \in [m] \setminus Iv,

sjv = djx
\bfitbeta j
\ast for j \in [l  - 1] \setminus \{ u\} ,

slv = d\ast l x
\bfitbeta l
\ast if u \not = l.

It follows that Auv has full rank and rank(Auv) = m - | Iv| + l - 1 = m+ l - (n+2). Moreover,
rank(A) \geq rank(Auv) + 1 = m + l  - (n + 1) and dim(coker(A)) = m + l  - rank(A) \leq n + 1.

Let C :=
\Bigl[ 

1
\bfitalpha 1

, \cdot \cdot \cdot , 1
\bfitalpha m

,  - 1
 - \bfitbeta 1

, \cdot \cdot \cdot ,  - 1
 - \bfitbeta l

\Bigr] 
. Then,

CA =

\Biggl[ 
l\sum 

j=1

\biggl( \sum 
i\in I1

\Bigl[ 1
\bfitalpha i

\Bigr] 
\lambda ij1  - 

\Bigl[ 1
\bfitbeta j

\Bigr] \biggr) 
, . . . ,

l\sum 
j=1

\biggl( \sum 
i\in Ir

\Bigl[ 1
\bfitalpha i

\Bigr] 
\lambda ijr  - 

\Bigl[ 1
\bfitbeta j

\Bigr] \biggr) \Biggr] 
= [0, . . . ,0] ,

which implies that the row vectors of C belong to the cokernel of A. Since dim(\Delta 1) = n,
the volume of \Delta 1, which equals 1

n! | det(D)| , where D is the matrix with column vectors
\bigl[ 

1
\bfitalpha i

\bigr] 
,

i \in I1, is nonzero. It follows that rank(C) = n + 1. As dim(coker(A)) \leq n + 1, we then
conclude that dim(coker(A)) = n+ 1 and the row vectors of C span the cokernel of A. As a
result, rank(A) = m+ l - (n+1) > 1 and rank(Auv) = rank(A) - 1. The zero x\ast of f\ast is also
a minimizer of f\ast . So it satisfies \{ f\ast (x\ast ) = 0,\nabla f\ast (x\ast ) = 0\} , which gives

(4.6)

\left\{             

m\sum 
i=1

cix
\bfitalpha i
\ast  - 

l - 1\sum 
j=1

djx
\bfitbeta j
\ast  - d\ast l x

\bfitbeta l
\ast = 0,

m\sum 
i=1

ci\bfitalpha ix
\bfitalpha i
\ast  - 

l - 1\sum 
j=1

dj\bfitbeta jx
\bfitbeta j
\ast  - d\ast l \bfitbeta lx

\bfitbeta l
\ast = 0,
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i.e., C \cdot [c1x\bfitalpha 1
\ast , . . . , cmx\bfitalpha m

\ast , d1x
\bfitbeta 1
\ast , . . . , dl - 1x

\bfitbeta l - 1
\ast , d\ast l x

\bfitbeta l
\ast ]\intercal = 0. Thus by Lemma 3.6, (4.3) is

consistent.
Now by Lemma 3.4, in order to prove the claim, we only need to show that every subsystem

(4.4) in variables \{ sjk\} j,k \smallsetminus \{ suv\} has a nonnegative solution for all u \in [l] and all v \in [r].

Given u \in [l] and v \in [r], from (4.5) we have supi = cix
\bfitalpha i
\ast /\lambda iupi for i \in [m]\smallsetminus Iv, sjv = djx

\bfitbeta j
\ast 

for j \in [l  - 1]\smallsetminus \{ u\} , and slv = d\ast l x
\bfitbeta l
\ast if u \not = l. Hence

\left\{             

sjk = 0 for j = u, k \in [r] \setminus (\{ v\} \cup \{ pi | i \in [m] \setminus Iv\} ) or j \in [l] \setminus \{ u\} , k \in [r] \setminus \{ v\} ,

supi =
cix

\bfitalpha i
\ast 

\lambda iupi

for i \in [m] \setminus Iv,

sjv = djx
\bfitbeta j
\ast for j \in [l  - 1] \setminus \{ u\} ,

slv = d\ast l x
\bfitbeta l
\ast if u \not = l

is a nonnegative solution to (4.4). So the claim is proved and the proof is completed.

