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Chapter 1

Semidefinite programming

1.1 Linear programming

The primal problem:
plp := inf

x∈Rn
c⊺x

s.t. Ax = b,
x ≥ 0

(1.1)

The dual problem:
dlp := sup

y∈Rm
b⊺y

s.t. A⊺y ≤ c
(1.2)

• Weak duality: plp ≥ dlp.
• Strong duality: If both primal and dual problems are feasible, then plp = dlp.
• Complementary slackness: x∗ ◦ (c − A⊺y∗) = 0.

1.2 Semidefinite programming

First, we introduce some useful notations. We consider the vector space Sn of real symmetric n× n
matrices, which is equipped with the usual inner product ⟨A, B⟩ = tr(AB) for A, B ∈ Sn. Let In
be the n × n identity matrix. A matrix M ∈ Sn is called positive semidefinite (PSD) (resp. positive
definite) if x⊺Mx ≥ 0 (resp. > 0), for all x ∈ Rn. In this case, we write M ≽ 0 and define a partial
order by writing A ≽ B (resp. A ≻ B) if and only if A − B is positive semidefinite (resp. positive
definite). The set of n × n PSD matrices is denoted by S+

n .
The primal SDP:

psdp := inf ⟨C, X⟩
s.t. ⟨Ai, X⟩ = bi, i = 1, . . . , m,

X ⪰ 0

(1.3)

The dual SDP:
dsdp := sup b⊺y

s.t.
m

∑
i=1

Aiyi ⪯ C
(1.4)

• Optimality condition: X(C − ∑m
i=1 Aiyi) = 0.

• Weak duality: psdp ≥ dsdp.
• Strong duality: If the primal SDP or the dual SDP is strictly feasible, then psdp = dsdp; if both

primal and dual SDPs are feasible, then both SDPs have optimal solutions.

6
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1.3 Binary quadratic optimization

The binary quadratic program:

min x⊺Qx

s.t. x2
i = 1, i = 1, . . . , n

(1.5)

The SDP relaxation:
min ⟨Q, X⟩
s.t. Xii = 1, i = 1, . . . , n,

X ⪰ 0
(1.6)

which provides a lower bound for (1.5).
• The Goemans and Williamson rounding:
Step 1: Factorize the SDP solution X as X = V⊺V, where V = [v1, . . . , vn] ∈ Rr×n and r is the

rank of X.
Step 2: Since Xij = v⊺i vj and Xii = 1, this factorization gives n vectors vi on the unit sphere in

Rr.
Step 3: Now, choose a uniformly distributed random hyperplane in Rr (passing through the

origin), and assign to each variable xi either a +1 or a −1, depending on which side of the hyper-
plane the point vi lies.

• Approximation ratios.
A symmetric matrix A is diagonally dominant if aii ≥ ∑j ̸=i |aij| for all i. This is an impor-

tant case that corresponds, for instance, to the Max-Cut problem, where the cost function to be
maximized is the Laplacian of a graph (V, E), given by mc(x) = 1

4 ∑(i,j)∈E(xi − xj)
2.

Theorem 1.1 Suppose that xsdp is a Goemans and Williamson rounding solution for the Max-Cut prob-
lem. Then E(mc(xsdp)) ≥ αGW · opt, where opt is the optimum of the Max-Cut problem.

PROOF The probability of i and j getting a cut is

θ

π
=

arccos(v⊺i vj)

π
=

arccos(Xij)

π
.

So the expectation of the Max-Cut value is ∑(i,j)∈E
arccos(Xij)

π . Now note that the SDP relaxation
provides an upper bound ∑(i,j)∈E

1
2 (1 − Xij). Let

αGW := min
t∈[−1,1]

arccos(t)
π

1
2 (1 − t)

≈ 0.878.

Thus,
E(mc(xsdp)) ≥ αGW · opt.

2

1.4 Chordal graphs and sparse semidefinite programming

An (undirected) graph G(V, E) or simply G consists of a set of nodes V and a set of edges E ⊆
{{vi, vj} | vi ̸= vj, (vi, vj) ∈ V × V}. For a graph G, we use V(G) and E(G) to indicate the node
set of G and the edge set of G, respectively. The adjacency matrix of a graph G is denoted by BG
for which we put ones on its diagonal. For two graphs G, H, we say that G is a subgraph of H if
V(G) ⊆ V(H) and E(G) ⊆ E(H), denoted by G ⊆ H. For a graph G(V, E), a cycle of length k is a
set of nodes {v1, v2, . . . , vk} ⊆ V with {vk, v1} ∈ E and {vi, vi+1} ∈ E, for i ∈ [k − 1]. A chord in a
cycle {v1, v2, . . . , vk} is an edge {vi, vj} that joins two nonconsecutive nodes in the cycle. A clique
C ⊆ V of G is a subset of nodes where {vi, vj} ∈ E for any vi, vj ∈ C. If a clique is not a subset of
any other clique, then it is called a maximal clique.
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Definition 1.2 (chordal graph) A graph is called a chordal graph if all its cycles of length at least four
have a chord.

The notion of chordal graphs plays an important role in sparse matrix theory. In particular, it is
known that maximal cliques of a chordal graph can be enumerated efficiently in linear time in the
number of nodes and edges of the graph. See e.g. [Gav72, VA+15] for the details.

The maximal cliques I1, . . . , Ip of a chordal graph (possibly after some reordering) satisfy the
so-called running intersection property (RIP), i.e., for every k ∈ [p − 1], it holdsIk+1 ∩

⋃
j≤k

Ij

 ⊆ Ii for some i ≤ k. (1.7)

The RIP actually gives an equivalent characterization of chordal graphs.

Theorem 1.3 A connected graph is chordal if and only if its maximal cliques after an appropriate ordering
satisfy the RIP.

Any non-chordal graph G(V, E) can always be extended to a chordal graph G′(V, E′) by
adding appropriate edges to E, which is called a chordal extension of G(V, E). The chordal exten-
sion of G is usually not unique. We use the symbol G′ to indicate a specific chordal extension of G.
For graphs G ⊆ H, we assume that G′ ⊆ H′ always holds for our purpose. For a graph G, among
all chordal extensions of G, there is a particular one G′ which makes every connected component
of G to be a clique. Accordingly, a matrix with adjacency graph G′ is block diagonal (after an ap-
propriate permutation on rows and columns): each block corresponds to a connected component
of G. We call this chordal extension the maximal chordal extension. Besides, we are also interested
in smallest chordal extensions. By definition, a smallest chordal extension is a chordal extension
with the smallest clique number (i.e., the maximal size of maximal cliques). However, computing
a smallest chordal extension is generally NP-complete [ACP87]. Therefore in practice we compute
approximately smallest chordal extensions instead with efficient heuristic algorithms; see [BK10]
for more detailed discussions.

Example 1.4 Let us consider the graph G(V, E) represented in Figure 1.1, with the set of nodes V =
{1, 2, 3, 4, 5, 6} and

E = {{1, 2}, {1, 3}, {1, 4}, {1, 5}, {1, 6}, {2, 3}, {2, 5}, {3, 6}, {5, 6}}.

and the corresponding adjacency matrix

BG =


1 1 1 1 1 1
1 1 1 0 1 0
1 1 1 0 1 1
1 0 0 1 0 0
1 1 1 0 1 1
1 0 1 0 1 1

 .

One example of cycle of length 3 is {1, 5, 6} and one example of cycle of length 4 is {6, 3, 2, 5}. Note that
this graph is not chordal since there is no chord in this latter cycle. It is enough to add en edge between the
nodes 2 and 6 (or alternatively between the nodes 3 and 5) to obtain a chordal extension of G.

Let n ∈ N∗. Given a graph G(V, E) with V = [n], a symmetric matrix Q with rows and
columns indexed by V is said to have sparsity pattern G if Qij = Qij = 0 whenever i ̸= j and
{i, j} /∈ E. Let S(G) be the set of real symmetric matrices with sparsity pattern G. The PSD
matrices with sparsity pattern G form a convex cone

S+
|V| ∩ S(G) = {Q ∈ S(G) | Q ⪰ 0}. (1.8)

A matrix in S(G) exhibits a block structure: each block corresponds to a maximal clique of G.
Figure 1.2 depicts an instance of such block structures. Note that there might be overlaps between
blocks because different maximal cliques may share nodes.
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Figure 1.1: The graph from Example 1.4.

Figure 1.2: An instance of block structures for matrices in S(G). The blue area indicates the
positions of possible nonzero entries.

Given a maximal clique C of G(V, E), we define a matrix RC ∈ R|C|×|V| by

[RC]ij =

{
1, if C(i) = j,
0, otherwise,

(1.9)

where C(i) denotes the i-th node in C, sorted with respect to the ordering compatible with V.
Note that QC = RCQR⊺C ∈ S|C| extracts a principal submatrix QC indexed by the clique C from
a symmetry matrix Q, and Q = R⊺CQCRC inflates a |C| × |C| matrix QC into a sparse |V| × |V|
matrix Q.

When the sparsity pattern graph G is chordal, the cone S+
|V| ∩ S(G) can be decomposed as a

sum of simple convex cones, as stated in the following theorem.

Theorem 1.5 Let G(V, E) be a chordal graph and assume that C1, . . . , Cp are the list of maximal
cliques of G. Then a matrix Q ∈ S+

|V| ∩ S(G) if and only if there exist Qk ∈ S+
|Ck |

for k ∈ [p] such

that Q = ∑
p
k=1 R⊺Ck

QkRCk .

Given a graph G(V, E) with V = [n], let ΠG be the projection from S|V| to the subspace S(G),
i.e., for Q ∈ S|V|,

[ΠG(Q)]ij =

{
Qij, if i = j or {i, j} ∈ E,
0, otherwise.

(1.10)

We denote by ΠG(S
+
|V|) the set of matrices in S(G) that have a PSD completion, i.e.,

ΠG(S
+
|V|) =

{
ΠG(Q) | Q ∈ S+

|V|

}
. (1.11)

One can easily check that the PSD completable cone ΠG(S
+
|V|) and the PSD cone S+

|V| ∩ S(G) form
a pair of dual cones in S(G). Moreover, for a chordal graph G, the decomposition result for the
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cone S+
|V| ∩ S(G) in Theorem 1.5 leads to the following characterization of the PSD completable

cone ΠG(S
+
|V|).

Theorem 1.6 Let G(V, E) be a chordal graph and assume that C1, . . . , Cp are the list of maximal
cliques of G. Then a matrix Q ∈ ΠG(S

+
|V|) if and only if Qk = RCk QR⊺Ck

⪰ 0 for all k ∈ [p].

Theorem 1.5 and Theorem 1.6 play an important role in sparse semidefinite programming
since they admit us to decompose an semidefinite programming (SDP) with chordal sparsity pat-
tern into an SDP of smaller size, which yields significant computational improvement if the sizes
of related maximal cliques are small.



