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Abstract
In this paper, we study the sparsity-adapted complex moment-Hermitian sum of
squares (moment-HSOS) hierarchy for complex polynomial optimization problems,
where the sparsity includes correlative sparsity and term sparsity. We compare
the strengths of the sparsity-adapted complex moment-HSOS hierarchy with the
sparsity-adapted real moment-SOS hierarchy on either randomly generated complex
polynomial optimization problems or the AC optimal power flow problem. The results
of numerical experiments show that the sparsity-adapted complexmoment-HSOShier-
archy provides a trade-off between the computational cost and the quality of obtained
bounds for large-scale complex polynomial optimization problems.
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1 Introduction

In this paper, we consider the following complex polynomial optimization problem
(CPOP):

(Q) :

⎧
⎪⎨

⎪⎩

infz∈Cn f (z, z̄) := ∑
α,β fα,βzα z̄β

s.t. g j (z, z̄) := ∑
α,β g j,α,βzα z̄β ≥ 0, j = 1, . . . ,m,

hi (z, z̄) := ∑
α,β hi,α,βzα z̄β = 0, i = 1, . . . , t,

(1.1)

where n, m, and t are positive integers, z̄ := (z̄1, . . . , z̄n) stands for the conjugate
of complex variables z := (z1, . . . , zn). The functions f , g1, . . . , gm, h1, . . . , ht are
real-valued polynomials, and their coefficients satisfy fα,β = f̄β,α , g j,α,β = ḡ j,β,α ,
and hi,α,β = h̄i,β,α . The feasible set is defined as {z ∈ C

n | g j (z, z̄) ≥ 0, j =
1, . . . ,m, hi (z, z̄) = 0, i = 1, . . . , t}. For the sake of brevity, we assume that there
are only inequality constraints in (1.1) in the rest of this paper. CPOP (1.1) arises
naturally from diverse areas, such as imaging science [13], signal processing [2,3,
23], automatic control [26], quantum mechanics [15], optimal power flow [5]. By
introducing real variables for the real part and the imaginary part of each complex
variables, respectively, CPOP (1.1) can be converted into a polynomial optimization
problem (POP) involving only real variables.

The moment-sum of squares (SOS) hierarchy (also known as Lasserre’s hierarchy)
[19], which consists of a sequence of increasingly tight semidefinite relaxations, has
become a popular tool to retrieve global optimal values of POPs involving real vari-
ables. For convenience, we refer to the moment-SOS hierarchy as the “real hierarchy”
in this paper. The real hierarchy can be further adapted as the moment-Hermitian sum
of squares (HSOS) hierarchy to handle CPOPs [17], which thereby we refer to as the
“complex hierarchy” in this paper. Notice that for a CPOP, one can either apply the real
hierarchy after converting it into a real POP or apply the complex hierarchy directly.
It is known that the complex hierarchy never produces tighter bounds than the real
hierarchy when using the same relaxation order, which is, however, still of interest
because of its lower computational complexity as recently shown in [17].

On the other hand, due to the rapidly growing size of semidefinite relaxations,
the standard real and complex hierarchies are typically solvable only for modest-
size problems on a personal computer. To improve their scalability, it is then crucial to
exploit the structure, e.g., sparsity, encoded in the problem data. For the real hierarchy,
one can make use of the well-known correlative sparsity [29], or the newly proposed
term sparsity [33,34], or the combination of both [35]. Exploiting sparsity in the
real hierarchy has been successfully done for many practical applications, including
computer arithmetic [20,21], control [28,31], machine learning [10], noncommutative
optimization [18,32,36,37], rational function optimization [9], just to name a few. For
the complex hierarchy, one can also make use of correlative sparsity; see [17] for an
application to the AC optimal power flow problem. The main purpose of this paper is
to develop sparsity-adapted complex hierarchies by taking into account term sparsity
as for the real hierarchy.
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Contribution Our contributions are threefold:

1. We propose sparsity-adapted complex hierarchies based on either term sparsity
or correlative-term sparsity for CPOPs, which are indexed by two parameters:
the relaxation order d and the sparse order k. The optima of the sparsity-adapted
complex hierarchies for a fixed d are proved to converge to the optimum of the
dense relaxation or the relaxation exploiting only correlative sparsity with the
same relaxation order when the maximal chordal extension is chosen. We also
prove that the block structure arising in the sparsity-adapted complex hierarchies
is always a refinement of the block structure determined by the sign symmetries
of the problem.

2. We propose a minimum initial relaxation step of the sparsity-adapted complex
hierarchy. For the AC optimal power flow problem, this new relaxation is able to
provide a tighter lower bound than Shor’s relaxation and is, depending on the input,
possibly much less expensive than the second-order relaxation of the complex
hierarchy.

3. We provide a comprehensive comparison on the strengths of the sparsity-adapted
real hierarchy and the sparsity-adapted complex hierarchy for CPOPs via numer-
ical experiments. The largest numerical example is an instance of the AC optimal
power flow problem involving 2869 complex variables (or 5738 real variables).

Our sparsity-adapted complex hierarchies can be viewed as complex variants of
the ones obtained for the real case [33–35]. Throughout the paper, we emphasize in
several places the subtle differences between the complex and real settings, in particular
to define sparsity-adapted moment/localizing matrices and the connection with sign
symmetries when (finite) convergence occurs. We also hope that it is of interest for
researchers solving large-scale CPOPs (e.g., AC optimal power flow problems) to have
a self-contained paper explaining in detail the construction of term sparsity pattern
graphs, as well as the sparsity-adapted semidefinite formulations. Last but not least,
we do not pretend that the sparsity-adapted complex hierarchy systematically provides
better results than the real hierarchy. It rather provides a trade-off between efficiency
and accuracy for large-scale CPOPs.

The rest of the paper is organized as follows. In Sect. 2, we recall some prelim-
inary background. In Sect. 3, we establish the sparsity-adapted complex hierarchies
and prove some of their properties. In Sect. 4, a minimum initial relaxation step for
the sparsity-adapted complex hierarchy is introduced. Numerical experiments are pro-
vided in Sect. 5, and conclusions are provided in Sect. 6.

2 Notation and Preliminaries

Let N be the set of nonnegative integers. For n ∈ N\{0}, let [n] := {1, 2, . . . , n}.
Let i be the imaginary unit, satisfying i2 = −1. Let z = (z1, . . . , zn) (resp. x =
(x1, . . . , xn)) be a tuple of complex (resp. real) variables and z̄ = (z̄1, . . . , z̄n) its
conjugate.We denote byC[z] := C[z1, . . . , zn],C[z, z̄] := C[z1, . . . , zn, z̄1, . . . , z̄n],
R[x] := R[x1, . . . , xn] the complex polynomial ring in z, the complex polynomial
ring in z, z̄, the real polynomial ring in x, respectively. For d ∈ N, let Cd [z] (resp.
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Cd [z, z̄]) denote the set of polynomials in C[z] (resp. C[z, z̄]) of degree no greater
than d. A polynomial f ∈ C[z, z̄] can be written as f = ∑

(β,γ )∈A fβ,γ zβ z̄γ with

A ⊆ N
n × N

n and fβ,γ ∈ C, zβ = zβ11 · · · zβnn , z̄γ = z̄γ11 · · · z̄γnn . The support of
f is defined by supp( f ) = {(β, γ ) ∈ A | fβ,γ �= 0}. The conjugate of f is
f̄ = ∑

(β,γ )∈A f̄β,γ zγ z̄β . A polynomial σ = ∑
(β,γ ) σβ,γ zβ z̄γ ∈ C2d [z, z̄] is called

a Hermitian sum of squares or an HSOS for short if there exist polynomials fi ∈
Cd [z], i ∈ [t] such that σ = ∑t

i=1 fi f̄i . We will use | · | to denote the cardinality of
a set. For (β, γ ) ∈ N

n × N
n , A ⊆ N

n × N
n , let (β, γ ) + A := {(β + β ′, γ + γ ′) |

(β ′, γ ′) ∈ A }.
For a positive integer r , the set of r × r Hermitian matrices is denoted by Hr and

the set of r × r positive semidefinite (PSD) Hermitian matrices is denoted byHr+. Let
A◦B ∈ Hr denote theHadamard product of A, B ∈ Hr , definedby [A◦B]i j = Ai j Bi j .
For d ∈ N, let N

n
d := {(αi )i ∈ N

n | ∑n
i=1 αi ≤ d} (sorted with respect to the

lexicographic order). The set {zβ | β ∈ N
n
d} is called the standard (complex)monomial

basis up to degree d. For the sake of convenience, we abuse notation slightly in this
paper and use the exponent set N

n
d to denote the monomial basis.