Remark 4.2. When dim(New(f)) = n and m = n + 1 (so New(f) is a simplex), the
assumptions that some vertex of New(f) is simple and that all \bfitbeta j lie in the same side of every
hyperplane determined by points among \{ \bfitalpha 1, . . . ,\bfitalpha m\} clearly hold. In this case, Theorem 4.1
identifies with Theorem 2.8. Therefore, Theorem 4.1 is a generalization of Theorem 2.8 to the
case of polynomials with arbitrary Newton polytopes.

Remark 4.3. A polynomial of the form in Theorem 4.1 for which there exists a point
\bfitv = [vk] \in (\BbbR \ast )n such that dj\bfitv 

\bfitbeta j > 0 for all j is called orthant-dominated in [9].

Example 4.4. Let fd = 1 + x6 + y6 + x6y6  - x2y  - dx4y and d\ast = sup\{ d \in \BbbR >0 | 
fd is nonnegative\} . We have\biggl[ 

2
1

\biggr] 
=

1

6

\biggl[ 
6
6

\biggr] 
+

1

6

\biggl[ 
6
0

\biggr] 
+

2

3

\biggl[ 
0
0

\biggr] 
=

1

3

\biggl[ 
6
0

\biggr] 
+

1

6

\biggl[ 
0
6

\biggr] 
+

1

2

\biggl[ 
0
0

\biggr] 
and \biggl[ 

4
1

\biggr] 
=

1

6

\biggl[ 
6
6

\biggr] 
+

1

2

\biggl[ 
6
0

\biggr] 
+

1

3

\biggl[ 
0
0

\biggr] 
=

2

3

\biggl[ 
6
0

\biggr] 
+

1

6

\biggl[ 
0
6

\biggr] 
+

1

6

\biggl[ 
0
0

\biggr] 
.

1 x6

y6 x6y6

x2y x4y

\Delta 2 \Delta 1
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The system of equations \{ fd = 0,\nabla fd = 0\} in variables \{ x, y, d\} has exactly one zero (x\ast \approx 
1.04521, y\ast \approx 0.764724, d\ast \approx 2.11373) in \BbbR 3

>0. The linear system (4.3) becomes

(4.7)

\left\{                     

2
3s11 +

1
2s12 +

1
3s21 +

1
6s22 = 1,

1
6s11 +

1
3s12 +

1
2s21 +

2
3s22 = x6\ast ,

1
6s12 +

1
6s22 = y6\ast ,

1
6s11 +

1
6s21 = x6\ast y

6
\ast ,

s11 + s12 = x2\ast y\ast ,

s21 + s22 = d\ast x4\ast y\ast ,

which has a nonnegative solution (s11 \approx 0.835429, s12 = 0, s21 \approx 0.729142, s22 = 1.2). Thus,
from the proof of Theorem 4.1, we obtain a SONC decomposition of fd\ast , which is

fd\ast \approx (0.556953 + 0.106793x6 + 0.533967x6y6  - x2y)

+ (0.243047 + 0.27962x6 + 0.466033x6y6  - 0.798909x4y)

+ (0.2 + 0.613587x6 + y6  - 1.31482x4y).

Corollary 4.5. Let f =
\sum m

i=1 cix
\bfitalpha i  - 

\sum l
j=1 djx

\bfitbeta j \in \BbbR [x] with \bfitalpha i \in (2\BbbN )n, ci \in \BbbR >0, i =
1, . . . ,m, \bfitbeta j \in New(f)\circ , dj \in \BbbR >0, j = 1, . . . , l, and dim(New(f)) = n. Assume that f is
nonnegative and has a zero, that some vertex of New(f) is simple, and that all \bfitbeta j lie in the
same side of every hyperplane determined by points among \{ \bfitalpha 1, . . . ,\bfitalpha m\} . Then f has exactly
one zero in \BbbR n

>0.