Chapter 2

Polynomial nonnegativity, measures,
and moments

2.1 Sums of squares and quadratic modules

Given a multivariate polynomial f , we want to decide whether it is nonnegative and if so, provide
a certificate of its nonnegativity.

➤ A central problem in real algebraic geometry
➤ Widely appear in numerous fields
➤ Closely related to polynomial optimization
➤ NP-hard in general

Definition 2.1 Sum of squares (SOS): f = f 2
1 + · · ·+ f 2

t ⇒ f is nonnegative.

Example 2.2 f = 1 + 2x + 2x2 + 2xy + y2 = (1 + x)2 + (x + y)2.

Let Σ[x] stand for the cone of SOS polynomials and let Σ[x]n,2d denote the cone of SOS poly-
nomials of degree at most 2d, namely Σ[x]n,2d := Σ[x] ∩ R[x]n,2d. Let P[x] stand for the cone of
nonnegative polynomials and let P[x]n,2d denote the cone of nonnegative polynomials of degree
at most 2d.

• Hilbert, 1888: Σ[x]n,2d = R[x]n,2d ⇐⇒ n = 1 || d = 2 || n = 2, d = 4
• Artin, 1927: “nonnegative polynomials = rational SOS"
• Blekherman, 2006: “nonnegative polynomials ≫ SOS", n → ∞ for fixed 2d ≥ 4

Example 2.3 Motzkin’s polynomial (1967): M(x, y) = x4y2 + x2y4 + 1 − 3x2y2 is nonnegative but is
not an SOS.

Theorem 2.4 (Reznick, 1995) If inf f (x) > 0, then there exists r such that

(1 + x2
1 + · · ·+ x2

n)
r f (x) ∈ Σ[x].

Let deg( f ) = 2d and [x]d := [1, x1, . . . , xn, xd
1 , . . . , xd

n]. Then f is an SOS ⇐⇒ there exists a
PSD matrix G such that

f = [x]d · G · [x]⊺d ⇝ SDP

G is called a Gram matrix of f , which is of size (n+d
n ) = (n+d

d ).

Theorem 2.5 If f has a positive definite Gram matrix with rational entries, then f admits a rational SOS
decomposition.

Definition 2.6 The Newton polytope of a polynomial f = ∑α∈supp( f ) cαxα, denoted by N ( f ), is the
convex hull of the set of exponents α, considered as vectors in Rn.

Theorem 2.7 If f = ∑ f 2
i , then N ( fi) ⊆ 1

2 N ( f ).

11
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Figure 2.1: f = 4x4
1x6
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1 − x1x2

2 + x2
2

Let S := {x ∈ Rn | g1(x) ≥ 0, . . . , gm(x) ≥ 0}. For the ease of further notation, we set
g0(x) := 1, and dj := ⌈deg(gj)/2⌉, for all j = 0, . . . , m. Given a basic compact semialgebraic set S
and an integer r ∈ N∗, let M(g) be the quadratic module generated by g1, . . . , gm:

M(g) :=

{
m

∑
j=0

σj(x)gj(x) : σj ∈ Σ[x], j = 0, . . . , m

}
,

and let M(g)r be the r-truncated quadratic module:

M(g)r :=

{
m

∑
j=0

σj(x)gj(x) : σj ∈ Σ[x]r−dj
, j = 0, . . . , m

}
.

A first important remark is that all polynomials belonging to M(g) are positive on S.
A second important remark is that M(g)r ⊆ M(g)r+1, for all r ∈ N∗, since all SOS polynomi-

als of degree 2r can be viewed as SOS polynomials of degree 2r + 2.

Assumption 2.8 (Archimedean) There exists N > 0 such that N − ∥x∥2
2 ∈ M(g).

A quadratic module M(g) for which Assumption 2.8 holds is said to be Archimedean. Assump-
tion 2.8 is slightly stronger than compactness. Indeed, compactness of S already ensures that each
variable has finite lower and upper bounds. One (easy) way to ensure that Assumption 2.8 holds
is to add a redundant constraint involving a well-chosen N depending on these bounds, in the
definition of S.

Theorem 2.9 (Putinar’s Positivstellensatz, 1993) Let S := {x ∈ Rn | g1(x) ≥ 0, . . . , gm(x) ≥ 0}.
Assume that M(g) satisfies Archimedean’s condition. If f is positive on S, then

f = σ0 + σ1g1 + · · ·+ σmgm,

where σ0, . . . , σm are SOS.

• Quotient ring. Suppose S := {x ∈ Rn | g1(x) = 0, . . . , gm(x) = 0}. Let I = (g1, . . . , gm) ⊆
R[x]. Instead of writing f = σ0 + τ1g1 + · · ·+ τmgm with τi ∈ R[x], we can consider

f is an SOS in the quotient ring R[x]/I.

That means we can use the Gröbner basis of I to find a reduced monomial basis and to simplify
the equality.

• Symmetries. Give rise to block diagonalization of SDP matrices. Please refer to [GP04].
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2.2 SONC polynomials

Example 2.10 M(x, y) = x4y2 + x2y4 + 1−3x2y2 (arithmetic-geometric mean inequality ⇒ nonnega-
tivity)

Definition 2.11 circuit polynomial: f = ∑α∈A cαxα−dβxβ, α ∈ (2N)n, cα > 0, A is the vertex set of a
simplex, β ∈ conv(A)◦. SONC: f = f1 + · · ·+ ft with each fi being a nonnegative circuit polynomial.

Theorem 2.12 (Wang, 2022) Suppose that f is a nonnegative polynomial with exactly one negative term.
Then f is a SONC.

Example 2.13 f = 1 + x4 + y4 + x6y4 + x4y6−x2y

Theorem 2.14 (Wang, 2022) Suppose f is a SONC. Then f admits a SONC decomposition:

f = ∑
supp( fi)⊆supp( f )

fi,

where each fi is a nonnegative circuit polynomial. Moreover, we can further assume that there is no
cancellation occurring in the above decomposition.

For more details on SONC polynomials, please refer to [IDW16, Wan22].

2.3 Borel measures and moment matrices

Given a compact set A ⊆ Rn, we denote by M (A) the vector space of finite signed Borel measures
supported on A, namely real-valued functions from the Borel σ-algebra B(A). The support of a
measure µ ∈ M (A) is defined as the closure of the set of all points x such that µ(B) ̸= 0 for any
open neighborhood B of x. Let C+(A) (resp. M+(A)) stand for the cone of nonnegative elements
of C (A) (resp. M (A)).
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Let S be a basic compact semialgebraic set. The restriction of the Lebesgue measure on a
subset A ⊆ S is λA(dx) := 1A(x)dx, where 1A : S → {0, 1} stands for the indicator function of
A, namely 1A(x) = 1 if x ∈ A and 1A(x) = 0 otherwise. A sequence y := (yα)α∈Nn ⊆ R is said
to have a representing measure on S if there exists µ ∈ M (S) such that yα =

∫
xαµ(dx) for all

α ∈ Nn, where we use the multinomial notation xα := xα1
1 xα2

2 · · · xαn
n .

Assume that µ, ν ∈ M+(S) have the same moments y, namely yα =
∫

S xα dµ =
∫

S xα dν, for
all α ∈ Nn. Let us fix f ∈ C (S). Since S is compact, the Stone-Weierstrass theorem implies that
the polynomials are dense in C (S), so

∫
S f dµ =

∫
S f dν. Since f was arbitrary, the above equality

holds for any f ∈ C (S), which implies that µ = ν. Therefore, any finite Borel measures supported
on S is moment determinate.

The moments of the Lebesgue measure on A are denoted by

yA
α :=

∫
xαλA dx ∈ R, α ∈ Nn. (2.1)

The Lebesgue volume of A is vol A := yA
0 =

∫
λA dx. For all r ∈ N, let us define Nn

r := {α ∈
Nn | ∑n

j=1 αj ≤ r}, whose cardinality is (n+r
r ). Then a polynomial f ∈ R[x] is written as follows:

x 7→ f (x) = ∑
α∈Nn

fαxα,

and f is identified with its vector of coefficients f = ( fα)α∈Nn in the standard monomial basis
(xα)α∈Nn .

Given a real sequence y = (yα)α∈Nn , let us define the linear functional Ly : R[x] → R by
Ly( f ) := ∑α fαyα, for every polynomial f = ∑α fαxα. Coming back to the previous 2-dimensional
example from Chapter 2.1, with f = x1x2, g1 = x1 − x2

1 and g2 = x2 − x2
2, we have Ly( f ) = y11,

Ly(g1) = y10 − y20 and Ly(g2) = y01 − y02.
Then, we associate to y the so-called moment matrix Mr(y) of order r, that is the real symmetric

matrix with rows and columns indexed by Nn
r and the following entrywise definition:

[Mr(y)]β,γ := Ly(xβ+γ), ∀β, γ ∈ Nn
r .

Given g ∈ R[x], we also associate to y and g the so-called localizing matrix of order r, that
is the real symmetric matrix Mr(g y) with rows and columns indexed by Nn

r and the following
entrywise definition:

[Mr(g y)]β,γ := Ly(g(x) xβ+γ), ∀β, γ ∈ Nn
r .

Let S be a basic compact semialgebraic set defined by gj ≥ 0, j = 1, . . . , m. Then one can check that
if y has a representing measure µ ∈ M+(S) then Mr(y) ⪰ 0 and Mr(gj y) ⪰ 0, for j = 1, . . . , m.

Let us give a simple example to illustrate the construction of moment and localizing matrices.

Example 2.15 Let us take n = 2 and r = 2. The moment matrix M2(y) is indexed by N2
2 and can be

written as follows:

M2(y) =



1 | y1,0 y0,1 | y2,0 y1,1 y0,2
− − − − − − −

y1,0 | y2,0 y1,1 | y3,0 y2,1 y1,2
y0,1 | y1,1 y0,2 | y2,1 y1,2 y0,3

− − − − − − −
y2,0 | y3,0 y2,1 | y4,0 y3,1 y2,2
y1,1 | y2,1 y1,2 | y3,1 y2,2 y1,3
y0,2 | y1,2 y0,3 | y2,2 y1,3 y0,4


.

Next, consider the polynomial g1(x) = x1 − x2
1 of degree 2. From the first-order moment matrix:

M1(y) =


1 | y1,0 y0,1

− − −
y1,0 | y2,0 y1,1
y0,1 | y1,1 y0,2

 ,
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we obtain the following localizing matrix:

M1(g1y) =

y1,0 − y2,0 y2,0 − y3,0 y1,1 − y2,1
y2,0 − y3,0 y3,0 − y4,0 y2,1 − y3,1
y1,1 − y2,1 y2,1 − y3,1 y1,2 − y2,2

 .

For instance, the last entry [M1(g1y)]3,3 is equal to Ly(g1(x) · x2 · x2) = Ly(x1x2
2 − x2

1x2
2) = y1,2 − y2,2.