2.1 The Complex Moment-HSOS Hierarchy

Let y = (yα)α∈Nn ⊆ R be a sequence indexed by α ∈ N
n . Let L r

y : R[x] → R be the
linear functional

f =
∑

α

fαxα 
→ L r
y( f ) =

∑

α

fα yα.

The real momentmatrixMr
d(y) (d ∈ N) associated with y is the matrix with rows and

columns indexed by N
n
d such that

Mr
d(y)βγ := L r

y(x
βxγ ) = yβ+γ , ∀β, γ ∈ N

n
d .

Suppose g = ∑
α gαxα ∈ R[x]. The real localizingmatrixMr

d(gy) associated with g
and y is the matrix with rows and columns indexed by N

n
d such that

Mr
d(g y)βγ := L r

y(g x
βxγ ) =

∑

α

gα yα+β+γ , ∀β, γ ∈ N
n
d .

Now, let y = (yβ,γ )(β,γ )∈Nn×Nn ⊆ C be a sequence indexed by (β, γ ) ∈ N
n × N

n

and satisfies yβ,γ = ȳγ ,β . Let Lc
y : C[z, z̄] → R be the linear functional

f =
∑

(β,γ )

fβ,γ zβ z̄γ 
→ Lc
y( f ) =

∑

(β,γ )

fβ,γ yβ,γ .

The complex momentmatrixMc
d(y) (d ∈ N) associated with y is the matrix with rows

and columns indexed by N
n
d such that

Mc
d(y)βγ := Lc

y(z
β z̄γ ) = yβ,γ , ∀β, γ ∈ N

n
d .
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Suppose that g = ∑
(β ′,γ ′) gβ ′,γ ′zβ ′

z̄γ ′ ∈ C[z, z̄] is a Hermitian polynomial, i.e.,
ḡ = g. The complex localizing matrix Mc

d(gy) associated with g and y is the matrix
with rows and columns indexed by N

n
d such that

Mc
d(g y)βγ := Lc

y(g z
β z̄γ ) =

∑

(β ′,γ ′)
gβ ′,γ ′ yβ+β ′,γ+γ ′ , ∀β, γ ∈ N

n
d .

Both the complex moment matrix and the complex localizing matrix are Hermitian
matrices.

Note that a distinguished difference between the real moment matrix and the com-
plex moment matrix is that the former has the Hankel property (i.e., Mr

d(y)βγ is a
function of β + γ ), whereas the latter does not have.

There are two ways to construct a “moment-SOS” hierarchy for CPOP (1.1). The
first way is introducing real variables for both real and imaginary parts of each complex
variable in (1.1), i.e., letting zi = xi + xi+n i for i ∈ [n]. Then, one can convert CPOP
(1.1) to a POP involving only real variables at the price of doubling the number of
variables. Therefore, the usual real moment-SOS hierarchy applies to the resulting real
POP. In order to improve scalability, correlative and term sparsity can be exploited to
yield sparsity-adapted hierarchies [29,33–35].

On the other hand, as the second way, it might be advantageous to handle CPOP
(1.1) directly with the complex moment-HSOS hierarchy introduced in [17]. Let
d j := �deg(g j )/2
, j ∈ [m] and let dmin := max{�deg( f )/2
, d1, . . . , dm}. Then,
the complex moment hierarchy indexed by d ≥ dmin (called the relaxation order) for
CPOP (1.1) is given by

(Qd) :

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

inf Lc
y( f )

s.t. Mc
d(y) � 0,

Mc
d−d j

(g jy) � 0, j ∈ [m],
y0,0 = 1,

(2.1)

which is a semidefinite program (SDP) with optimum denoted by ρd . The dual of (Qd)

(2.1) can be formulized as the following HSOS relaxation:

(Qd)
∗ :

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

sup ρ

s.t. f − ρ = σ0 + σ1g1 + . . . + σmgm,

σ j is an HSOS, j = 0, . . . ,m,

deg(σ0) ≤ 2d, deg(σ j g j ) ≤ 2d, j ∈ [m].
(2.2)

Remark 2.1 In (2.1), the expression “X � 0” means an Hermitian matrix X to be pos-
itive semidefinite. Since popular SDP solvers deal with only real SDPs, it is necessary
to convert this condition to a condition involving only real matrices. This can be done
by introducing the real part A and the imaginary part B of X , respectively, such that
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X = A + Bi. Then,

X � 0 ⇐⇒
[
A −B
B A

]

� 0.

Remark 2.2 The first-order moment-(H)SOS relaxation for quadratically constrained
quadratic programs (QCQP) is also known as Shor’s relaxation. It was proved in [16]
that the real Shor’s relaxation and the complex Shor’s relaxation for homogeneous
QCQPs yield the same bound. However, generally the complex hierarchy is weaker
(i.e., producing looser bounds) than the real hierarchy at the same relaxation order
d > 1 as Hermitian sums of squares are a special case of real sums of squares; see
[17].

Remark 2.3 By the complex Positivstellensatz theorem due to D’Angelo and Puti-
nar [12], global convergence of the complex hierarchy is guaranteed when a sphere
constraint is present.

Remark 2.4 If CPOP (1.1) is feasible, then the program (2.1) is always feasible for
any d ≥ dmin as one can take the Dirac measure centering a feasible point of (1.1)
which leads to a feasible point of (2.1). Moreover, if we further assume that there
is a ball/sphere constraint (alternatively, multi-ball/sphere constraints) in terms of all
variables in (1.1), then by a similar argument as for Proposition 5.8 of [24], we can
show that the feasible set of (2.2) is nonempty. So the optimum of (2.1) is bounded
from below by weak duality. In addition, by Lemma 3.6 of [16], the strong duality
also holds in this case.

2.2 Sparse Matrices and Chordal Graphs

In this subsection, we briefly revisit the relationship between sparse matrices and
chordal graphs, which is crucial for the sparsity-exploitation of this paper. For more
details on sparse matrices and chordal graphs, the reader is referred to the survey [27].

An (undirected) graph G(V , E) or simply G consists of a set of nodes V and a set
of edges E ⊆ {{vi , v j } | (vi , v j ) ∈ V ×V }. WhenG is a graph, we also use V (G) and
E(G) to indicate the node set of G and the edge set of G, respectively. The adjacency
matrix of G is denoted by BG for which we put ones on positions corresponding to
edges ofG aswell as its diagonal and put zeros otherwise. For two graphsG, H , we say
that G is a subgraph of H if V (G) ⊆ V (H) and E(G) ⊆ E(H), denoted by G ⊆ H .
A graph is called a chordal graph if all its cycles of length at least four have a chord1.
Any non-chordal graph G(V , E) can always be extended to a chordal graph G(V , E)

by adding appropriate edges to E , which is called a chordal extension of G(V , E). A
clique C ⊆ V of G is a subset of nodes where {vi , v j } ∈ E for any vi , v j ∈ C . If a
clique C is not a subset of any other clique, then it is called a maximal clique. It is
known that maximal cliques of a chordal graph can be enumerated efficiently in linear
time in the number of nodes and edges of the graph [6].