Proof. By Theorem 4.1, f lies in the SONC cone. Suppose f =
\sum r

k=1 fk, where fk is a
nonnegative circuit polynomial for all k \in [r]. Let x\ast be a zero of f . Then we have fk(x\ast ) = 0
for all k \in [r]. By Proposition 2.6, fk(| x\ast | ) = 0 and | x\ast | is the only zero of fk in \BbbR n

>0 for all
k. Hence | x\ast | is the only zero of f in \BbbR n

>0.

In the remainder of this section, we give an example to illustrate that the condition that
all \bfitbeta j lie in the same side of every hyperplane determined by points among \{ \bfitalpha 1, . . . ,\bfitalpha m\} in
Theorem 4.1 cannot be dropped.

Example 4.6. Let f = 1+ 4x2 + x4  - 3x - 3x3. Then f is nonnegative, but f does not lie
in the SONC cone.

Proof. As f = (x - 1)2(x2  - x+ 1), its minimum is 0 and this is achieved at x\ast = 1. By
Theorem 5.6 (which will be proved in the next section), to get a SONC decomposition for f , it
suffices to consider the circuits: \{ 0, 2, 1\} , \{ 0, 4, 1\} , \{ 0, 4, 3\} , \{ 2, 4, 3\} . We have 1 = 1

2 \cdot 0+
1
2 \cdot 2 =

3
4 \cdot 0 + 1

4 \cdot 4, and 3 = 1
2 \cdot 2 + 1

2 \cdot 4 = 1
4 \cdot 0 + 3

4 \cdot 4.
1 x x2 x3 x4

From the proof of Theorem 4.1, we have that if f lies in the SONC cone, then the linear
system
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(4.8)

\left\{               

1
2s1 +

3
4s3 +

1
4s4 = 1,

1
2s1 +

1
2s3 = 4x2\ast ,

1
4s2 +

1
2s3 +

3
4s4 = x4\ast ,

s1 + s2 = 3x\ast ,

s3 + s4 = 3x3\ast 

in variables \{ s1, s2, s3, s4\} should have a nonnegative solution. However, (4.8) has no nonneg-
ative solution. This contradictory implies that f does not lie in the SONC cone.

5. SONC decompositions preserve sparsity. In this section, we prove the second main
result of this paper: SONC decompositions preserve polynomial sparsity. To be more formal,
for a nonnegative polynomial f \in \BbbR [x], let \Lambda (f) := \{ \bfitalpha \in supp(f) | \bfitalpha \in (2\BbbN )n and c\bfitalpha > 0\} 
(corresponding to the positive terms) and \Gamma (f) := supp(f) \smallsetminus \Lambda (f) (corresponding to the
negative terms). Then we can write

f =
\sum 

\bfitalpha \in \Lambda (f)

c\bfitalpha x
\bfitalpha  - 

\sum 
\bfitbeta \in \Gamma (f)

d\bfitbeta x
\bfitbeta 

with V (New(f)) \subseteq \Lambda (f) (Proposition 2.1). For every \bfitbeta \in \Gamma (f), let

(5.1) F (\bfitbeta ) := \{ \Delta | \Delta is a simplex, \bfitbeta \in \Delta \circ , V (\Delta ) \subseteq \Lambda (f)\} .

Consider the following SONC decomposition for f :

(5.2) f =
\sum 

\bfitbeta \in \Gamma (f)

\sum 
\Delta \in F (\bfitbeta )

f\bfitbeta \Delta +
\sum 
\bfitalpha \in I

c\bfitalpha x
\bfitalpha ,

where f\bfitbeta \Delta is a nonnegative circuit polynomial supported on V (\Delta ) \cup \{ \bfitbeta \} for all \bfitbeta \in \Gamma (f),
\Delta \in F (\bfitbeta ), and I = \{ \bfitalpha \in \Lambda (f) | \bfitalpha /\in 

\bigcup 
\bfitbeta \in \Gamma (f)

\bigcup 
\Delta \in F (\bfitbeta ) V (\Delta )\} . If f admits a SONC

decomposition of the form (5.2), then we say that f decomposes into a SONC polynomial
without cancellation.