Chapter 3

Polynomial optimization

3.1 The moment-SOS hierarchy

Let us consider the POP

P : fmin = inf
x
{ f (x) : x ∈ S}, (3.1)

where f is a polynomial and S := {x ∈ Rn | g1(x) ≥ 0, . . . , gm(x) ≥ 0}. It happens that this
problem can be cast as an LP over probability measures, namely,

fmeas := inf
µ∈M+(S)

{∫
S

f dµ :
∫

S
dµ = 1

}
. (3.2)

To see that fmeas = fmin holds, let us consider a global minimizer xopt ∈ Rn of f on S and consider
the Dirac measure µ = δxopt supported on this point. Note that this Dirac (probability) measure
is feasible for the LP stated in (3.2), with value

∫
S f dµ = f (xopt) = fmin, which implies that

infµ∈M+(S){
∫

S f dµ :
∫

S dµ = 1} ≤ fmin. For the other direction, let us consider a measure µ

feasible for LP (3.2). Then, simply observe that since f (x) ≥ fmin, for all x ∈ S, the feasibility of
µ implies that

∫
S f dµ ≥

∫
S fmin dµ = fmin

∫
S dµ = fmin. Since it is true for any feasible solution,

one has infµ∈M+(S){
∫

S f dµ :
∫

S dµ = 1} ≥ fmin. Another way to state this equality is to write

fmin = sup
b

{b : f − b ≥ 0 on S}, (3.3)

which is an LP over nonnegative polynomials, and to notice that the dual LP of (3.3) is LP (3.2).
The equality then follows from the zero duality gap in infinite-dimensional LP.

After reformulating P as LP (3.2) over probability measures, one can then build a hierarchy
of moment relaxations for the later problem. This is done by using the fact that the condition
µ ∈ M+(S) can be relaxed as Mr−dj

(gj y) ⪰ 0, for all j = 0, . . . , m, and all r ≥ dj = ⌈deg(gj)/2⌉.
Letting rmin := max {⌈deg( f )/2⌉, d1, . . . , dm}, at step r ≥ rmin of the hierarchy, one considers

the following primal SDP:

Pr :

f r := inf
y

Ly( f )

s.t. Mr(y) ⪰ 0
Mr−dj

(gj y) ⪰ 0, j ∈ [m]

y0 = 1

(3.4)

Before considering the corresponding dual SDP, let us remind that the moment and localizing ma-
trices Mr−dj

(gj y) have entries which are linear in y. Namely, one has Mr−dj
(gj y) = ∑α∈Nn

2r
Cj

α yα;

the matrix Cj
α has rows and columns indexed by Nn

r−dj
with (β, γ)-entry equal to ∑β+γ+δ=α gj,δ.

In particular for m = 0, one has g0 = 1 and the matrix Bα := C0
α has (β, γ)-entry equal to 1β+γ=α,

16
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where 1α=β stands for the function which returns 1 if α = β and 0 otherwise. With tj := (
n+r−dj

r−dj
),

the dual of SDP (3.4) is then the following SDP:

sup
Gj ,b

b

s.t. fα − b1α=0 =
m

∑
j=0

⟨Cj
α, Gj⟩, α ∈ Nn

2r

Gj ∈ S+
tj

, j = 0, . . . , m

(3.5)

We can rewrite the equality constraints from SDP (3.5) in a more concise way, namely as f − b ∈
M(g)r. To see this, let us first note that an SOS σ of degree 2r can be written as v⊺Gv, with

v := (1, x1, . . . , xn, x2
1, x1x2, . . . , xr

1, . . . , xr
n)

being the vectors of all monomials of degree at most r, and G ⪰ 0. The α-coefficient of σ = v⊺Gv
is equal to ⟨Bα, G⟩. Similarly, for any j ∈ [m] and SOS σj of degree at most 2(r − dj), one can write
σj = v⊺j Gjvj, with vj being the vector of all monomials of degree at most r − dj, and Gj ⪰ 0. One

can also check that the α-coefficient of σjgj is equal to ⟨Cj
α, Gj⟩. Therefore, SDP (3.5) is equivalent

to the following optimization problem over SOS polynomials:

sup
σj ,b

b

s.t. f − b =
m

∑
j=0

σjgj

σj ∈ Σ[x]r−dj
, j = 0, . . . , m

(3.6)

or more concisely as
sup

b
{b : f − b ∈ M(g)r}. (3.7)

The dual SDP (3.7) is obtained by replacing the nonnegativity condition f − b ≥ 0 on S of the
dual LP (3.3) by the more restrictive condition f − b ∈ M(g)r. The sequences of SDPs 3.4 and
(3.7) are called the moment hierarchy and the SOS hierarchy, respectively. In the sequel, we refer
to the sequence of primal-dual programs (3.4)–(3.7) as the moment-SOS hierarchy.

Theorem 3.1 Under Assumption 2.8, the hierarchy of primal-dual moment-SOS relaxations (3.4)–
(3.7) provides nondecreasing sequences of lower bounds converging to the global optimum fmin of P
(3.1).

The above theorem provides the theoretical convergence guarantee of the moment-SOS hier-
archy.

Remark 3.2 Even though we only included inequality constraints in the definition of S for the sake of
simplicity, equality constraints can be treated in a dedicated way. For each equality constraint h(x) = 0,
with h ∈ R[x], one adds the localizing constraint Mr−dh

(h y) = 0, with dh := ⌈deg(h)/2⌉, in the primal
moment program (3.4). Similarly, in the dual sum of squares (SOS) program (3.6), one adds a term τh to
the sum ∑m

j=0 σjgj, with τ ∈ R[x]2r−2dh
.

In practice, it is possible to detect finite convergence of the hierarchy, which is the topic of the next
section.

3.2 Minimizer extraction

Here we describe sufficient conditions to obtain finite convergence of the moment-sums of squares
(moment-SOS) hierarchy and extract the global minimizers of the polynomial f on S. For more
details, please refer to [HL05b].
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Theorem 3.3 Consider the sequence of primal moment relaxations defined in (3.4). If for some r ≥ rS
(rS := max{d1, . . . , dm}), SDP (3.4) has an optimal solution y which satisfies

rank Mr′(y) = rank Mr′−rS
(y) for some r′ ≤ r, (3.8)

then f r = fmin and the infinite-dimensional LP (3.2) has an optimal solution µ ∈ M (S)+, which is
finitely supported on t = rank Mr′(y) points of S, or equivalently t global minimizers of f on S.

If the rank stabilization (also called flatness) condition (3.8) is satisfied, then finite convergence
occurs, namely the SDP relaxation (3.4) is exact with optimal value f r = fmin. In addition, one
can extract rank Mr′(y) global minimizers of f on S with the following algorithm.

Algorithm 1 ExtractMinimizer

Require: The moment matrix Mr′(y) of rank t satisfying the flatness condition (3.8)
Ensure: The t points x(i) ∈ S, i ∈ [t], global minimizers of Problem P (3.1)

1: Compute the Cholesky factorization CC⊺ = Mr′(y)
2: Reduce C to a column echelon form U
3: Compute from U the multiplication matrices Ni, i ∈ [n]
4: Compute N := ∑n

i=1 λiNi with randomly generated coefficients λi
5: Compute the Schur decomposition N = QTQ⊺

6: Compute the column vectors {qj}1≤j≤t of Q
7: Return xi(j) := q⊺j Niqj, i ∈ [n], j ∈ [t]

Proposition 3.4 The procedure ExtractMinimizer described in Algorithm 1 is sound and returns t
global optimizers of Problem P (3.1).

PROOF Since the flatness condition (3.8) is satisfied, y is the moment sequence of a t-atomic Borel
measure µ supported on S. Namely, there are t points x(1), . . . , x(t) ∈ S such that

µ =
t

∑
j=1

κjδx(j), κj > 0,
t

∑
j=1

κj = 1.

By construction of the moment matrix Mr′(y), one has

Mr′(y) =
r

∑
j=1

κjvr′(x(j))v⊺r′(x(j)) = VDV⊺,

where the j-th column of V is vr′(x(j)) and D is a t × t diagonal matrix with diagonal (κj)1≤j≤t.
One can extract a Cholesky factor C as in Step 1, for instance via singular value decomposition.
The following steps of the extraction algorithm consist of transforming C into V by suitable col-
umn operations. The reduction of C to a column echelon form in Step 2 is done by Gaussian
elimination with column pivoting. By construction of the moment matrix, each row of U is in-
dexed by a monomial xα involved in the vector vr′ . Pivot elements in U correspond to monomials
xβ j , j ∈ [t] of the basis generating the t solutions. Namely, if w = (xβ1 , xβ2 , . . . , xβt) denotes this
generating basis, then

vr′(x(j)) = Uw(x(j)), j ∈ [t].

Overall, extracting the global minmizers boils down to solving the above systems of equations.
To solve this system, we compute at Step 3 each multiplication matrix Ni, i ∈ [n], which contains
the coefficients of the monomials xix

β j , j ∈ [t], namely which satisfy

Niw(x) = xiw(x).
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The entries of the global minimizers are all eigenvalues of the multiplication matrices. Since
w(x(j)) is an eigenvector common to all multuplication matrices, one builds the random com-
bination N of Step 4, which ensures with probability 1 that its eigenvalues are all distinct and
have 1-dimensional eigenspaces. The Shur decomposition of Step 5 gives the decomposition
N = QTQ⊺ with an orthogonal matrix Q and an upper triangular matrix T with eigenvalues
of N sorted in increasing order along the diagonal. 2

Example 3.5 Consider the polynomial optimization problem P (3.1) with f = −(x1 − 1)2 − (x1 − x2)
2 −

(x2 − 3)2 and S = {x ∈ R2 : 1− (x1 − 1)2 ≥ 0, 1− (x1 − x2)
2 ≥ 0, 1− (x1 − 3)2 ≥ 0}. The first SDP

relaxation outputs f 1 = −3 and rank M1(y) = 3, while the second one outputs f 2 = −2 and the rank
stabilizes with rank M1(y) = rank M2(y) = 3. Therefore the flatness condition holds, which implies that
fmin = f 2 = −2. The monomial basis is v2(x) = (1, x1, x2, x2

1, x1x2, x2
2). The column echelon form U of

the Cholesky factor of M2(y) is given by 
1
0 1
0 0 1
−2 3 0
−4 2 2
−6 0 5

 .

Pivot entries correspond to the generating basis w(x) = (1, x1, x2). Therefore the entries of the 3 global
minimizers satisfy the following system of polynomial equations:

x2
1 = −2 + 3x1

x1x2 = −4 + 2x1 + 2x2

x2
2 = −6 + 5x2.

The multiplication matrices by x1 and x2 can be extracted from rows in U as follows:

N1 =

 0 1 0
−2 3 0
−4 2 2

 , N2 =

 0 0 1
−4 2 2
−6 0 5

 .

After selecting a random convex combination of N1 and N2 and computing the orthogonal matrix in
the corresponding Schur decomposition, we obtain the 3 minimizers x(1) = (1, 2), x(2) = (2, 2) and
x(3) = (2, 3).