1 By a chord, we means an edge that joins two nonconsecutive nodes in a cycle.
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Remark 2.5 For a graph G, we denote any specific chordal extension of G by G. The
chordal extension ofG is generally not unique. In this paper, we will consider two par-
ticular types of chordal extensions: the maximal chordal extension and approximately
smallest chordal extensions. By themaximal chordal extension, we refer to the chordal
extension that completes every connected component of G. A chordal extension with
the smallest clique number is called a smallest chordal extension. Computing a small-
est chordal extension of a graph is an NP-complete problem in general. Fortunately,
several heuristic algorithms, e.g., the greedy minimum degree and the greedy mini-
mum fill-ins, are known to efficiently produce a good approximation; see [7] for more
detailed discussions. Throughout the paper, we assume that for graphs G, H ,

G ⊆ H �⇒ G ⊆ H . (2.3)

This assumption is reasonable since any chordal extension of H restricting to G is
also a chordal extension of G.

Given a graph G(V , E), a Hermitian matrix Q indexed by V = [n] is said to
have sparsity pattern G if Qi j = Q ji = 0 whenever i �= j and {i, j} /∈ E , i.e.,
BG ◦ Q = Q. Let HG be the set of Hermitian matrices with sparsity pattern G. A
matrix in HG exhibits a block structure. Each block corresponds to a maximal clique
of G. The maximal block size is the maximal size of maximal cliques of G, namely,
the clique number of G. Note that there might be overlaps between blocks because
different maximal cliques may share nodes.

Given a maximal clique C of G(V , E), we define a matrix PC ∈ R
|C|×|V | by

[PC ]i j =
{
1, if C(i) = j,

0, otherwise,
(2.4)

whereC(i) denotes the i-th node inC , sorted in the ordering compatible with V . Note
that PCQPT

C ∈ H|C| extracts a principal submatrix defined by the indices in the clique
C from a Hermitian matrix Q, and PT

C QC PC inflates a |C | × |C | matrix QC into a
sparse |V | × |V | matrix.

The PSD matrices with sparsity pattern G form a convex cone

H|V |
+ ∩ HG = {Q ∈ HG | Q � 0}. (2.5)

When the sparsity pattern graph G is chordal, the coneH|V |
+ ∩HG can be decomposed

as a sum of simple convex cones, as stated in the following theorem.

Theorem 2.6 ([1], Theorem 2.3) Let G(V , E) be a chordal graph and assume that
{C1, . . . ,Ct } is the list of maximal cliques of G(V , E). Then, a matrix Q ∈ H|V |

+ ∩HG

if and only if there exist Qk ∈ H|Ck |+ for k = 1, . . . , t such that Q = ∑t
k=1 P

T
Ck

Qk PCk .
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Given a graph G(V , E), let �G be the projection from H|V | to the subspace HG ,
i.e., for Q ∈ H|V |,

�G(Q)i j =
{
Qi j , if {i, j} ∈ E or i = j,

0, otherwise.
(2.6)

We denote by�G(H|V |
+ ) the set of matrices inHG that have a PSD completion, i.e.,

�G(H|V |
+ ) = {�G(Q) | Q ∈ H|V |

+ }. (2.7)

One can check that the PSD completable cone �G(H|V |
+ ) and the PSD coneH|V |

+ ∩
HG form a pair of dual cones inHG ; see [27, Section 10.1] for a proof. Moreover, for
a chordal graph G, the decomposition result for the cone H|V |

+ ∩ HG in Theorem 2.6

leads to the following characterization of the PSD completable cone �G(H|V |
+ ).

Theorem 2.7 ([14], Theorem 7) Let G(V , E) be a chordal graph and assume that
{C1, . . . ,Ct } is the list of maximal cliques of G(V , E). Then, a matrix Q ∈ �G(H|V |

+ )

if and only if Qk = PCk QPT
Ck

� 0 for k = 1, . . . , t .

3 Sparsity-Adapted ComplexMoment-HSOS Hierarchies

In this section, we adapt the real moment-SOS hierarchies that exploit sparsity devel-
oped in [29,33–35] to the complex case.

3.1 Correlative Sparsity

The procedure to exploit correlative sparsity for the complex hierarchy consists of
two steps: (1) partition the set of variables into subsets according to the correlations
between variables emerging in the problem data, and (2) construct a sparse complex
hierarchy with respect to the former partition of variables [17,29].

Let us discuss in more details. Consider the CPOP defined by (1.1). Recall d j =
�deg(g j )/2
, j ∈ [m] and dmin = max{�deg( f )/2
, d1, . . . , dm}. Fix a relaxation
order d ≥ dmin . Let J ′ := { j ∈ [m] | d j = d}. For β = (βi )i ∈ N

n , let supp(β) :=
{i ∈ [n] | βi �= 0}. We define the correlative sparsity pattern (csp) graph associated
with CPOP (1.1) to be the graph Gcsp with nodes V = [n] and edges E satisfying
{i, j} ∈ E if one of the following holds:

(i) there exists (β, γ ) ∈ supp( f ) ∪ ⋃
j∈J ′ supp(g j ) such that {i, j} ⊆ supp(β) ∪

supp(γ );
(ii) there exists k ∈ [m]\J ′ such that {i, j} ⊆ ⋃

(β,γ )∈supp(gk )(supp(β) ∪ supp(γ )).

Remark 3.1 Weadopt the idea of “monomial sparsity” proposed in [17] in the definition
of csp graphs, which thus is slightly different from the original definition in [29].
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Let G
csp

be a chordal extension of Gcsp and {Il}l∈[p] be the list of maximal cliques
of G

csp
with nl := |Il |. Let C[z(Il)] denote the ring of complex polynomials in

the nl variables z(Il) = {zi | i ∈ Il}. We then partition the constraint polynomials
g j , j ∈ [m]\J ′ into groups {g j | j ∈ Jl}, l ∈ [p] which satisfy:

(i) J1, . . . , Jp ⊆ [m]\J ′ are pairwise disjoint and ∪p
l=1 Jl = [m]\J ′;

(ii) for any j ∈ Jl ,
⋃

(β,γ )∈supp(g j )
(supp(β) ∪ supp(γ )) ⊆ Il , l ∈ [p].

Example 3.2 Consider the following CPOP

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

infz∈C3 z1 z̄2 + z̄1z2 + |z3|2
s.t. g1 = 1 − |z1|2 − |z2|2 ≥ 0,

g2 = 1 − |z2|2 − |z3|2 ≥ 0,

g3 = |z1|4 + z2 z̄3 + z̄2z3 ≥ 0.

Taking d = dmin = 2, we have two variable cliques I1 = {1, 2}, I2 = {2, 3}, and J ′ =
{3}, J1 = {1}, J2 = {2}; taking d = 3, we have one variable clique I1 = {1, 2, 3}, and
J ′ = ∅, J1 = {1, 2, 3}.

Next,with l ∈ [p] and g ∈ C[z(Il)], letMc
d(y, Il) (resp.M

c
d(gy, Il)) be the complex

moment (resp. complex localizing) submatrix obtained fromMc
d(y) (resp.M

c
d(gy)) by

retaining only those rows and columns indexed by β ∈ N
n
d of Mc

d(y) (resp. M
c
d(gy))

with supp(β) ⊆ Il .
Then, the complex (moment) hierarchy based on correlative sparsity for CPOP (1.1)

is defined as

(Qcs
d ) :

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

inf Lc
y( f )

s.t. Mc
d(y, Il) � 0, l ∈ [p],

Mc
d−d j

(g jy, Il) � 0, j ∈ Jl , l ∈ [p],
Lc
y(g j ) ≥ 0, j ∈ J ′,

y0,0 = 1.

(3.1)

We denote the optimum of (Qcs
d ) by ρcs

d .

Proposition 3.3 If CPOP (1.1) is a QCQP, then (Qcs
1 ) and (Q1) yield the same lower

bound for (1.1), i.e., ρcs
1 = ρ1.