In Theorems 3.9 and 4.1, we have seen that nonnegative polynomials satisfying certain
conditions decompose into a SONC polynomial without cancellation. In this section, we shall
prove that in fact every SONC decomposes into a sum of nonnegative circuit polynomials
without cancellation. To this end, we first recall a connection between nonnegative circuit
polynomials and SBS.

5.1. Nonnegative circuit polynomials and sums of binomial squares. For a subset M \subseteq 
\BbbN n, define A(M) := \{ 1

2(\bfitu +\bfitv ) | \bfitu \not = \bfitv ,\bfitu ,\bfitv \in M\cap (2\BbbN )n\} as the set of averages of distinct even
lattice points inM . For a trellis A , we say thatM is an A -mediated set if A \subseteq M \subseteq A(M)\cup A
[18]. It turns out that the problem whether a nonnegative circuit polynomial is an SOS is
closely related to A -mediated sets; see Theorem 5.2 in [5]. The following theorem states that
for a nonnegative circuit polynomial f =

\sum 
\bfitalpha \in A c\bfitalpha x

\bfitalpha  - dx\bfitbeta , if \bfitbeta belongs to an A -mediated
set, then f is actually a SBS.

Theorem 5.1. Let f =
\sum 

\bfitalpha \in A c\bfitalpha x
\bfitalpha  - dx\bfitbeta \in \BbbR [x], d \not = 0, be a nonnegative circuit poly-

nomial with \bfitbeta \in New(f)\circ . If \bfitbeta belongs to an A -mediated set M , then f is a SBS, i.e.,
f =

\sum 
2\bfitu ,2\bfitv \in M (a\bfitu x

\bfitu  - b\bfitv x
\bfitv )2 for some a\bfitu , b\bfitv \in \BbbR .
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Proof. The proof can be derived from Theorem 5.2 in [5] and Theorem 4.4 in [18].

Mediated sets were first studied by Reznick in [18]. For a trellis A , there is a maximal
A -mediated set A \ast satisfying A(A ) \subseteq A \ast \subseteq conv(A )\cap \BbbN n which contains every A -mediated
set. Following [18], we call a trellis A an H-trellis if A \ast = conv(A ) \cap \BbbN n. The following
theorem states that every trellis is an H-trellis after being multiplied by a sufficiently large
integer.

Theorem 5.2 (see [16, Theorem 3.5]). Let A \subseteq \BbbN n be a trellis. Then kA is an H-trellis
for any integer k \geq n.

Remark 5.3. The polynomials in [16] were assumed to be homogeneous. So we need k \geq n
instead of k \geq n - 1 to adapt to our situation.

From Theorem 5.2 together with Theorem 5.1, we know that every n-variate nonnegative
circuit polynomial supported on kA and a lattice point in the relative interior of conv(kA )
is a SBS for any trellis A and an integer k \geq n.

Lemma 5.4. Suppose that f(x1, . . . , xn) \in \BbbR [x] is a SONC. Then f(xk1, . . . , x
k
n) is a SBS

for any integer k \geq n.

Proof. Assume f =
\sum 

i fi, where all fi are nonnegative circuit polynomials. For any inte-
ger k \geq n, since every fi(x

k
1, . . . , x

k
n) is a SBS (by Theorems 5.1 and 5.2), so is

f(xk1, . . . , x
k
n).

5.2. SONC decompostions without cancellation. Now we prove that every SONC de-
composes into a SONC polynomial without cancellation. The proof makes use of SBS decom-
positions for SONCs. The following lemma enables us to consider f(xk1, . . . , x

k
n) instead of

f(x1, . . . , xn) for an odd number k.