3.3 Further topics

The extraction of minimizers in polynomial optimization is robust; see [KPV18].



Chapter 4

Exploiting structures in polynomial
optimization

4.1 Correlative sparsity

Recall that a general POP is formulized as

P : fmin = inf
x
{ f (x) : x ∈ S}, (4.1)

where S = {x ∈ Rn : g1(x) ≥ 0, . . . , gm(x) ≥ 0}. Roughly speaking, the exploitation of CS in the
moment-SOS hierarchy for P consists of two steps:

(1) decompose the variables x into a set of cliques according to the correlations between vari-
ables emerging in the input polynomial system;

(2) construct a sparse moment-SOS hierarchy with respect to the former decomposition of vari-
ables.

Let us proceed with more details. Recall dj := ⌈deg(gj)/2⌉ for j ∈ [m] and

rmin := max {⌈deg( f )/2⌉, d1, . . . , dm}.

Fix from now on a relaxation order r ≥ rmin. Let J′ := {j ∈ [m] | dj = r} which is possibly
nonempty only when r = rmin. We define the correlative sparsity pattern (csp) graph Gcsp(V, E)
associated to POP (4.1) whose node set is V = {1, 2, . . . , n} and whose edge set E satisfies {i, j} ∈
E if one of following conditions holds:

(i) there exists α ∈ supp( f ) ∪⋃j∈J′ supp(gj) such that {i, j} ⊆ supp(α);

(ii) there exists k ∈ [m] \ J′ such that {i, j} ⊆ ⋃
α∈supp(gk)

supp(α),

where supp(α) := {k ∈ [n] | αk ̸= 0} for α = (α1, . . . , αn) ∈ Nn. Let (Gcsp)′ be a chordal extension
of Gcsp1 and {Ik}

p
k=1 be the list of maximal cliques of (Gcsp)′ with nk := |Ik| so that the RIP (1.7)

holds. Let R[x, Ik] denote the ring of polynomials in the nk variables {xi}i∈Ik for k ∈ [p]. By
construction, one can decompose the objective function f as f = f1 + · · ·+ fp with fk ∈ R[x, Ik] for
all k ∈ [p] (similarly for gj with j ∈ J′). We then partition the constraint polynomials gj, j ∈ [m] \ J′

into groups {gj | j ∈ Jk}, k ∈ [p] which satisfy

(i) J1, . . . , Jp ⊆ [m] \ J′ are pairwise disjoint and
⋃p

k=1 Jk = [m] \ J′;

(ii) for any k ∈ [p] and any j ∈ Jk,
⋃

α∈supp(gj)
supp(α) ⊆ Ik,

1If Gcsp is already a chordal graph, then we do not need the chordal extension.

20
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Figure 4.1: The csp graph for f over S from Example 4.9.

so that gj ∈ R[x, Ik] for all k ∈ [p] and j ∈ Jk. In addition, suppose that Assumption 2.8 holds.
Then all variables involved in POP (4.1) are bounded. To guarantee global convergence of the
hierarchy that will be presented later, we need to add some redundant quadratic constraints to
the description of the POP. We summarize all above in the following assumption.

Assumption 4.1 Consider POP (4.1). The two index sets [n] and [m] are decomposed/partitioned into
{I1, . . . , Ip} and {J′, J1, . . . , Jp}, respectively, such that

(i) The objective function f can be decomposed as f = f1 + · · ·+ fp with fk ∈ R[x, Ik] for k ∈ [p] and
the same goes for the constraint polynomial gj with j ∈ J′;

(ii) For all k ∈ [p] and j ∈ Jk, gj ∈ R[x, Ik];

(iii) The RIP (1.7) holds for I1, . . . , Ip (possibly after some reordering);

(iv) For all k ∈ [p], there exists Nk > 0 such that one of the constraint polynomials is Nk − ∑i∈Ik
x2

i .

Example 4.2 Consider an instance of POP (4.1) with f (x) = x2x5 + x3x6 − x2x3 − x5x6 + x1(−x1 +
x2 + x3 − x4 + x5 + x6) and

S = {x ∈ Rn : g(x) ≥ 0, for all g ∈ g},

with g = {(6.36 − x1)(x1 − 4), . . . , (6.36 − x6)(x6 − 4)}. Here, there are n = 6 variables and the
number of constraints is m = 6. The related csp graph Gcsp is depicted in Figure 4.1. After adding an
edge between nodes 3 and 5, the resulting graph (Gcsp)′ is chordal with maximal cliques I1 = {1, 4},
I2 = {1, 2, 3, 5}, I3 = {1, 3, 5, 6}. Here p = 3 and one can write f = f1 + f2 + f3 with

f1 = −x1x4,

f2 = −x2
1 + x1x2 + x1x3 − x2x3 + x2x5,

f3 = −x5x6 + x1x5 + x1x6 + x3x6.

For the relaxation order r = rmin = 1, let J′ = [6] and Jk = ∅ for k ∈ [3]; for the relaxation order r ≥ 2,
let J′ = ∅ and J1 = {1, 4}, J2 = {2, 3, 5}, J3 = {6}. Then Assumption 4.1(i)-(ii) hold. In addition,
I1 ∩ I2 = {1} ⊆ I3, and so RIP (1.7), or equivalently Assumption 4.1 (iii), holds. For each i ∈ [n], one
has 6.362 − x2

i ≥ 0 for all x ∈ S, and so one can select N1 = 2 · 6.362, N2 = N3 = 4 · 6.362 and add
the redundant constraints Nk − ∑i∈Ik

x2
i ≥ 0, k ∈ [p] in the description of S, so that Assumption 4.1 (iv)

holds as well.

4.2 A sparse infinite-dimensional LP formulation

In this section, we assume J′ = ∅. We now introduce a CS variant of the dense infinite-dimensional
LP (3.2) formulation over probability measures stated in Chapter 3. The idea is to define a new
measure for each subset Ik, k ∈ [p], supported on a set Sk described by the constraints which only
depend on the variables indexed by Ik, namely,

Sk := {x ∈ Rnk : gj(x) ≥ 0, j ∈ Jk}, for k ∈ [p].
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Figure 4.2: Illustration of Lemma 4.3 in the case p = 2.

So S can be equivalently described as

S = {x ∈ Rn : (xi)i∈Ik ∈ Sk, k ∈ [p]}. (4.2)

Similarly, for all j, k ∈ [p] such that Ij ∩ Ik ̸= ∅, define

Sjk = Skj := {(xi)i∈Ij∩Ik : (xi)i∈Ij ∈ Sj, (xi)i∈Ik ∈ Sk}.

Afterwards, for each k ∈ [p] we define the projection πk : M+(S) → M+(Sk) of the space of
Borel measures supported on S on the space of Borel measures supported on Sk, namely, for all
µ ∈ M+(S),

πkµ(B) := µ({x : x ∈ S, (xi)i∈Ik ∈ B}),

for each Borel set B ∈ B(Sk). We define similarly the projections πjk for all j, k ∈ [p] such that
Ij ∩ Ik ̸= ∅. For each k ∈ [p − 1], we also rely on the set

Uk := {j ∈ {k + 1, . . . , p} : Ij ∩ Ik ̸= ∅}.

Then the CS variant of (3.2) reads as follows:

fcs := inf
µk

p

∑
k=1

∫
Sk

fk(x)dµk(x)

s.t. πjkµj = πkjµk, j ∈ Uk, k ∈ [p − 1]∫
Sk

dµk(x) = 1, k ∈ [p]

µk ∈ M+(Sk), k ∈ [p]

(4.3)

To prove fcs = fmin under Assumption 4.1, we rely on the following auxiliary lemma, illustrated
in Figure 4.2 in the case p = 2. This lemma uses the fact that one can disintegrate a probability
measure on a product of Borel spaces into a marginal and a so-called stochastic kernel. Given two
Borel spaces S, Z, a stochastic kernel q(dx|z) on S given Z is defined by (1) q(dx|z) ∈ M+(S) for
all z ∈ Z and (2) the function z 7→ q(B|z) is B(Z)-measurable for all B ∈ B(Z).

Lemma 4.3 Let [n] = ∪p
k=1 Ik with nk = |Ik|, Sk ⊆ Rnk be given compact sets, and let S ⊆ Rn be defined

as in (4.2). Let µ1 ∈ M+(S1), . . . , µp ∈ M+(Sp) be measures satisfying the equality constraints of LP
(4.3). If RIP (1.7) holds for I1, . . . , Ip, then there exists a probability measure µ ∈ M+(S) such that

πkµ = µk, (4.4)

for all k ∈ [p], that is, µk is the marginal of µ on Rnk , i.e., with respect to variables indexed by Ik.

PROOF The proof boils down to constructing µ by induction on p. If p = 1 and I1 = [n], the
configuration corresponds exactly to the dense LP (3.2) formulation from Chapter 3, and one can
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simply take µ = µ1. For the sake of conciseness, we only provide a proof for the case p = 2. Let
I12 := I1 ∩ I2 with cardinality n12. If I12 = ∅, then one has S = S1 × S2 and we can simply define
µ as the product measure of µ1 and µ2:

µ(A × B) := µ1(A)× µ2(B),

for all A ∈ B(Rn1), B ∈ B(Rn2). This product measure µ satisfies (4.4).
Next, let us focus on the hardest case where I12 ̸= ∅. Let πk be the natural projection with

respect to Ik\I12 and let us define the Borel set Yk := {πk(x) : x ∈ Sk} ∈ B(Rnk−n12). It follows
that µ1, µ2 can be seen as probability measures on the cartesian products Y1 × S12 = S1 and
S12 × Y2 = S2, respectively. Let ν1 and ν2 be the stochastic kernels of µ1 and µ2, respectively.
Since π12µ1 = π21µ2 =: ν, one can disintegrate µ1 and µ2 as

µ1(A × B) =
∫

B
ν1(A|x)ν(dx), ∀A ∈ B(Y1), B ∈ B(Rn12),

µ2(C × B) =
∫

B
ν2(C|x)ν(dx), ∀A ∈ B(Y2), B ∈ B(Rn12).

Then, one can define the measure µ ∈ M+(Y1 × Rn12 × Y2) as follows:

µ(A × B × C) =
∫

B
ν1(A|x)ν2(C|x)ν(dx),

for every Borel rectangle A × B × C ∈ B(Y1)× B(S12)× B(Y2). In particular if A = Y1, one has
ν1(A|x) = 1 ν-a.e., and µ(Y1 × B × C) =

∫
B ν2(C|x)ν(dx) = µ2(B × C), implying that µ2 is the

marginal of µ on S12 × Y2 = S2. Similarly, µ1 is the marginal of µ on Y1 × S12 = S1, yielding the
desired result. 2

Now, we are ready to prove that LP (4.3) is not just a relaxation of the dense LP (3.2).

Theorem 4.4 Consider POP (4.1). If Assumption 4.1 holds, then fcs = fmin.