Proof By construction, the objective function and the affine constraints of (Q1) involve
only the decision variables {yβ,γ }(β,γ ) with supp(β) ∪ supp(γ ) ⊆ Il for some l ∈
[p]. Therefore, we can replace Mc

1(y) � 0 by BG ◦ Mc
1(y) ∈ �G(Hn+1+ ) without

changing the optimum, where G is the graph obtained from G
csp

by adding a node
0 (corresponding to 0 ∈ N

n) and adding edges {0, i}, i ∈ [n]. Note that G is again a
chordal graph and so the equality of optima of (Q1) and (Qcs

1 ) follows from Theorem
2.7. ��
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1 z22

z21 z23

z1 z2 z3

z2z3 z1z3 z1z2

Fig. 1 The tsp graph with d = 2 for Example 3.5

3.2 Term Sparsity

Besides correlative sparsity, one can also exploit term sparsity for the complex hierar-
chy, which was recently developed for real POPs in [33–35]. The intuition behind this
procedure is the following: starting with a minimal initial support set, one expands
the support set that is taken into account by iteratively performing chordal extensions
to the related sparsity pattern graphs inspired by Theorem 2.7. We next adapt it to the
complex case.

Let A = supp( f ) ∪ ⋃m
j=1 supp(g j ). We define the term sparsity pattern (tsp)

graph at relaxation order d associated with CPOP (1.1) or the set A , to be the graph
G tsp

d with nodes V = N
n
d and edges

E := {{β, γ } ⊆ N
n
d | (β, γ ) ∈ A }. (3.2)

Remark 3.4 There is a difference on the definitions of tsp graphs between the complex
and real cases. In the real case, we use A ∪ 2N

n
d rather than A in (3.2) due to the

Hankel structure of real moment matrices.

Example 3.5 Consider the following CPOP

{
infz∈C3 z21 + z̄21 + z1 z̄2 + z̄1z2 + z2 z̄3 + z̄2z3 + z1z2 z̄3 + z̄1 z̄2z3
s.t. g1 = 1 − |z1|2 − |z2|2 − |z3|2 ≥ 0.

Figure 1 illustrates the tsp graph G tsp
2 for this CPOP, where the nodes are labeled by

zβ instead of β for better visualization.

For any graph G with V ⊆ N
n and g = ∑

(β ′,γ ′) gβ ′,γ ′zβ ′
z̄γ ′ ∈ C[z, z̄], we define

the g-support of G by

suppg(G) := {(β + β ′, γ + γ ′) | β = γ ∈ V (G) or {β, γ } ∈ E(G), (β ′, γ ′) ∈ supp(g)}.

123



Journal of Optimization Theory and Applications (2022) 192:335–359 345

Let us set d0 := 0 and g0 := 1. Now, assume that G(0)
d,0 = G tsp

d and G(0)
d, j , j ∈

[m] are empty graphs. Then, we iteratively define an ascending chain of graphs
(G(k)

d, j (Vd, j , E
(k)
d, j ))k≥1 with Vd, j = N

n
d−d j

for each j ∈ {0} ∪ [m] by

G(k)
d, j := F (k)

d, j , (3.3)

where F (k)
d, j is the graph with V (F (k)

d, j ) = N
n
d−d j

and

E(F (k)
d, j ) = {{β, γ } ⊆ N

n
d−d j

| ((β, γ ) + supp(g j )) ∩ (

m⋃

i=0

suppgi (G
(k−1)
d,i )) �= ∅}.

(3.4)
Let r j := (n+d−d j

d−d j

)
for j ∈ {0}∪ [m]. Then, with d ≥ dmin and k ≥ 1, the complex

(moment) hierarchy based on term sparsity for CPOP (1.1) is defined as

(Qts
d,k) :

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

inf Lc
y( f )

s.t. B
G(k)
d,0

◦ Mc
d(y) ∈ �

G(k)
d,0

(Hr0+ ),

B
G(k)
d, j

◦ Mc
d−d j

(g jy) ∈ �
G(k)
d, j

(H
r j
+ ), j ∈ [m],

y0,0 = 1,

(3.5)

with optimum denoted by ρts
d,k . The above hierarchy is called the (complex) TSSOS

hierarchy, which is indexed by two parameters: the relaxation order d and the sparse
order k.

Theorem 3.6 Consider CPOP (1.1). The following holds:

(i) Fixing a relaxation order d ≥ dmin, the sequence (ρts
d,k)k≥1 is monotonically

nondecreasing and ρts
d,k ≤ ρd for all k (with ρd defined in Sect. 2.1).

(ii) Fixing a sparse order k ≥ 1, the sequence (ρts
d,k)d≥dmin is monotonically nonde-

creasing.

Proof (i). For all j, k, by construction we have G(k)
d, j ⊆ G(k+1)

d, j , which implies that

B
G(k)
d, j

◦ Mc
d−d j

(g jy) ∈ �
G(k)
d, j

(H
r j
+ ) is less restrictive than B

G(k+1)
d, j

◦ Mc
d−d j

(g jy) ∈
�

G(k+1)
d, j

(H
r j
+ ). Hence, (Qts

d,k) is a relaxation of (Q
ts
d,k+1) and is clearly also a relaxation

of (Qd). As a result, (ρ
ts
d,k)k≥1 is monotonically nondecreasing and ρts

d,k ≤ ρd for all
k.

(ii). The conclusion follows if we can show that the inclusionG(k)
d, j ⊆ G(k)

d+1, j holds

for all d, j since this implies that (Qts
d,k) is a relaxation of (Qts

d+1,k). Let us prove

G(k)
d, j ⊆ G(k)

d+1, j by induction on k. For k = 1, we have E(G tsp
d ) ⊆ E(G tsp

d+1) by (3.2),

which impliesG(1)
d, j ⊆ G(1)

d+1, j for all d, j . Now, assume thatG(k)
d, j ⊆ G(k)

d+1, j holds for
all d, j for a given k ≥ 1. Then, by (2.3), (3.3), (3.4) and by the induction hypothesis,
we deduce that G(k+1)

d, j ⊆ G(k+1)
d+1, j holds for all d, j , which completes the induction. ��
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When building (Qts
d,k), we have the freedom to choose a specific chordal extension

for any involved graph G(k)
d, j , which offers a trade-off between the quality of obtained

bounds and the computational cost. We show that if the maximal chordal extension
is chosen, then with d fixed, the resulting sequence of optima of the hierarchy (as k
increases) converges in finitely many steps to the optimum of the corresponding dense
relaxation.

Theorem 3.7 Consider CPOP (1.1). If the maximal chordal extension is used in (3.3),
then for d ≥ dmin, (ρts

d,k)k≥1 converges to ρd in finitely many steps.

Proof Let d be fixed. It is clear that for all j ∈ {0} ∪ [m], the graph sequence
(G(k)

d, j )k≥1 stabilizes after finitely many steps and we denote the stabilized graph

by G(◦)
d, j . Let (Qts

d,◦) be the moment relaxation corresponding to the stabilized
graphs and let y∗ = (y∗

β,γ ) be an arbitrary feasible solution. Notice that {yβ,γ |
(β, γ ) ∈ ⋃m

i=0 suppg j
(G(◦)

d, j )} is the set of decision variables involved in (Qts
d,◦) and

{yβ,γ | (β, γ ) ∈ N
n
d × N

n
d} is the set of decision variables involved in (Qd ). Define

y∗ = (y∗
β,γ )(β,γ )∈Nn

d×N
n
d
as follows:

y∗
β,γ =

{
y∗
β,γ , if (β, γ ) ∈ ⋃m

i=0 suppg j
(G(◦)

d, j ),

0, otherwise.

If the maximal chordal extension is used in (3.3), then we have that the matrices in
�

G(k)
d, j

(H
r j
+ ) are block-diagonal (up to permutation on rows and columns) for all j, k.As

a consequence, B
G(k)
d, j

◦Mc
d−d j

(g jy) ∈ �
G(k)
d, j

(H
r j
+ ) implies B

G(k)
d, j

◦Mc
d−d j

(g jy) � 0.