Lemma 5.5. Let f(x1, . . . , xn) \in \BbbR [x] and k \in \BbbN be an odd number. Then f(x1, . . . , xn) de-
composes into a SONC polynomial without cancellation if and only if f(xk1, . . . , x

k
n) decomposes

into a SONC polynomial without cancellation.

Proof. Notice that for an odd number k, f(x1, . . . , xn) is a nonnegative circuit polynomial
if and only if f(xk1, . . . , x

k
n) is a nonnegative circuit polynomial. The lemma then follows from

this fact.

If a nonnegative polynomial f can be written as

(5.3) f =
\sum 

\bfitbeta \in \Gamma (f)

\left(  \sum 
\bfitalpha \in \Lambda (f)

c\bfitbeta \bfitalpha x
\bfitalpha  - d\bfitbeta x

\bfitbeta 

\right)  
such that every

\sum 
\bfitalpha \in \Lambda (f) c\bfitbeta \bfitalpha x

\bfitalpha  - d\bfitbeta x
\bfitbeta is an AGE polynomial, then we say that f decomposes

into a SAGE polynomials without cancellation. By Theorem 3.12, every AGE polynomial
decomposes into a SONC polynomial without cancellation. Therefore, if f decomposes into
a SAGE polynomial without cancellation, then f also decomposes into a SONC polynomial
without cancellation.



NONNEGATIVE POLYNOMIALS AND CIRCUIT POLYNOMIALS 129

Theorem 5.6. Let f =
\sum 

\bfitalpha \in \Lambda (f) c\bfitalpha x
\bfitalpha  - 

\sum 
\bfitbeta \in \Gamma (f) d\bfitbeta x

\bfitbeta \in \BbbR [x]. If f lies in the SONC cone,
then f decomposes into a SONC polynomial without cancellation, i.e., f admits a SONC
decomposition of the form (5.2).

Proof. By Lemma 5.5, we only need to prove the theorem for f(x2n+1
1 , . . . , x2n+1

n ). In view
of Theorem 3.12, we complete the proof by showing that f(x2n+1

1 , . . . , x2n+1
n ) decomposes into

a SAGE polynomial without cancellation.
For simplicity, let h = f(x2n+1

1 , . . . , x2n+1
n ). By Lemma 5.4, we can write h as a SBS,

i.e., h =
\sum m

i=1(aix
\bfitu i  - bix

\bfitv i)2. To prove that h decomposes into a SAGE polynomial without
cancellation, let us do induction on m. When m = 1, h = (a1x

\bfitu 1 - b1x
\bfitv 1)2 = a21x

2\bfitu 1+b21x
2\bfitv 1 - 

2a1b1x
\bfitu 1+\bfitv 1 and the conclusion obviously holds. Assume that the conclusion is correct for

m  - 1 and now consider the case of m. Let h\prime =
\sum m - 1

i=1 (aix
\bfitu i  - bix

\bfitv i)2 =
\sum 

\bfitalpha \in \Lambda (h\prime ) c
\prime 
\bfitalpha x

\bfitalpha  - \sum 
\bfitbeta \in \Gamma (h\prime ) d

\prime 
\bfitbeta x

\bfitbeta . By the induction hypothesis, we can write h\prime =
\sum 

\bfitbeta \in \Gamma (h\prime )(
\sum 

\bfitalpha \in \Lambda (h\prime ) c
\prime 
\bfitbeta \bfitalpha x

\bfitalpha  - 
d\prime \bfitbeta x

\bfitbeta ) as a SAGE polynomial without cancellation. Then,

(5.4) h =
\sum 

\bfitbeta \in \Gamma (h\prime )

\left(  \sum 
\bfitalpha \in \Lambda (h\prime )

c\prime \bfitbeta \bfitalpha x
\bfitalpha  - d\prime \bfitbeta x

\bfitbeta 

\right)  + (amx\bfitu m  - bmx\bfitv m)2 .