PROOF The first inequality fcs ≤ fmin is easy to show: let a be a global minimizer of f on S,
assumed to exist thanks to the compactness hypothesis. Let µ = δa be the Dirac measure concen-
trated on a, and µk := πkµ be its projection on M+(Sk), for each k ∈ [p]. Namely, µk is the Dirac
measure concentrated on (ai)i∈Ik ∈ Sk, and is in particular a probability measure supported on
Sk. For each pair j, k such that Ij ∩ Ik ̸= ∅, the measure πjkµj is the Dirac measure concentrated
on (ai)i∈Ij∩Ik ∈ Sjk, and so is πkjµk. Therefore, each measure µk is a feasible solution of (4.3).

In addition, the objective value of LP (4.3) is equal to ∑
p
k=1 fk(a) = fmin, which proves the first

inequality.
To prove the other inequality fcs ≥ fmin, let us fix a feasible solution (µk) of LP (4.3). By

Lemma 4.3, there exists a probability measure µ ∈ M+(S) such that πkµ = µk, for each k ∈ [p].
Then, one has

p

∑
k=1

∫
Sk

fk dµk =
p

∑
k=1

∫
Sk

fk dµ =
∫

S

p

∑
k=1

fk dµ =
∫

S
f dµ ≥ fmin.

2

4.3 The CS-adpated moment-SOS hierarchy

In this section, we continue assuming J′ = ∅. For k ∈ [p], a moment sequence y ⊆ R and
g ∈ R[x, Ik], let Mr(y, Ik) (resp. Mr(g y, Ik)) be the moment (resp. localizing) submatrix obtained
from Mr(y) (resp. Mr(g y)) by retaining only those rows and columns indexed by β ∈ Nn

r of
Mr(y) (resp. Mr(gy)) with supp(β) ⊆ Ik.
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Example 4.5 Consider again Example 4.2. The moment matrix M1(y, I1) is indexed by the support vec-
tors (0, 0, 0, 0, 0, 0), (1, 0, 0, 0, 0, 0), (0, 0, 0, 1, 0, 0) (corresponding to the monomials 1, x1 and x4, respec-
tively) and reads as follows:

M1(y, I1) =


1 | y1,0,0,0,0,0 y0,0,0,1,0,0

− − −
y1,0,0,0,0,0 | y2,0,0,0,0,0 y1,0,0,1,0,0
y0,0,0,1,0,0 | y1,0,0,1,0,0 y0,0,0,2,0,0

 .

With r ≥ rmin, the moment hierarchy based on CS for POP (4.3) is defined as

inf
yk

∑
p
k=1 Lyk ( fk)

s.t. Mr(yk, Ik) ⪰ 0, k ∈ [p]
Mr−dj

(gjyk, Ik) ⪰ 0, j ∈ Jk, k ∈ [p]
Lyk (x

α) = Lyj(x
α), α ∈ Nn

2r, supp(α) ⊆ Ik ∩ Ij, j ∈ Uk, k ∈ [p]
Lyk (1) = 1, k ∈ [p]

(4.5)

Note that SDP (4.5) is equivalent to the following program:

Pr
cs :


inf

y
Ly( f )

s.t. Mr(y, Ik) ⪰ 0, k ∈ [p]
Mr−dj

(gjy, Ik) ⪰ 0, j ∈ Jk, k ∈ [p]
y0 = 1

(4.6)

with optimal value denoted by f r
cs. Indeed, for any sequence y = (yα)α∈Nn

2r
, one can define

yk := {yα : α ∈ Nn
2r, supp(α) ⊆ Ik}, for all k ∈ [p]. One obviously has Lyk (1) = 1, and each

moment matrix Mr(yk, Ik) is equal to Mr(y, Ik) (and similarly for the localizing matrices). In
addition, if Ik ∩ Ij ̸= ∅ and supp(α) ⊆ Ik ∩ Ij, then

Lyk (x
α) = {yα : supp(α) ⊆ Ik ∩ Ij} = Lyj(x

α).

Let Σ[x, Ik] ⊆ R[x, Ik] be the corresponding cone of SOS polynomials. Then the dual of (4.6) is

sup
b,σk,j

b

s.t. f − b = ∑
p
k=1

(
σk,0 + ∑j∈Jk

σk,jgj

)
σk,0, σk,j ∈ Σ[x, Ik], j ∈ Jk, k ∈ [p]
deg(σk,0), deg(σk,jgj) ≤ 2r, j ∈ Jk, k ∈ [p]

(4.7)

In the following, we refer to (4.6)–(4.7) as the CSSOS hierarchy. To prove that the sequence
( f r

cs)r≥rmin converges to the global optimum fmin of the original POP (4.1), we rely on Lemma
4.3.

Theorem 4.6 Consider POP (4.1). If Assumption 4.1 holds, then the CSSOS hierarchy (4.6)–(4.7)
provides a nondecreasing sequence of lower bounds ( f r

cs)r≥rmin converging to fmin.

Remark 4.7 Despite the convergence guarantee stated in Theorem 4.6, note that SDP (4.6) is a relaxation
of the dense SDP (3.4) in general, and one can have f r

cs < f r for some relaxation order r. The underlying
reason is that the situation here is different from the case of PSD matrix completion (Theorem 1.6). Namely,
there is no guarantee that one can obtain a PSD matrix completion Mr(y) from the submatrices Mr(y, Ik),
k ∈ [p] because of the specific Hankel structure of Mr(y).
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As a corollary of Theorem 4.6, we obtain the following representation result, which is a CS
version of Putinar’s Positivstellensatz.

Theorem 4.8 Let f ∈ R[x] be positive on a basic compact semialgebraic set S. Let Assumption 4.1
hold. Then,

f =
p

∑
k=1

(
σk,0 + ∑

j∈Jk

σk,jgj

)
, (4.8)

for some polynomials σk,0, σk,j ∈ Σ[x, Ik], j ∈ Jk, k ∈ [p].

Let us compare the computational cost of the CSSOS hierarchy (4.7) with the dense hierarchy
(3.6). For this, we define τ := maxk∈[p] |Ik| = maxk∈[p] nk, that is, τ is the maximal size of the
subsets I1, . . . , Ip.

(1) The dense SOS formulation (3.6) involves m + 1 SOS polynomials in n variables of degree at
most 2r, yielding m + 1 SDP matrices of size at most (n+r

r ) and (n+2r
2r ) equality constraints.

(2) The CSSOS formulation (4.7) involves p + m SOS polynomials in at most τ variables and of
degree at most 2r, yielding p + m SDP matrices of size at most (τ+r

r ) and at most p(τ+2r
2r )

equality constraints.

Overall, when n is fixed and r varies, the r-th step of the hierarchy involves O (r2n) equality
constraints in the dense setting against O (pr2τ) in the sparse setting. This allows one to handle
POPs involving several hundred variables if the maximal subset size τ is small (say, τ ≤ 10).
Furthermore, as shown in the following example, one can also benefit from the computational
cost saving when r increases for POPs involving a small number of variables (say, n ≤ 10).

Example 4.9 Coming back to Example 4.2, let us compare the hierarchy of dense relaxations given in
Chapter 3 with the CS variant. For r = 1, the dense SDP relaxation (3.6) involves (n+2r

2r ) = (6+2
2 ) = 28

equality constraints and provides a lower bound of f 1 = 20.755 for fmin. The dense SDP relaxation (3.6)
with r = 2 involves (6+4

4 ) = 210 equality constraints and provides a tighter lower bound of f 2 = 20.8608.
For r = 2, the sparse SDP relaxation (4.7) involves (2+4

4 ) + 2(4+4
4 ) = 155 equality constraints and

provides the same bound f 2
cs = f 2 = 20.8608. The dense SDP relaxation with r = 3 involves 924 equality

constraints against 448 for the sparse variant.

As for the standard dense moment-SOS hierarchy stated in Chapter 3, one can also detect finite
convergence of the CSSOS hierarchy and extract global minimizers with a dedicated extraction
algorithm — the CS variant of Algorithm 1.

Theorem 4.10 Consider POP (4.1). Let Assumption 4.1 (i)–(ii) hold and let us consider the hierarchy
of moment relaxations (Pr

cs)r≥rmin defined in (4.6). Let ak := maxj∈Jk{dj} for all k ∈ [p]. If for some
r ≥ rmin, Pr

cs has an optimal solution y which satisfies

rank Mr(y, Ik) = rank Mr−ak (y, Ik) for all k ∈ [p], (4.9)

and rank Mr(y, Ij ∩ Ik) = 1 for all pairs (j, k) with Ij ∩ Ik ̸= ∅, then the SDP relaxation (4.6) is
exact, i.e., f r

cs = fmin. In addition, for each k ∈ [p], let ∆k := {x(k)} ⊆ Rnk be a set of solutions
obtained from the extraction procedure Extract, stated in Algorithm 1 and applied to the moment
matrix Mr(y, Ik). Then every x ∈ Rn obtained by (xi)i∈Ik = x(k) for some x(k) ∈ ∆k is a global
minimizer of POP (4.1).
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Note that Assumption 4.1 (iii)–(iv) are not required in Theorem 4.10, as the rank conditions
are strong enough to ensure finite convergence and extraction of a subset of global minimizers.

For more details on correlative sparsity, please refer to [WKKM06, Las06a].

4.4 Term sparsity

In this section, we describe an iterative procedure to exploit TS for the primal-dual moment-SOS
relaxations of unconstrained POPs. Recall the formulation of an unconstrained POP:

P : fmin := inf { f (x) : x ∈ Rn} = sup {b : f − b ≥ 0}, (4.10)

where f = ∑α fαxα ∈ R[x]. Suppose that f is of degree 2d with supp( f ) = A (w.l.o.g. assuming
0 ∈ A ) and xB := (xβ)β∈B is a monomial basis arranged with resepct to any fixed ordering. For
convenience, we slightly abuse notation in the sequel and denote by B (resp. β) instead of xB

(resp. xβ) a monomial basis (resp. a monomial). One may choose B to be the standard monomial
basis Nn

d . But when f is sparse, we may use a (possibly) smaller monomial basis by considering
Newton polytopes.

Given a monomial basis B and a sequence y ⊆ R, the moment matrix MB(y) associated with
B and y is the block of the moment matrix Md(y) indexed by B. Then the moment relaxation of
P in the monomial basis B is given by

Pmom :
fmom := inf

y
Ly( f )

s.t. MB(y) ⪰ 0
y0 = 1

(4.11)

For a graph G(V, E) with V ⊆ Nn, let the support of G be given by

supp(G) := {β + γ | β = γ or {β, γ} ∈ E} . (4.12)

We define Gtsp to be the graph with nodes V = B and with edges

E(Gtsp) = {{β, γ} | β ̸= γ ∈ V, β + γ ∈ A ∪ (2 B)} , (4.13)

which is called the tsp graph associated with f .
Starting with the initial graph G(0) = Gtsp, we now define a sequence of graphs (G(s))s≥1 by

iteratively performing two successive operations:
(1) support extension. Let F(s) be the graph with nodes V and with edges

E(F(s)) =
{
{β, γ} | β ̸= γ ∈ V, β + γ ∈ supp(G(s−1))

}
. (4.14)

(2) chordal extension. Let G(s) =
(

F(s))′.
Example 4.11 Let us consider the graph G(V, E) with

V = {1, x1, x2, x3, x2x3, x1x3, x1x2} and E = {{1, x2x3}, {x2, x1x3}} .