By construction, we haveMc
d−d j

(g jy∗) = B
G(◦)
d, j

◦Mc
d−d j

(g jy∗) � 0 for all j ∈ {0}∪
[m]. Therefore, y∗ is a feasible solution of (Qd ) and hence Lc

y∗( f ) = Lc
y∗( f ) ≥ ρd ,

which yields ρts
d,◦ ≥ ρd since y∗ is an arbitrary feasible solution of (Qts

d,◦). By (i) of
Theorem 3.6, we already have ρts

d,◦ ≤ ρd . So ρts
d,◦ = ρd as desired. ��

Proposition 3.8 If CPOP (1.1) is a QCQP, then (Qts
1,1) and (Q1) yield the same lower

bound for CPOP (1.1), i.e., ρts
1,1 = ρ1.

Proof For a QCQP, (Q1) reads as

(Q1) :

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

inf Lc
y( f )

s.t. Mc
1(y) � 0,

Lc
y(g j ) ≥ 0, j ∈ [m],

y0,0 = 1.

Note that the objective function and the affine constraints of (Q1) involve only the
decision variables {y0,0}∪{yβ,γ }(β,γ )∈A withA = supp( f )∪⋃m

j=1 supp(g j ). Hence,
there is no discrepancy of optima in replacing (Q1) with (Qts

1,1) by construction. ��
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Sign symmetry. Let A ⊆ N
n × N

n . The sign symmetries of A consist of all binary
vectors r ∈ Z

n
2 := {0, 1}n such that rT (β + γ ) ≡ 0 (mod 2) for all (β, γ ) ∈ A .

For the monomial basis N
n
d , a set of sign symmetries R = [r1, . . . , rs] (regarded as

a matrix with columns ri ∈ Z
n
2) induces a partition on N

n
d : β, γ ∈ N

n
d belong to the

same block in this partition if and only if RT (β + γ ) ≡ 0 (mod 2).
We now prove that the block structure at each step of the TSSOS hierarchy is a

refinement of the one induced by the sign symmetries of the system.

Theorem 3.9 Consider CPOP (1.1). LetA = supp( f )∪⋃m
j=1 supp(g j ) and R be its

sign symmetries. Assumed ≥ dmin and k ≥ 1. For any j ∈ {0}∪[m]andβ, γ ∈ N
n
d−d j

,

if {β, γ } ∈ E(G(k)
d, j ), then RT (β + γ ) ≡ 0 (mod 2).

Proof We prove the conclusion by induction on k. For k = 1, suppose {β, γ } ∈
E(F (1)

d, j ). By (3.4), there exists (β ′, γ ′) ∈ supp(g j ) such that (β, γ ) + (β ′, γ ′) ∈
A . Hence, RT (β + γ ) + RT (β ′ + γ ′) ≡ 0 (mod 2) and since RT (β ′ + γ ′) ≡
0 (mod 2), it follows that RT (β + γ ) ≡ 0 (mod 2). Note that G(1)

d, j is a chordal

extension of F (1)
d, j such that the additional edges connect two nodes belonging to the

same connected component. Thus, it is not hard to show that if {β, γ } ∈ E(G(k)
d, j ),

then RT (β + γ ) ≡ 0 (mod 2). Now, assume that the conclusion holds for a given
k ≥ 1, which implies that for all i and for any (β, γ ) ∈ suppgi (G

(k)
d,i ), R

T (β +γ ) ≡ 0

(mod 2). For {β, γ } ∈ E(F (k+1)
d, j ), by (3.4), there exists (β ′, γ ′) ∈ supp(g j ) such

that (β, γ ) + (β ′, γ ′) ∈ ⋃m
i=0 suppgi (G

(k)
d,i ). Hence, by the induction hypothesis,

RT (β + γ ) + RT (β ′ + γ ′) ≡ 0 (mod 2) and so RT (β + γ ) ≡ 0 (mod 2). Because
G(k+1)

d, j is a chordal extension of F (k+1)
d, j such that the additional edges connect two

nodes belonging to the same connected component, we obtain that the conclusion
holds for k + 1 and complete the induction. ��

In contrast with the real case in which it was shown that the partition onN
n
d−d j

, j ∈
{0}∪[m] at the final step of the TSSOS hierarchy (i.e., when it stabilizes as k increases)
using themaximal chordal extension is exactly the one induced by the sign symmetries
of the system [34], in the complex case this is not necessarily true as the following
example illustrates.

Example 3.10 Consider the following CPOP

inf{z1 + z̄1 : 1 − z1 z̄1 − z2 z̄2 ≥ 0}.

Let us take the relaxation order d = 2. One can easily check by hand that the partition
on N

2
2 at the final step of the TSSOS hierarchy using the maximal chordal extension

is {1, z1, z21}, {z22} and {z2, z1z2}, while the partition induced by sign symmetries is
{1, z1, z21, z22} and {z2, z1z2}. Clearly, the former is a strict refinement of the latter.
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3.3 Correlative-Term Sparsity

We are now prepared to exploit correlative sparsity and term sparsity simultaneously
in the complex hierarchy for CPOP (1.1).

Let {Il}l∈[p], {nl}l∈[p], J ′, {Jl}l∈[p] be defined as in Sect. 3.1. We apply the iterative
procedure of exploiting term sparsity to each subsystem involving variables z(Il) for
l ∈ [p] as follows. Let

A := supp( f ) ∪
m⋃

j=1

supp(g j ) (3.6)

and
Al := {(β, γ ) ∈ A | supp(β) ∪ supp(γ ) ⊆ Il} (3.7)

for l ∈ [p]. As before, dmin := max{�deg( f )/2
, d1, . . . , dm}, d0 := 0 and g0 := 1.
Fix a relaxation order d ≥ dmin. LetG

tsp
d,l be the tsp graph with nodesN

nl
d−d j

associated

with Al defined as in Sect. 3.2. Note that here we embed N
nl
d−d j

into N
n
d−d j

via the

map α = (αi )i∈Il ∈ N
nl
d−d j


→ α′ = (α′
i )i∈[n] ∈ N

n
d−d j

which satisfies

α′
i =

{
αi , if i ∈ Il ,

0, otherwise.

Assume that G(0)
d,l,0 = G tsp

d,l and G(0)
d,l, j , j ∈ Jl , l ∈ [p] are empty graphs. Letting

C (k−1)
d :=

p⋃

l=1

⋃

j∈{0}∪Jl

suppg j
(G(k−1)

d,l, j ), k ≥ 1, (3.8)

we iteratively define an ascending chain of graphs (G(k)
d,l, j (Vd,l, j , E

(k)
d,l, j ))k≥1 with

Vd,l, j = N
nl
d−d j

for each j ∈ {0} ∪ Jl and each l ∈ [p] by

G(k)
d,l, j := F (k)

d,l, j , (3.9)

where F (k)
d,l, j is the graph with V (F (k)

d,l, j ) = N
nl
d−d j

and

E(F (k)
d,l, j ) = {{β, γ } ⊆ N

nl
d−d j

| ((β, γ ) + supp(g j )) ∩ C (k−1)
d �= ∅}. (3.10)
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Let rd,l, j := (nl+d−d j
d−d j

)
for all l, j . Then, with d ≥ dmin and k ≥ 1, the complex

(moment) hierarchy based on correlative-term sparsity for CPOP (1.1) is defined as

(Qcs-ts
d,k ) :

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

inf Lc
y( f )

s.t. B
G(k)
d,l,0

◦ Mc
d(y, Il) ∈ �

G(k)
d,l,0

(Hrd,l,0
+ ), l ∈ [p],

B
G(k)
d,l, j

◦ Mc
d−d j

(g jy, Il) ∈ �
G(k)
d,l, j

(H
rd,l, j
+ ), j ∈ Jl , l ∈ [p],

Lc
y(g j ) ≥ 0, j ∈ J ′,

y0,0 = 1,
(3.11)

with optimum denoted by ρcs-ts
d,k . The above hierarchy is called the (complex) CS-

TSSOS hierarchy indexed by the relaxation order d and the sparse order k.
By similar arguments as for Theorem 3.6, we can prove the following theorem.

Theorem 3.11 Consider CPOP (1.1). The following holds:

(i) Fixing a relaxation order d ≥ dmin, the sequence (ρcs-ts
d,k )k≥1 is monotonically

nondecreasing and ρcs-ts
d,k ≤ ρcs

d for all k (with ρcs
d defined in Sect. 3.1).