From h = h\prime + (amx\bfitu m  - bmx\bfitv m)2, it follows that potential cancellation in (5.4) only occurs
among terms involving x2\bfitu m , x2\bfitv m , x\bfitu m+\bfitv m . Without loss of generality, we may assume
\bfitu m + \bfitv m \in \Gamma (h). Our goal is to rewrite h as a SAGE polynomial without cancellation by
adjusting the terms involving x2\bfitu m , x2\bfitv m , x\bfitu m+\bfitv m in (5.4).

First let us deal with the terms involving x2\bfitu m by considering the following four cases.
Case I. If 2\bfitu m /\in \Gamma (h\prime ), then we have nothing to do.
Case II. If 2\bfitu m \in \Gamma (h\prime ) and 2\bfitu m \in \Gamma (h), then we must have d\prime 2\bfitu m

> a2m. By the equality\left(  \sum 
\bfitalpha \in \Lambda (h\prime )

c\prime 2\bfitu m\bfitalpha x
\bfitalpha  - d\prime 2\bfitu m

x2\bfitu m

\right)  + a2mx2\bfitu m + b2mx2\bfitv m  - 2ambmx\bfitu m+\bfitv m

=

\biggl( 
1 - a2m

d\prime 2\bfitu m

\biggr) \left(  \sum 
\bfitalpha \in \Lambda (h\prime )

c\prime 2\bfitu m\bfitalpha x
\bfitalpha  - d\prime 2\bfitu m

x2\bfitu m

\right)  
+

\sum 
\bfitalpha \in \Lambda (h\prime )

c\prime 2\bfitu m\bfitalpha a
2
m

d\prime 2\bfitu m

x\bfitalpha + b2mx2\bfitv m  - 2ambmx\bfitu m+\bfitv m ,

we obtain

h =
\sum 

\bfitbeta \in \Gamma (h\prime )\smallsetminus \{ 2\bfitu m\} 

\left(  \sum 
\bfitalpha \in \Lambda (h\prime )

c\prime \bfitbeta \bfitalpha x
\bfitalpha  - d\prime \bfitbeta x

\bfitbeta 

\right)  +

\biggl( 
1 - a2m

d\prime 2\bfitu m

\biggr) \left(  \sum 
\bfitalpha \in \Lambda (h\prime )

c\prime 2\bfitu m\bfitalpha x
\bfitalpha  - d\prime 2\bfitu m

x2\bfitu m

\right)  
+

\left(  \sum 
\bfitalpha \in \Lambda (h\prime )

c\prime 2\bfitu m\bfitalpha a
2
m

d\prime 2\bfitu m

x\bfitalpha + b2mx2\bfitv m  - 2ambmx\bfitu m+\bfitv m

\right)  ,
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which is a SAGE polynomial with potential cancellation only occurring among terms involving
x2\bfitv m , x\bfitu m+\bfitv m .

Case III. If 2\bfitu m \in \Gamma (h\prime ) and 2\bfitu m \in \Lambda (h), then we must have a2m > d\prime 2\bfitu m
, and we can

write h as

h =
\sum 

\bfitbeta \in \Gamma (h\prime )\smallsetminus \{ 2\bfitu m\} 

\left(  \sum 
\bfitalpha \in \Lambda (h\prime )

c\prime \bfitbeta \bfitalpha x
\bfitalpha  - d\prime \bfitbeta x

\bfitbeta 

\right)  
+

\left(  \sum 
\bfitalpha \in \Lambda (h\prime )

c\prime 2\bfitu m\bfitalpha x
\bfitalpha + (a2m  - d\prime 2\bfitu m

)x2\bfitu m + b2mx2\bfitv m  - 2ambmx\bfitu m+\bfitv m

\right)  ,

which is a SAGE polynomial with potential cancellation only occurring among terms involving
x2\bfitv m , x\bfitu m+\bfitv m .