Figure 4.3 illustrates the support extension of G.

By construction, one has G(s) ⊆ G(s+1) for s ≥ 1 and therefore the sequence of graphs (G(s))s≥1
stabilizes after a finite number of steps. Following what we introduced in Chapter 1.4, we denote
by ΠG(s)(S

+
|B |) the set of matrices in S(G(s)) that have a PSD completion, and denote by BG(s)

the adjacency matrix of G(s). If f is sparse, by replacing MB(y) ⪰ 0 with the weaker condition
MB(y) ∈ ΠG(s)(S

+
|B |) in (4.11), we then obtain a sparse moment relaxation of (4.10) for each

s ≥ 1:

Ps
ts :


inf

y
Ly( f )

s.t. BG(s) ◦ MB(y) ∈ ΠG(s)(S
+
|B |)

y0 = 1

(4.15)
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1 x1 x2 x3

x2 x3 x1 x3 x1 x2

Figure 4.3: The support extension of G in Example 4.11. The dashed edges are added after support
extension.

with optimum denoted by f s
ts. We call (Ps

ts)s≥1 the TSSOS hierarchy for P and call s the sparse
order.

Remark 4.12 The intuition behind the support extension operation is that once one position related to
yα in the moment matrix MB(y) is “activated” in the sparsity pattern, then all positions related to yα

in MB(y) should be “activated”. In addition, Theorems 1.5 and 1.6 provide the rationale behind the
mechanism of the chordal extension operation.

Theorem 4.13 The sequence ( f s
ts)s≥1 is monotonically nondecreasing and f s

ts ≤ fmom for all s ≥ 1.

PROOF The inclusion G(k) ⊆ G(k+1) implies that each maximal clique of G(k) is a subset of some
maximal clique of G(k+1). Thus by Theorem 1.6, we see that Ps

ts is a relaxation of Ps+1
ts (and also a

relaxation of Pmom). This yields the desired conclusions. 2

As a consequence of Theorem 4.13, we obtain the following hierarchy of lower bounds for the
optimum of P:

f 1
ts ≤ f 2

ts ≤ · · · ≤ fmom ≤ fmin. (4.16)

If the maximal chordal extension is chosen for the chordal extension operation, then we can
show (see [WML21b] for more details) that the sequence ( f s

ts)s≥1 converges to the global opti-
mum fmin. Otherwise, there is no guarantee of such convergence as illustrated by the following
example.

Example 4.14 Consider

f = x2
1 − 2x1x2 + 3x2

2 − 2x2
1x2 + 2x2

1x2
2 − 2x2x3 + 6x2

3

+ 18x2
2x3 − 54x2x2

3 + 142x2
2x2

3.

The monomial basis computed from the Newton polytope is {1, x1, x2, x3, x1x2, x2x3}. Figure 4.4 shows
the tsp graph Gtsp (without dashed edges) and its smallest chordal extension G(1) (with dashed edges)
for f . The graph sequence (G(s))s≥1 stabilizes at s = 1. Solving P1

ts, we obtain f 1
ts ≈ −0.00355 while

fmom = fmin = 0. On the other hand, note that Gtsp has only one connected component. So with the
maximal chordal extension, we immediately get the complete graph and it follows f 1

ts = fmom = 0 in this
case.

x1 x2 x3

x1 x2 1 x2 x3

x1 x2 x3

x1 x2 1 x2 x3

Figure 4.4: The tsp graph Gtsp and a smallest chordal extension (left) as well as the maximal
chordal extension (right) for Example 4.14.
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For each s ≥ 1, the dual SDP of (4.15) is
sup
G,b

b

s.t. ⟨G, Bα⟩ = fα − b1α=0, ∀α ∈ supp(G(s))

G ∈ S+
|B | ∩ S(G(s))

(4.17)

where Bα has been defined after (3.5).

Proposition 4.15 For each s ≥ 1, there is no duality gap between Ps
ts and its dual (4.17).

PROOF This easily follows from the fact that Ps
ts satisfies Slater’s condition by Proposition 3.1 of

[Las01] and Theorem 1.6. 2

4.5 The TSSOS hierarchy for constrained POPs

In this section, we describe an iterative procedure to exploit TS for the primal-dual moment-SOS
hierarchy of constrained POPs:

P : fmin := inf { f (x) : x ∈ S}, (4.18)

with
S = {x ∈ Rn | g1(x) ≥ 0, . . . , gm(x) ≥ 0}. (4.19)

Let A denote the union of supports involved in P, i.e.,

A = supp( f ) ∪
m⋃

j=1

supp(gj). (4.20)

Let rmin := max {⌈deg( f )/2⌉, d1, . . . , dm} with dj := ⌈deg(gj)/2⌉ for j ∈ [m]. Fix a relaxation
order r ≥ rmin. Let g0 = 1, d0 = 0 and Br,j = Nn

r−dj
be the standard monomial basis for

j = 0, 1, . . . , m. We define a graph Gtsp with nodes Br,0 and edges

E(Gtsp) = {{β, γ} | β ̸= γ ∈ Br,0, β + γ ∈ A ∪ (2 Br,0)} , (4.21)

which is called the tsp graph associated with P or essentially A .
Now let us initialize with G(0)

r,0 := Gtsp and G(0)
r,j being an empty graph for j ∈ [m]. Then

for each j ∈ {0} ∪ [m], we define a sequence of graphs (G(s)
r,j )s≥1 by iteratively performing two

successive operations:
(1) support extension. Let F(s)

r,j be the graph with nodes Br,j and edges

E(F(s)
r,j ) =

{
{β, γ} | β ̸= γ ∈ Br,j,

(supp(gj) + β + γ) ∩
m⋃

i=0

(
supp(gi) + supp(G(s−1)

r,i )
)
̸= ∅

}
.

(4.22)

(2) chordal extension. Let
G(s)

r,j :=
(

F(s)
r,j
)′, j ∈ {0} ∪ [m]. (4.23)

Recall that the dense moment relaxation of order r for P is given by

Pr :

f r
mom := inf

y
Ly( f )

s.t. Mr−dj
(gj y) ⪰ 0, j ∈ {0} ∪ [m]

y0 = 1

(4.24)
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Let tj := |Br,j | = (
n+r−dj

r−dj
). Therefore by replacing Mr−dj

(gjy) ⪰ 0 with the weaker condition

B
G(s)

r,j
◦ Mr−dj

(gjy) ∈ Π
G(s)

r,j
(S+

tj
) for j ∈ {0} ∪ [m] in (4.24), we obtain the following sparse moment

relaxation of Pr and P for each s ≥ 1:

Pr,s
ts :

f r,s
ts := inf

y
Ly( f )

s.t. B
G(s)

r,0
◦ Mr(y) ∈ Π

G(s)
r,0
(S+

t0
)

B
G(s)

r,j
◦ Mr−dj

(gjy) ∈ Π
G(s)

r,j
(S+

tj
), j ∈ [m]

y0 = 1

(4.25)

As in the unconstrained case, we call s the sparse order. By construction, one has G(s)
r,j ⊆ G(s+1)

r,j

for all j, s. Therefore, for each j ∈ {0} ∪ [m], the sequence of graphs (G(s)
r,j )s≥1 stabilizes after a

finite number of steps. We denote the stabilized graph by G(•)
r,j for all j and the corresponding

moment relaxation by Pr,•
ts with optimum f r,•

ts .
For each s ≥ 1, the dual SDP of Pr,s

ts reads as
sup
Gj ,b

b

s.t. ∑m
j=0⟨C

j
α, Gj⟩ = fα − b1α=0, ∀α ∈ ⋃m

j=0
(
supp(gj) + supp(G(s)

r,j )
)

Gj ∈ S+
tj
∩ S(G(s)

r,j ), j ∈ {0} ∪ [m]

(4.26)

where Cj
α is defined after (3.5). The primal-dual SDP relaxations (4.25)–(4.26) are called the TSSOS

hierarchy associated with P, which is indexed by two parameters: the relaxation order r and the
sparse order s.

Theorem 4.16 With the above notation, the following hold:

(i) Assume that S has a nonempty interior. Then there is no duality gap between Pr,s
ts and its dual

(4.26) for any r ≥ rmin and s ≥ 1.

(ii) Fixing a relaxation order r ≥ rmin, the sequence ( f r,s
ts )s≥1 is monotonically nondecreasing and

f r,s
ts ≤ f r

mom for all s ≥ 1.

(iii) When the maximal chordal extension is used for the chordal extension operation, the sequence
( f r,s

ts )s≥1 converges to f r
mom in finitely many steps.

(iv) Fixing a sparse order s ≥ 1, the sequence ( f r,s
ts )r≥rmin is monotonically nondecreasing.

PROOF (i). This easily follows from the fact that Pr,s
ts satisfies Slater’s condition by Theorem 4.2 of

[Las01] and Theorem 1.6.
(ii). For all j, s, the inclusion G(s)

r,j ⊆ G(s+1)
r,j implies that each maximal clique of G(s)

r,j is a

subset of some maximal clique of G(s+1)
r,j . Hence by Theorem 1.6, Pr,s

ts is a relaxation of Pr,s+1
ts (and

also a relaxation of Pr) from which we have that ( f r,s
ts )s≥1 is monotonically nondecreasing and

f r,s
ts ≤ f r

mom for all s ≥ 1.
(iii). Let y = (yα) be an arbitrary feasible solution of Pr,•

ts . We note that
{

yα | α ∈ ⋃j∈{0}∪[m]

(
supp(gj)+

supp(G(•)
r,j )

)}
is the set of decision variables involved in Pr,•

ts , and {yα | α ∈ Nn
2r} is the set of de-

cision variables involved in Pr (4.24). We then define a vector y = (yα)α∈Nn
2r

as follows:

yα =

{
yα, if α ∈ ⋃j∈{0}∪[m]

(
supp(gj) + supp(G(•)

r,j )
)
,

0, otherwise.
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By construction and since G(•)
r,j stabilizes under support extension for all j, we immediately have

Mr−dj
(gjy) = B

G(•)
r,j

◦ Mr−dj
(gjy). As we use the maximal chordal extension for the chordal ex-

tension operation, the matrix B
G(•)

r,j
◦ Mr−dj

(gjy) is block-diagonal up to permutation. So from

B
G(•)

r,j
◦ Mr−dj

(gjy) ∈ Π
G(•)

r,j
(S

tj
+) it follows Mr−dj

(gjy) ⪰ 0 for j ∈ {0} ∪ [m]. Therefore y is a fea-

sible solution of Pr and so Ly( f ) = Ly( f ) ≥ f r
mom. Hence f r,•

ts ≥ f r
mom as y is an arbitrary feasible

solution of Pr,•
ts . By (ii), we already have f r,•

ts ≤ f r
mom. Therefore, f r,•

ts = f r
mom as desired.