(ii) Fixing a sparse order k ≥ 1, the sequence (ρcs-ts
d,k )d≥dmin is monotonically nonde-

creasing.

From Theorem 3.11, we have the following two-level hierarchy of lower bounds
for the optimum of CPOP (1.1):

ρcs-ts
dmin,1

≤ ρcs-ts
dmin,2

≤ · · · ≤ ρcs
dmin

≥ ≥ ≥

ρcs-ts
dmin+1,1 ≤ ρcs-ts

dmin+1,2 ≤ · · · ≤ ρcs
dmin+1

≥ ≥ ≥

...
...

...
...

≥ ≥ ≥

ρcs-ts
d,1 ≤ ρcs-ts

d,2 ≤ · · · ≤ ρcs
d

≥ ≥ ≥

...
...

...
...

(3.12)

By similar arguments as for Theorem 3.7, we can prove the convergence of the
CS-TSSOS hierarchy at each relaxation order when the maximal chordal extension is
chosen.

Theorem 3.12 Consider CPOP (1.1). If themaximal chordal extension is used in (3.9),
then for d ≥ dmin, (ρcs-ts

d,k )k≥1 converges to ρcs
d in finitely many steps.

By slightly adapting the proof of Theorem3.9, one can prove that the block structure
at each step of the CS-TSSOS hierarchy is also “governed” by the sign symmetries of
the system.
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Theorem 3.13 Consider CPOP (1.1). Let A = supp( f ) ∪ ⋃m
j=1 supp(g j ) and R be

its sign symmetries. Assume d ≥ dmin and k ≥ 1. For any j ∈ Jl , l ∈ [p] and
β, γ ∈ N

nl
d−d j

, if {β, γ } ∈ E(G(k)
d,l, j ), then RT (β + γ ) ≡ 0 (mod 2).

If CPOP (1.1) is a QCQP, then by Proposition 3.3, we have ρcs
1 = ρ1. To ensure

any higher order relaxation (Qcs-ts
d,k ) (d > 1) achieves a better lower bound than Shor’s

relaxation, we may add an extra first-order moment matrix for each variable clique2:

(Qcs-ts
d,k )′ :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

inf Lc
y( f )

s.t. B
G(k)
d,l,0

◦ Mc
d(y, Il) ∈ �

G(k)
d,l,0

(Hrd,l,0
+ ), l ∈ [p],

Mc
1(y, Il) � 0, l ∈ [p],

B
G(k)
d,l, j

◦ Mc
d−d j

(g jy, Il) ∈ �
G(k)
d,l, j

(H
rd,l, j
+ ), j ∈ Jl , l ∈ [p],

Lc
y(g j ) ≥ 0, j ∈ J ′,

y0,0 = 1.
(3.13)

4 TheMinimum Initial Relaxation Step of the Complex Hierarchy

For CPOP (1.1), suppose that f is not homogeneous or the constraint polyno-
mials g j , j ∈ [m] have different degrees. Then, it might be beneficial to assign
different relaxation orders to different subsystems obtained from the correlative
sparsity pattern for the initial relaxation step of the complex hierarchy instead of
using the uniform minimum relaxation order dmin. More specifically, we redefine
the csp graph G icsp(V , E) as follows: let V = [n] and {i, j} ∈ E if there exists
(β, γ ) ∈ supp( f ) ∪ ⋃

j∈[m] supp(g j ) such that {i, j} ⊆ supp(β) ∪ supp(γ ). This
is clearly a subgraph of Gcsp defined in Sect. 3.1 and hence typically has a smaller

chordal extension. Let G
icsp

be a chordal extension of G icsp and {Il}l∈[p] be the list of
maximal cliques ofG

icsp
with nl := |Il |. Now, we partition the constraint polynomials

g j , j ∈ [m] into groups {g j | j ∈ Jl}l∈[p] and {g j | j ∈ J ′} which satisfy:

(i) J1, . . . , Jp, J ′ ⊆ [m] are pairwise disjoint and ⋃p
l=1 Jl ∪ J ′ = [m];

(ii) for any j ∈ Jl ,
⋃

(β,γ )∈supp(g j )
(supp(β) ∪ supp(γ )) ⊆ Il , l ∈ [p];

(iii) for any j ∈ J ′,
⋃

(β,γ )∈supp(g j )
(supp(β) ∪ supp(γ )) � Il for all l ∈ [p].

Assume that f decomposes as f = ∑
l∈[p] fl such that

⋃
(β,γ )∈supp( fl )(supp(β) ∪

supp(γ )) ⊆ Il for l ∈ [p]. We define the vector of minimum relaxation orders
o = (ol)l ∈ N

p with ol := max({d j : j ∈ Jl} ∪ {�deg( fl)/2
}). Then, with k ≥ 1, we
consider the following initial relaxation step of the complex hierarchy:

2 Even if CPOP (1.1) is not a QCQP, this operation could also strengthen the relaxation.
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Table 1 The notation n number of complex variables

d relaxation order

k sparse order

mb maximal size of PSD blocks

opt optimum

time running time in seconds

gap optimality gap

- an out of memory error

(Qcs-ts
min,k) :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

inf Lc
y( f )

s.t. B
G(k)
ol ,l,0

◦ Mc
ol (y, Il) ∈ �

G(k)
ol ,l,0

(Hsl,0
+ ), l ∈ [p],

Mc
1(y, Il) � 0, l ∈ [p],

B
G(k)
ol ,l, j

◦ Mc
ol−d j

(g jy, Il) ∈ �
G(k)
ol ,l, j

(H
sl, j
+ ), j ∈ Jl , l ∈ [p],

Lc
y(g j ) ≥ 0, j ∈ J ′,

y0,0 = 1,
(4.1)

where the sparsity pattern graphs G(k)
ol ,l, j

, j ∈ Jl , l ∈ [p] are defined in the same

manner as in Sect. 3.3 with V (G(k)
ol ,l, j

) = N
nl
ol−d j

and sl, j := (nl+ol−d j
ol−d j

)
for all l, j .

Remark 4.1 Similarly, we can also define the minimum initial relaxation step for the
real hierarchy.

5 Numerical Experiments

In this section, we present numerical results of the proposed sparsity-adapted com-
plex hierarchies for complex polynomial optimization problems. The hierarchies were
implemented in the Julia package TSSOS [22], which utilizes the Julia packages
LightGraphs [8] to handle graphs, ChordalGraph [30] to generate approxi-
mately smallest chordal extensions, andJuMP [11] tomodel theSDP.For thenumerical
experiments in this paper, Mosek [25] is used as an SDP solver. TSSOS is freely avail-
able at https://github.com/wangjie212/TSSOS.

All numerical examples were computed on an Intel Core i5-8265U@1.60GHzCPU
with 8GB RAMmemory. We list the notations that are used in this section in Table 1.
The running times include the time for pre-processing (to get the block structure), the
time for modeling the SDP and the time for solving the SDP.
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Table 2 The complex hierarchy
versus the real hierarchy with
d = 2, k = 1 for minimizing
quartic objective functions on
multi-balls

n CE Complex Real
mb opt Time mb opt Time

55 min 6 −24.6965 0.95 21 -21.2240 9.21

max 36 −24.4543 5.82 – – –

105 min 6 −48.9783 2.45 21 −40.4650 36.5

max 46 −48.8367 16.9 – – –

155 min 6 −69.4493 4.10 21 -57.9840 44.3

max 52 −69.2345 29.3 – – –

205 min 6 −100.132 6.92 21 -82.7737 85.5

max 54 −99.4924 65.4 – – –

255 min 8 −122.621 10.9 21 -102.728 107

max 46 −121.754 81.7 – – –

305 min 8 −151.096 13.7 21 -126.094 134

max 52 −149.406 54.7 – – –

355 min 8 −172.275 18.3 21 -144.936 182

max 52 −170.655 65.2 – – –

405 min 8 −197.036 24.7 21 -163.360 229

max 48 −195.287 79.6 – – –

455 min 8 −224.471 29.3 21 -184.701 278

max 52 −222.837 85.5 – – –

505 min 8 −238.760 35.2 21 -199.774 357

max 46 −237.437 108 – – –

5.1 Randomly Generated Examples

Given an integer p ∈ N, we randomly generate a CPOP as follows:

(1) Let f = ∑p
l=1 fl ∈ C4[z1, . . . , z5(p+1), z̄1, . . . , z̄5(p+1)], where for all l ∈ [p],

fl = f̄l ∈ C4[z5(l−1)+1, . . . , z5(l−1)+10, z̄5(l−1)+1, . . . , z̄5(l−1)+10] is a polyno-
mial with 40 terms whose real/imaginary parts of coefficients are selected with
respect to the uniform probability distribution on [−1, 1];

(2) Let us encode multi-ball constraints with gl = 1 − ∑10
i=1 z5(l−1)+i z̄5(l−1)+i for

l ∈ [p];
(3) The CPOP is defined as infz∈C5(p+1){ f (z, z̄) : gl(z, z̄) ≥ 0, l = 1, . . . , p}.
In such a way, we generate 10 randomCPOPs with p = 10, 20, . . . , 100, respectively.
We compare the performance of the complex hierarchy with that of the real hierarchy
in solving these instances with d = 2, k = 1 and with approximately smallest chordal
extensions or the maximal chordal extension. The results are displayed in Table 2. The
column “CE” indicates which type of chordal extensions we use: “min” represents
approximately smallest chordal extensions and “max” represents the maximal chordal
extension.

As we can see from Table 2, for the complex hierarchy, the bound with the maximal
chordal extension is slightly better than the boundwith approximately smallest chordal
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Table 3 The complex hierarchy
with different sparse orders.
Here, “gap” is the relative gap
with respect to the bound given
by the real hierarchy in Table 2

n k CE mb opt Time Gap

55 1 min 6 −24.6965 0.95 16.36%

55 2 min 38 −21.4174 13.3 0.91%

Table 4 The results for AC-OPF instances: typical operating conditions

Case Order Complex Real

mb opt Time Gap mb opt Time Gap

14_ieee 1st 6 2.1781e3 0.07 0.00% 6 2.1781e3 0.09 0.00%

30_ieee 1st 8 7.5472e3 0.12 8.06% 8 7.5472e3 0.15 8.06%

1.5th 12 8.2073e3 0.66 0.02% 22 8.2085e3 0.97 0.00%

39_epri 1st 8 1.3565e4 0.17 2.00% 8 1.3565e4 0.22 2.00%

1.5th 14 1.3765e4 1.08 0.55% 25 1.3842e4 1.12 0.00%

57_ieee 1st 12 3.7588e4 0.27 0.00% 12 3.7588e4 0.32 0.00%

89_pegase 1st 24 1.0670e5 0.72 0.55% 24 1.0670e5 0.74 0.55%

1.5th 96 1.0709e5 263 0.19% 184 1.0715e5 1232 0.13%

118_ieee 1st 10 9.6900e4 0.49 0.32% 10 9.6901e4 0.57 0.32%

1.5th 20 9.7199e4 5.22 0.02% 37 9.7214e4 8.78 0.00%

162_ieee_dtc 1st 28 1.0164e5 1.49 5.96% 28 1.0164e5 1.51 5.96%

1.5th 40 1.0249e5 17.1 5.17% 74 1.0645e5 87.5 1.51%

2nd 146 – – – 282 – – –

179_goc 1st 10 7.5016e5 0.72 0.55% 10 7.5016e5 0.77 0.55%

1.5th 20 7.5078e5 6.77 0.46% 37 7.5382e5 10.6 0.06%

300_ieee 1st 14 5.5424e5 1.41 1.94% 16 5.5424e5 1.49 1.94%

1.5th 22 5.6455e5 19.1 0.12% 40 5.6522e5 27.3 0.00%

1354_pegase 1st 26 1.2172e6 10.9 3.30% 26 1.2172e6 13.1 3.30%

1.5th 26 1.2304e6 255 2.29% 49 1.2514e6 392 0.59%

2383wp_k 1st 48 1.8620e6 36.2 0.33% 50 1.8617e6 43.4 0.35%

2869_pegase 1st 26 2.4387e6 47.2 0.98% 26 2.4388e6 67.3 0.97%

1.5th 98 2.4586e6 1666 0.17% 191 – – –

extensions. Both of them have relative gaps around 20% with respect to the bound
given by the real hierarchy with approximately smallest chordal extensions. The gap
can be reduced if we increase the sparse order of the complex hierarchy. For instance,
for the random CPOP with p = 10, the complex hierarchy with d = 2, k = 1 has a
relative gap of 16.36% and the complex hierarchy with d = 2, k = 2 has a relative
gap of 0.91%; see Table 3.

On the other hand, when using approximately smallest chordal extensions and with
k = 1, the complex hierarchy is over 9 times faster then the real hierarchy for each
instance. Due to the limitation of memory, the real hierarchy with the maximal chordal
extension is unsolvable.
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Table 5 The results for AC-OPF instances: congested operating conditions

Case Order Complex Real

mb opt Time Gap mb opt Time Gap

14_ieee 1st 6 5.6886e3 0.06 5.18% 6 5.6886e3 0.07 5.18%

1.5th 14 5.9981e3 0.39 0.02% 22 5.9994e3 0.52 0.00%

30_ieee 1st 8 1.7253e4 0.13 4.40% 8 1.7253e4 0.14 4.40%

1.5th 12 1.7941e4 0.78 0.59% 22 1.8044e4 1.09 0.00%

39_epri 1st 8 2.4523e5 0.19 1.78% 8 2.4523e5 0.21 1.78%

1.5th 14 2.4707e5 1.08 1.04% 25 2.4966e5 1.70 0.00%

57_ieee 1st 12 4.9289e5 0.22 0.00% 12 4.9289e5 0.29 0.00%

89_pegase 1st 24 1.0052e5 0.68 22.78% 24 1.0052e5 0.75 22.78%

1.5th 96 1.0145e5 196 22.06% 184 1.0322e5 1448 20.71%

2nd 224 – – – 426 – – –

118_ieee 1st 10 1.9375e5 0.58 20.02% 10 1.9375e5 0.65 20.02%

1.5th 20 2.0193e5 6.15 16.64% 37 2.2286e5 8.58 9.00%

2nd 48 2.2318e5 125 7.87% 92 – – –

162_ieee_dtc 1st 28 1.1206e5 1.67 7.38% 28 1.1206e5 1.71 7.38%

1.5th 40 1.1284e5 22.5 6.74% 74 1.1955e5 81.4 1.19%

2nd 146 – – – 282 – – –

179_goc 1st 10 1.7224e6 0.77 10.85% 10 1.7224e6 0.78 10.85%

1.5th 20 1.8438e6 7.75 4.57% 37 1.9226e6 8.57 0.48%

300_ieee 1st 14 6.7932e5 1.22 0.83% 16 6.7932e5 1.69 0.83%

1.5th 22 6.8411e5 19.4 0.13% 40 6.8493e5 25.2 0.01%

1354_pegase 1st 26 1.4871e6 9.55 0.75% 26 1.4872e6 12.7 0.74%

1.5th 26 1.4929e6 265 0.36% 49 1.4929e6 379 0.36%

2383wp_k 1st 48 2.7913e5 36.0 0.00% 50 2.7913e5 39.3 0.00%

2869_pegase 1st 26 2.9059e6 44.8 0.81% 26 2.9059e6 67.8 0.81%

1.5th 98 2.9262e6 1918 0.12% 191 – – –

5.2 AC-OPF Instances

The AC optimal power flow (AC-OPF) is a central problem in power systems, which
aims to minimize the generation cost of an alternating current transmission network
under the physical constraints (Kirchhoff’s laws, Ohm’s law, and power balance equa-
tions) as well as operational constraints. Mathematically, it can be formulated as the
following CPOP:
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Table 6 The results for AC-OPF instances: small angle difference conditions