Case IV. If 2\bfitu m \in \Gamma (h\prime ) and 2\bfitu m /\in supp(h), then the terms  - d\prime 2\bfitu m
x2\bfitu m and a2mx2\bfitu m

must be cancelled in (5.4). Hence we obtain the expression of h as

h =
\sum 

\bfitbeta \in \Gamma (h\prime )\smallsetminus \{ 2\bfitu m\} 

\left(  \sum 
\bfitalpha \in \Lambda (h\prime )

c\prime \bfitbeta \bfitalpha x
\bfitalpha  - d\prime \bfitbeta x

\bfitbeta 

\right)  
+

\left(  \sum 
\bfitalpha \in \Lambda (h\prime )

c\prime 2\bfitu m\bfitalpha x
\bfitalpha + b2mx2\bfitv m  - 2ambmx\bfitu m+\bfitv m

\right)  ,

which is a SAGE polynomial with potential cancellation only occurring among terms involving
x2\bfitv m , x\bfitu m+\bfitv m .

In much the same way, we continue to adjust the terms involving x2\bfitv m in any of the above
four cases, so that we can write h as

(5.5) h =
\sum 

\bfitbeta \in \Gamma (h)\smallsetminus \{ \bfitu m+\bfitv m\} 

\left(  \sum 
\bfitalpha \in \Lambda (h\prime )

c\prime \prime \bfitbeta \bfitalpha x
\bfitalpha  - d\prime \prime \bfitbeta x

\bfitbeta 

\right)  +

\left(  \sum 
\bfitalpha \in \Lambda (h)

\~c\bfitalpha x
\bfitalpha  - \~d\bfitu m+\bfitv mx

\bfitu m+\bfitv m

\right)  ,

which is a SAGE polynomial with potential cancellation only occurring among terms involving
x\bfitu m+\bfitv m . If \bfitu m + \bfitv m /\in \Lambda (h\prime ), then (5.5) is already a SAGE polynomial without cancella-
tion as desired. Assume now \bfitu m + \bfitv m \in \Lambda (h\prime ). The assumption \bfitu m + \bfitv m \in \Gamma (h) implies\sum 

\bfitbeta \in \Gamma (h)\smallsetminus \{ \bfitu m+\bfitv m\} c
\prime \prime 
\bfitbeta (\bfitu m+\bfitv m) <

\~d\bfitu m+\bfitv m and so we can write (let c\prime \prime \bfitbeta \bfitalpha = 0 for \bfitalpha \in \Lambda (h)\smallsetminus \Lambda (h\prime ))

h =
\sum 

\bfitbeta \in \Gamma (h)\smallsetminus \{ \bfitu m+\bfitv m\} 

\left(  \sum 
\bfitalpha \in \Lambda (h)

\Biggl( 
c\prime \prime \bfitbeta \bfitalpha +

\~c\bfitalpha c
\prime \prime 
\bfitbeta (\bfitu m+\bfitv m)

\~d\bfitu m+\bfitv m

\Biggr) 
x\bfitalpha  - d\prime \prime \bfitbeta x

\bfitbeta 

\right)  
+

\Biggl( 
1 - 

\sum 
\bfitbeta \in \Gamma (h)\smallsetminus \{ \bfitu m+\bfitv m\} c

\prime \prime 
\bfitbeta (\bfitu m+\bfitv m)

\~d\bfitu m+\bfitv m

\Biggr) \left(  \sum 
\bfitalpha \in \Lambda (h)

\~c\bfitalpha x
\bfitalpha  - \~d\bfitu m+\bfitv mx

\bfitu m+\bfitv m

\right)  ,

which is a SAGE polynomials without cancellation as desired.
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Due to the coincidence of the SONC cone and the SAGE cone, it is immediate from
Theorem 5.6 that every SAGE polynomial decomposes into a SAGE polynomials without
cancellation. This result was also independently proved in [9, Corollary 20] by different tech-
niques, where it was first proved in the context of signomials based on convex duality and
then was specialized to the situation of polynomials. The proof given here, however, deals
directly with polynomials and employs integrality of exponents in an essential way.