(iv). The conclusion follows if we can show that G(s)
r,j ⊆ G(s)

r+1,j for all j, r since by Theorem 1.6

this implies that Pr,s
ts is a relaxation of Pr+1,s

ts . Let us prove G(s)
r,j ⊆ G(s)

r+1,j by induction on s. For

s = 1, from (4.21), we have G(0)
r,0 ⊆ G(0)

r+1,0, which implies G(1)
r,j ⊆ G(1)

r+1,j for j ∈ {0} ∪ [m]. Now

assume that G(s)
r,j ⊆ G(s)

r+1,j, j ∈ {0} ∪ [m] hold for a given s ≥ 1. Then from (4.22) and by the

induction hypothesis, we have G(s+1)
r,j ⊆ G(s+1)

r+1,j for j ∈ {0} ∪ [m], which completes the induction
and also completes the proof. 2

By Theorem 4.16, we have the following two-level hierarchy of lower bounds for the optimum
fmin of P:

f rmin,1
ts ≤ f rmin,2

ts ≤ · · · ≤ f rmin
mom

≥ ≥ ≥

f rmin+1,1
ts ≤ f rmin+1,2

ts ≤ · · · ≤ f rmin+1
mom

≥ ≥ ≥
...

...
...

...

≥ ≥ ≥

f r,1
ts ≤ f r,2

ts ≤ · · · ≤ f r
mom

≥ ≥ ≥

...
...

...
...

(4.27)

The TSSOS hierarchy entails a trade-off between the computational cost and the quality of
the obtained lower bound via the two tunable parameters r and s. Besides, one has the freedom
to choose a specific chordal extension in (4.23) (e.g., maximal chordal extensions, approximately
smallest chordal extensions and so on). This choice could affect the resulting sizes of PSD blocks
and the quality of the related lower bound. Intuitively, chordal extensions with smaller clique
numbers would lead to PSD blocks of smaller sizes and lower bounds of (possibly) lower quality
while chordal extensions with larger clique numbers would lead to PSD blocks with larger sizes
and lower bounds of (possibly) higher quality.

Remark 4.17 If P is a QCQP, then P1,1
ts and P1 yield the same lower bound, i.e., f 1,1

ts = f 1
mom. Indeed, for

a QCQP, the moment relaxation P1 reads as
inf

y
Ly( f )

s.t. M1(y) ⪰ 0
Ly(gj) ≥ 0, j ∈ [m]

y0 = 1

Note that the objective function and the affine constraints of P1 involve only the decision variables {y0} ∪
{yα}α∈A with A = supp( f ) ∪⋃m

j=1 supp(gj). Hence there is no discrepancy of optima in replacing P1

with P1,1
ts by construction.
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4.6 Sign symmetries and a sparse representation theorem for pos-
itive polynomials

The exploitation of TS developed in the previous sections is closely related to sign symmetries.
Intuitively, a polynomial is said to have sign symmetries if it is invariant when we change signs
of some variables. For instance, the polynomial f (x1, x2) = x2

1 + x2
2 + x1x2 has the sign symmetry

associated to (x1, x2) 7→ (−x1,−x2) as f (−x1,−x2) = f (x1, x2). To be more precise, we give the
following definition of sign symmetries in terms of support sets.

Definition 4.18 (sign symmetry) Given a finite set A ⊆ Nn, the sign symmetries of A are defined
by all vectors s ∈ Zn

2 := {0, 1}n such that s⊺α ≡ 0 (mod 2) for all α ∈ A .

Assume that the maximal chordal extension is chosen for the chordal extension operation in
Chapter 4.5. As mentioned earlier, for any j the sequence of graphs (G(s)

r,j )s≥1 ends up with G(•)
r,j

in finitely many steps. Note that the graph G(•)
r,j induces a partition of the monomial basis Nn

r−dj
:

two monomials β, γ ∈ Nn
r−dj

belong to the same block if and only if they belong to the same

connected component of G(•)
r,j . The following theorem provides an interpretation of this partition

in terms of sign symmetries.

Theorem 4.19 Notations are as in the previous sections. Fix the relaxation order r ≥ rmin. Assume
that the maximal chordal extension is chosen for the chordal extension operation and the sign symme-
tries of A are given by the columns of a binary matrix denoted by R. Then for each j ∈ {0} ∪ [m],
β, γ belong to the same block in the partition of Nn

r−dj
induced by G(•)

r,j if and only if R⊺(β + γ) ≡ 0

(mod 2). In other words, for a fixed relaxation order the block structures arising from the TSSOS
hierarchy converge to the block structure determined by the sign symmetries of the POP assuming
that the maximal chordal extension is used for the chordal extension operation.

Theorem 4.19 is applied for the standard monomial basis Nn
r−dj

. If a smaller monomial basis
is chosen, then we only have the "only if" part of the conclusion in Theorem 4.19.

Example 4.20 Let f = 1 + x2
1x4

2 + x4
1x2

2 + x4
1x4

2 − x1x2
2 − 3x2

1x2
2 and A = supp( f ). The monomial

basis given by the Newton polytope method is B = {1, x1x2, x1x2
2, x2

1x2, x2
1x2

2}. The sign symmetries of A

consist of two elements: (0, 0) and (0, 1). According to the sign symmetries, B is partitioned into {1, x1x2
2,

x2
1x2

2} and {x1x2, x2
1x2}. On the other hand, the partition of B induced by G(•) is {1, x1x2

2, x2
1x2

2}, {x1x2}
and {x2

1x2}, which is a refinement of the partition determined by the sign symmetries.

As a corollary of Theorem 4.19, we can prove a sparse representation theorem for positive
polynomials on compact basic semialgebraic sets.

Theorem 4.21 Let S be defined as in (4.19). Assume that the quadratic module M(g) is Archimedean
and that the polynomial f is positive on S. Let A = supp( f ) ∪ ⋃m

j=1 supp(gj) and let the sign
symmetries of A be given by the columns of the binary matrix R. Then f can be decomposed as

f = σ0 +
m

∑
j=1

σjgj,

for some SOS polynomials σ0, σ1, . . . , σm satisfying R⊺α ≡ 0 (mod 2) for any α ∈ supp(σj), j =
0, . . . , m.
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PROOF By Putinar’s Positivstellensatz (Theorem 2.9), there exist SOS polynomials σ′
0, σ′

1, . . . , σ′
m

such that

f = σ′
0 +

m

∑
j=1

σ′
j gj. (4.28)

Let dj = ⌈deg(gj)/2⌉, j = 0, 1, . . . , m and

r = max {⌈deg(σ′
j gj)/2⌉ : j = 0, 1, . . . , m}

with g0 = 1. Let Gj be a Gram matrix associated with σ′
j and indexed by the monomial basis

Nn
r−dj

, j = 0, 1, . . . , m. Then define σj = (x
Nn

r−dj )⊺(B
G(•)

r,j
◦ Gj)x

Nn
r−dj for j = 0, 1, . . . , m, where

G(•)
r,j is defined in Chapter 4.5. For any j ∈ {0} ∪ [m], since B

G(•)
r,j

◦ Gj is block-diagonal (up to

permutation) and Gj is positive semidefinite, we see that σj is an SOS polynomial.
Suppose α ∈ supp(σj) with j ∈ {0} ∪ [m]. Then we can write α = α′ + β + γ for some α′ ∈

supp(gj) and some β, γ belonging to the same connected component of G(•)
r,j . By Theorem 4.19,

we have R⊺(β+γ) ≡ 0 (mod 2) and therefore, R⊺α ≡ 0 (mod 2). Moreover, for any α′ ∈ supp(gj)

and β, γ not belonging to the same connected component of G(•)
r,j , we have R⊺(β+ γ) ̸≡ 0 (mod 2)

by Theorem 4.19 and so R⊺(α′+ β+γ) ̸≡ 0 (mod 2). From these facts we deduce that substituting
σ′

j with σj in (4.28) is just removing the terms whose exponents α do not satisfy R⊺α ≡ 0 (mod 2)
from the right-hand side of (4.28). Doing so, one does not change the match of coefficients on both
sides of the equality. Thus we have

f = σ0 +
m

∑
j=1

σjgj,

with the desired property. 2

4.7 The CS-TSSOS hierarchy

The underlying idea to exploit CS and TS simultaneously in the moment-SOS hierarchy consists
of the following two steps:

(1) decomposing the set of variables into a tuple of cliques {Ik}k∈[p] by exploiting CS;

(2) applying the iterative procedure for exploiting TS to each decoupled subsystem involving
variables x(Ik).

More concretely, let us fix a relaxation order r ≥ rmin. Suppose that Gcsp is the csp graph
associated to POP (3.1) defined as in Chapter 4.1, (Gcsp)′ is a chordal extension of Gcsp, and
Ik, k ∈ [p] are the maximal cliques of (Gcsp)′ with cardinality being denoted by nk, k ∈ [p]. As in
Chapter 4.1, the set of variables x is decomposed into x(I1), x(I2), . . . , x(Ip) by exploiting CS. In
addition, assume that the constraints are assigned to the variable cliques according to J1, . . . , Jp, J′

as defined in Chapter 4.1.
Now we apply the iterative procedure for exploiting TS to each subsystem involving variables

x(Ik), k ∈ [p] in the following way. Let

A := supp( f ) ∪
m⋃

j=1

supp(gj) and Ak := {α ∈ A | supp(α) ⊆ Ik} (4.29)

for k ∈ [p]. Let N
nk
r−dj

be the standard monomial basis for j ∈ {0} ∪ Jk, k ∈ [p]. Let Gtsp
r,k be the tsp

graph with nodes N
nk
r associated to the support Ak defined as in Chapter 4.4, i.e., its node set is
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N
nk
r and {β, γ} is an edge if β + γ ∈ Ak ∪ 2N

nk
r . Note that here we embed N

nk
r into Nn

r via the
map α = (αi) ∈ N

nk
r 7→ α′ = (α′i) ∈ Nn

r satisfying

α′i =

{
αi, if i ∈ Ik,
0, otherwise.

Let us define G(0)
r,k,0 := Gtsp

r,k and G(0)
r,k,j, j ∈ Jk, k ∈ [p] are all empty graphs. Next for each j ∈

{0}∪ Jk and each k ∈ [p], we iteratively define an ascending chain of graphs (G(s)
r,k,j(Vr,k,j, E(s)

r,k,j))s≥1

with Vr,k,j := N
nk
r−dj

via two successive operations:

(1) support extension. Define F(s)
r,k,j to be the graph with nodes Vr,k,j and with edges

E(F(s)
r,k,j) =

{
{β, γ} | β ̸= γ ∈ Vr,k,j,

(
β + γ + supp(gj)

)
∩ C

(s−1)
r ̸= ∅

}
, (4.30)

where

C
(s−1)
r :=

p⋃
k=1

 ⋃
j∈{0}∪Jk

(
supp(gj) + supp(G(s−1)

r,k,j )
) . (4.31)

(2) chordal extension. Let

G(s)
r,k,j := (F(s)

r,k,j)
′, j ∈ {0} ∪ Jk, k ∈ [p]. (4.32)

It is clear by construction that the sequences of graphs (G(s)
r,k,j)s≥1 stabilize for all j ∈ {0} ∪ Jk, k ∈

[p] after finitely many steps.