Case Order Complex Real

mb opt Time Gap mb opt Time Gap

14_ieee 1st 6 2.7743e3 0.10 0.09% 6 2.7743e3 0.10 0.09%

30_ieee 1st 8 7.5472e3 0.16 8.06% 8 7.5472e3 0.17 8.06%

1.5th 12 8.2072e3 0.83 0.02% 22 8.2085e3 0.94 0.00%

39_epri 1st 8 1.4791e4 0.14 0.29% 8 1.4791e4 0.18 0.29%

1.5th 14 1.4831e4 0.91 0.02% 25 1.4832e4 1.16 0.01%

57_ieee 1st 12 3.8646e4 0.23 0.04% 12 3.8646e4 0.32 0.04%

89_pegase 1st 24 1.0672e5 0.61 0.54% 24 1.0672e5 0.75 0.54%

1.5th 96 1.0700e5 159 0.27% 184 1.0713e5 1201 0.15%

118_ieee 1st 10 1.0191e5 0.48 3.10% 10 1.0191e5 0.56 3.10%

1.5th 20 1.0239e5 5.52 2.64% 37 1.0336e5 8.56 1.71%

2nd 48 1.0401e5 120 1.10% 92 – – –

162_ieee_dtc 1st 28 1.0283e5 1.39 5.39% 28 1.0283e5 1.57 5.39%

1.5th 40 1.0434e5 20.6 4.00% 74 1.0740e5 69.1 1.19%

2nd 146 – – – 282 – – –

179_goc 1st 10 7.5261e5 0.75 1.30% 10 7.5261e5 1.12 1.30%

1.5th 20 7.5361e5 7.43 1.17% 37 7.5583e5 7.49 0.88%

300_ieee 1st 14 5.6162e5 1.25 0.72% 16 5.6168e5 1.81 0.71%

1.5th 22 5.6557e5 20.9 0.02% 40 5.6572e5 22.8 0.00%

1354_pegase 1st 26 1.2172e6 10.4 3.30% 26 1.2172e6 13.1 3.30%

1.5th 26 1.2358e6 259 1.83% 49 1.2586e6 260 0.02%

2383wp_k 1st 48 1.9060e6 35.5 0.27% 50 1.9061e6 48.6 0.27%

2869_pegase 1st 26 2.4488e6 40.2 0.81% 26 2.4490e6 57.1 0.80%

1.5th 96 2.4495e6 1879 0.78% 191 – – –

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

inf
Vi ,S

g
s

∑
s∈G(c2s(�(Sgs ))2 + c1s�(Sgs ) + c0s)

s.t. ∠Vr = 0,

Sgls ≤ Sgs ≤ Sgus , ∀s ∈ G,

υl
i ≤ |Vi | ≤ υu

i , ∀i ∈ N ,
∑

s∈Gi
Sgs − Sdi − Ysh

i |Vi |2 = ∑
(i, j)∈Ei∪ER

i
Si j , ∀i ∈ N ,

Si j = (Y∗
i j − i

bci j
2 )

|Vi |2
|Ti j |2 − Y∗

i j
Vi V ∗

j
Ti j

, ∀(i, j) ∈ E,

S ji = (Y∗
i j − i

bci j
2 )|Vj |2 − Y∗

i j
V ∗
i V j

T∗
i j

, ∀(i, j) ∈ E,

|Si j | ≤ sui j , ∀(i, j) ∈ E ∪ ER,

θ�l
i j ≤ ∠(ViV ∗

j ) ≤ θ�u
i j , ∀(i, j) ∈ E,

(5.1)

where Vi is the voltage, Sgs is the power generation, Si j is the power flow (all are
complex variables; �(·) and ∠· stand for the real part and the angle of a complex
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number, respectively) and all symbols in boldface are constants (Y: admittance, θ�:
voltage angle difference limit). Notice that G is the collection of generators and N is
the collection of buses. For a full description on the AC-OPF problem, the reader may
refer to [4] as well as [5]. We will consider AC-OPF instances for which the following
assumption holds.
AC-OPFAssumption There is at most one generator attached to each bus, i.e., |Gi | ≤
1 for all i ∈ N . In this case, we assume that a generator s ∈ G is attached to the bus
is ∈ N .

If AC-OPF Assumption holds, then we can eliminate the variables Sgs from (5.1)
to obtain a CPOP involving only the voltage Vi :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

inf
Vi

∑
s∈G(c2s�(Sdis + Ysh

is
|Vis |2 + ∑

(is , j)∈Eis∪ER
is
Sis j )

2

+c1s�(Sdis + Ysh
is

|Vis |2 + ∑
(is , j)∈Eis∪ER

is
Sis j ) + c0s)

s.t. ∠Vr = 0,

Sgls ≤ Sdis + Ysh
is

|Vis |2 + ∑
(is , j)∈Eis∪ER

is
Sis j ≤ Sgus , ∀s ∈ G,

υl
i ≤ |Vi | ≤ υu

i , ∀i ∈ N ,

Si j = (Y∗
i j − i

bci j
2 )

|Vi |2
|Ti j |2 − Y∗

i j
Vi V ∗

j
Ti j

, ∀(i, j) ∈ E,

S ji = (Y∗
i j − i

bci j
2 )|Vj |2 − Y∗

i j
V ∗
i V j

T∗
i j

, ∀(i, j) ∈ E,

|Si j | ≤ sui j , ∀(i, j) ∈ E ∪ ER,

θ�l
i j ≤ ∠(ViV ∗

j ) ≤ θ�u
i j , ∀(i, j) ∈ E .

(5.2)

Note that in (5.2), if we substitute the expression of Si j for Si j in |Si j | ≤ sui j , i.e.,

Si j S̄i j ≤ (sui j )
2, we actually get a quartic constraint. To implement Shor’s relaxation

for QCQPs, we then relax it to a quadratic constraint by using the trick described in
[5]. The minimum initial relaxation step of the complex hierarchy (Qcs-ts

min,1) for (5.2) is
able to provide a tighter lower bound than Shor’s relaxation, which we thereby refer
to as the 1.5th-order relaxation.

To tackle an AC-OPF instance, we first compute a locally optimal solution with a
local solver and then rely on lower bounds obtained from SDP relaxations to certify
global optimality. Suppose that the optimum reported by the local solver is AC and the
optimum of a certain SDP relaxation is opt. The optimality gap between the locally
optimal solution and the SDP relaxation is defined by

gap := AC − opt

AC
× 100%.

If the optimality gap is less than 1%, then we accept the locally optimal solution to be
globally optimal.

We select instances satisfying AC-OPF Assumption from the AC-OPF library
PGLiB [4]. The number appearing in each instance name stands for the number of
buses, which is equal to the number of complex variables involved in (5.2). For these
instances, we compute the complex hierarchy as well as the real hierarchy with k = 1
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and with the maximal chordal extension. The results are displayed in Tables 4, 5 and
6 in which the column “Order” indicates the relaxation order.

As we can see from the tables, for Shor’s relaxation (the first-order relaxation), the
complex hierarchy and the real hierarchy give the same lower bound (up to a given
precision),while the complexhierarchy is slightly faster. For the 1.5th-order relaxation,
the complex hierarchy typically gives a looser bound than the real hierarchy, whereas it
is faster than the real hierarchy by a factor of 1 ∼ 8. Shor’s relaxation is able to certify
global optimality for 19 out of all 36 instances. For the remaining 17 instances, with
the 1.5th-order relaxation the complex hierarchy is able to certify global optimality for
6 instances and the real hierarchy is able to certify global optimality for 11 instances.

6 Conclusions

In this paper, we have studied the sparsity-adapted complex hierarchy for complex
polynomial optimization problems by taking into account both correlative and term
sparsity. Numerical experiments demonstrate that the complex hierarchy offers a trade-
off between the computational efficiency and the quality of obtained bounds relative to
the real hierarchy. We hope that the sparsity-adapted complex hierarchy could help to
tackle large-scale CPOPs arising either from the academic literature or from practical
industrial problems.
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