Theorem 5.6 ensures that every SONC admits a SONC decomposition by using only the
support from the original polynomial and without cancellation. This is a very desired property
(sparsity-preservation) to design efficient algorithms for sparse polynomial optimization based
on SONC decompositions and is a distinguished difference from SOS decompositions. In the
SOS case, a well-known result concerning sparsity due to Reznick states that if f =

\sum 
i f

2
i ,

then supp(fi) \subseteq 1
2New(f) [17, Theorem 1], but generally cancellation occurs among f2

i 's. As
a simple example, consider f = 3  - 4x + x4 = 2(1  - x)2 + (1  - x2)2. When we expand the
squares on the right side, the monomial x2 appears though it does not belong to the support
of f .

When we apply SONC certificates to unconstrained polynomial optimization (i.e., mini-
mizing a polynomial function over \BbbR n), the first problem is to decide which circuits are needed
in construction of SONC decompositions. Once the set of candidate circuits is given, the rest
of the computation can be done via relative entropy programming [5] or second order cone
programming [24]. Hence the overall complexity largely depends on the number of candidate
circuits. Thanks to Theorem 5.6, one may consider only the circuits that are contained in the
support of the input polynomial instead of enumerating all possible circuits, so that the num-
ber of candidate circuits is enormously decreased. However, we emphasize that the number
of circuits contained in a given set can be still large; see [9] for such an example in which the
number of circuits is 2(m - 1)/2 for a polynomial with m terms. In [7], the notion of reduced
circuits was proposed so that one can remove slightly more redundant circuits. On the other
hand, by Carath\'eodory's theorem [19, Corollary 17.1.2], it is possible to write a SONC f as a
sum of at most | supp(f)| nonnegative circuit polynomials. We still do not know whether there
are theoretical obstacles to stop us from obtaining such a SONC decomposition efficiently. In
any case, more efforts are required to further reduce the number of candidate circuits and to
make the computation more tractable.

As a comparison, when we apply SAGE certificates to unconstrained polynomial opti-
mization, the number of AGE polynomials in construction of SAGE decompositions equals
the number of negative terms of the input polynomial owing to Theorem 5.6, and deciding
whether a polynomial is an AGE polynomial can be performed via relative entropy program-
ming [9]. Thus the whole computation can be done efficiently for sparse polynomials.

6. Conclusions and discussions. This paper has studied several problems concerning
SONC decompositions for nonnegative polynomials. We have proved that nonnegative poly-
nomials with one negative term lie in the SONC cone. This result implies that the SONC
cone actually coincides with the SAGE cone. We have also provided sufficient conditions for
an arbitrary nonnegative polynomial to lie in the SONC cone. Moreover, we have proved
that every SONC admits a SONC decomposition without cancellation. Following this line of
research, there are still many questions left for further investigation:
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\bullet In Theorem 4.1, we have used a technical condition that some vertex of the Newton
polytope is simple to complete the proof. It is not clear whether this condition can
be dropped. The answer seems closely related to the existence of positive zeros for a
particular system of polynomial equations [22].

\bullet Even though the number of candidate circuits is significantly reduced thanks to the
SONC decomposition without cancellation (5.2) we have provided, the computation of
such a SONC decomposition is still generally intractable because the number of circuits
used in (5.2) increases rapidly with the number of terms of the input polynomial. For
unconstrained polynomial optimization, one may rely on certain heuristics to obtain
a reasonable number of circuits as [20] or [24] did at the cost of losing some accuracy.
One would also like to seek an approach to decrease the number of circuits without
losing accuracy. The recent work in [14] made the first step toward this direction. See
also the discussion at the end of section 5.2.

\bullet The fact that every SONC after an appropriate dilation of the support is a SBS,
which we rely on to prove Theorem 5.6, indicates the possibility of computing SONC
decompositions via second order cone programming. The recent work in [24] is a good
start on this topic.

\bullet Another interesting and also important question is, To what extent can the results of
this paper be generalized to the case of nonnegativity over a subset of \BbbR n? Does the
sparsity-preserving property still hold for certain classes of subsets? The answers to
these questions would help to use SONC certificates to solve constrained polynomial
optimization problems. The recent work in [11, 12] can be viewed as attempts toward
this direction.

Acknowledgment. The author thanks the anonymous referees for their helpful sugges-
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