Example 4.22 Let f = 1 + x2
1 + x2

2 + x2
3 + x1x2 + x2x3 + x3 and consider the unconstrained POP:

min{ f (x) : x ∈ Rn}. Take the relaxation order r = rmin = 1. The variables are decomposed into two
cliques: {x1, x2} and {x2, x3}. The tsp graphs with respect to these two cliques are illustrated in Figure
4.5. The left graph corresponds to the first clique: x1 and x2 are connected because of the term x1x2. The
right graph corresponds to the second clique: 1 and x3 are connected because of the term x3; x2 and x3 are
connected because of the term x2x3. It is not hard to see that the graph sequences (G(s)

1,k )s≥1, k = 1, 2 (the
subscript j is omitted here since there is no constraint) stabilize at s = 2 if the maximal chordal extension
is used in (4.32).

1

x2x1

1

x3x2

Figure 4.5: The tsp graphs of Example 4.22.

Let tk,j := |Nnk
r−dj

| = (
nk+r−dj

r−dj
) for all k, j. Then with s ≥ 1, the moment relaxation based on

correlative-term sparsity for POP (3.1) is given by

Pr,s
cs-ts :



inf
y

Ly( f )

s.t. B
G(s)

r,k,0
◦ Mr(y, Ik) ∈ Π

G(s)
r,k,0

(S+
tk,0

), k ∈ [p]

B
G(s)

r,k,j
◦ Mr−dj

(gjy, Ik) ∈ Π
G(s)

r,k,j
(S+

tk,j
), j ∈ Jk, k ∈ [p]

Ly(gj) ≥ 0, j ∈ J′

y0 = 1

(4.33)

with optimum denoted by f r,s
cs-ts.
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1
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Figure 4.6: The csp graph of Example 4.23.

1x2
3

x2
2 x2

1

x1 x2 x3

x2 x3 x1 x3 x1 x2

Figure 4.7: The tsp graph for the first clique of Example 4.23.

For all k, j, let us write Mr−dj
(gjy, Ik) = ∑α Dk,j

α yα for appropriate symmetry matrices {Dk,j
α }

and gj = ∑α gj,αxα. Then for each s ≥ 1, the dual of Pr,s
cs-ts (4.33) reads as

(Pr,s
cs-ts)

∗ :



sup
Gk,j ,λj ,b

b

s.t. ∑
p
k=1 ∑j∈{0}∪Jk

⟨Gk,j, Dk,j
α ⟩+ ∑j∈J′ λjgj,α

+bδ0α = fα, ∀α ∈ C
(s)
r

Gk,j ∈ S
tk,j
+ ∩ S

G(s)
r,k,j

, j ∈ {0} ∪ Jk, k ∈ [p]

λj ≥ 0, j ∈ J′

(4.34)

where C
(s)
r is defined in (4.31).

The primal-dual SDP relaxations (4.33)–(4.34) is called the CS-TSSOS hierarchy associated with
P (3.1), which is indexed by two parameters: the relaxation order r and the sparse order s.

Example 4.23 Let f = 1 + ∑6
i=1 x4

i + x1x2x3 + x3x4x5 + x3x4x6 + x3x5x6 + x4x5x6, and consider the
unconstrained POP: min{ f (x) : x ∈ Rn}. Let us apply the CS-TSSOS hierarchy (using the maximal
chordal extension in (4.32)) to this problem by taking r = rmin = 2, s = 1. First, according to the csp
graph (Figure 4.6), we decompose the variables into two cliques: {x1, x2, x3} and {x3, x4, x5, x6}. The tsp
graphs for the first clique and the second clique are shown in Figure 4.7 and Figure 4.8, respectively. For
the first clique one obtains four blocks of SDP matrices with respective sizes 4, 2, 2, 2. For the second clique
one obtains two blocks of SDP matrices with respective sizes 5, 10. As a result, the original SDP matrix of
size 28 has been reduced to six blocks of maximal size 10.

Alternatively, if one applies the TSSOS hierarchy (using the maximal chordal extension in (4.23))
directly to this problem by taking r = rmin = 2, s = 1 (i.e., without decomposing variables), then the tsp
graph is shown in Figure 4.9 and one thereby obtains 11 PSD blocks with respective sizes 7, 2, 2, 2, 1, 1, 1, 1,
1, 1, 10. Compared to the CS-TSSOS case, there are six additional blocks of size one and the two blocks with
respective sizes 4, 5 are replaced by a single block of size 7.

We summarize the basic properties of the CS-TSSOS hierarchy in the next theorem.

Theorem 4.24 Let f ∈ R[x] and S be defined as before. Then the following hold:
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1

x2
6

x2
5 x2
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3

x3
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x4 x6
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x3 x4
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Figure 4.8: The tsp graph for the second clique of Example 4.23
.
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x4 x6
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Figure 4.9: The tsp graph without decomposing variables of Example 4.23.

1. If S has a nonempty interior, then there is no duality gap between Pr,s
cs-ts and (Pr,s

cs-ts)
∗ for any

r ≥ rmin and s ≥ 1.

2. For any r ≥ rmin, the sequence ( f r,s
cs-ts)s≥1 is monotonically non-decreasing and f r,s

cs-ts ≤ f r
cs for

all s with f r
cs being defined in Section 4.3.

3. For any s ≥ 1, the sequence ( f r,s
cs-ts)r≥rmin is monotonically non-decreasing.

PROOF 1. By the duality theory of convex programming, this easily follows from Theorem 3.6 of
[Las06b] and Theorem 1.5.

2. By construction, we have G(s)
r,k,j ⊆ G(s+1)

r,k,j for all r, k, j and for all s. It follows that each maxi-

mal clique of G(s)
r,k,j is contained in some maximal clique of G(s+1)

r,k,j . Hence by Theorem 1.5, Pr,s
cs-ts is

a relaxation of Pr,s+1
cs-ts and is clearly also a relaxation of Pr

cs. Therefore, ( f r,s
cs-ts)s≥1 is monotonically

non-decreasing and f r,s
cs-ts ≤ f r

cs for all s.

3. The conclusion follows if we can show that the inclusion G(s)
r,k,j ⊆ G(s)

r+1,k,j holds for all r, k, j, s,

since by Theorem 1.5 this implies that Pr,s
cs-ts is a relaxation of Pr+1,s

cs-ts . Let us prove G(s)
r,k,j ⊆ G(s)

r+1,k,j

by induction on s. For s = 1, we have G(0)
r,k,0 = Gtsp

r,k ⊆ Gtsp
r+1,k = G(0)

r+1,k,0, which together with

(4.30)-(4.31) implies that F(1)
r,k,j ⊆ F(1)

r+1,k,j for j ∈ {0} ∪ Jk, k ∈ [p]. It then follows that G(1)
r,k,j =

(F(1)
r,k,j)

′ ⊆ (F(1)
r+1,k,j)

′ = G(1)
r+1,k,j. Now assume that G(s)

r,k,j ⊆ G(s)
r+1,k,j, j ∈ {0} ∪ Jk, k ∈ [p], hold for

some s ≥ 1. Then by (4.30)-(4.31) and by the induction hypothesis, we have F(s+1)
r,k,j ⊆ F(s+1)

r+1,k,j
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for j ∈ {0} ∪ Jk, k ∈ [p]. Thus G(s+1)
r,k,j = (F(s+1)

r,k,j )′ ⊆ (F(s+1)
r+1,k,j)

′ = G(s+1)
r+1,k,j which completes the

induction. 2

From Theorem 4.24, we deduce the following two-level hierarchy of lower bounds for the
optimum fmin of P (3.1):

f rmin,1
cs-ts ≤ f rmin,2

cs-ts ≤ · · · ≤ f rmin
cs-ts

≥ ≥ ≥

f rmin+1,1
cs-ts ≤ f rmin+1,2

cs-ts ≤ · · · ≤ f rmin+1
cs-ts

≥ ≥ ≥

...
...

...
...

≥ ≥ ≥

f r,1
cs-ts ≤ f r,2

cs-ts ≤ · · · ≤ f r
cs-ts

≥ ≥ ≥

...
...

...
...

(4.35)

As we have known for the TSSOS hierarchy, the block structure arising from the CS-TSSOS
hierarchy is consistent with the sign symmetries of the POP. More precisely, we have the following
theorem.

Theorem 4.25 Let A be defined as in (4.29), C
(s)
r be defined as in (4.31), and assume that the sign

symmetries of A are represented by the column vectors of the binary matrix R. Then for any r ≥ rmin,
s ≥ 1 and any α ∈ C

(s)
r , it holds R⊺α ≡ 0 (mod 2). As a consequence, if β, γ belong to the same

block in the CS-TSSOS relaxations, then R⊺(β + γ) ≡ 0 (mod 2).

We next show that if the chordal extension in (4.33) is chosen to be maximal, then for any
relaxation order r ≥ rmin, the sequence of optima ( f r,s

cs-ts)s≥1 arising from the CS-TSSOS hierarchy
converges to the optimum f r

cs of the CSSOS relaxation.
It is clear by construction that the sequences of graphs (G(s)

r,k,j)s≥1 stabilize for all j ∈ {0} ∪

Jk, k ∈ [p] after finitely many steps. We denote the resulting stabilized graphs by G(•)
r,k,j, j ∈ {0} ∪

Jk, k ∈ [p] and the corresponding SDP (4.33) by Pr,•
cs-ts.

Theorem 4.26 If one uses the maximal chordal extension in (4.32), then for any r ≥ rmin, the se-
quence ( f r,s

cs-ts)s≥1 converges to f r
cs in finitely many steps.

PROOF Let y = (yα) be an arbitrary feasible solution of Pr,•
cs-ts and f r,•

cs-ts be the optimum of Pr,•
cs-ts.

Note that {yα | α ∈ ⋃p
k=1(∪j∈{0}∪Jk

(supp(gj) + supp(G(•)
r,k,j)))} is the set of decision variables

involved in Pr,•
cs-ts. Let R be the set of decision variables involved in Pr

cs (4.6). We then define a
vector y = (yα)α∈R as follows:

yα =

{
yα, if α ∈ ⋃p

k=1(∪j∈{0}∪Jk
(supp(gj) + supp(G(•)

r,k,j))),

0, otherwise.

By construction and since G(•)
r,k,j stabilizes under support extension for all k, j, we have Mr−dj

(gjy, Ik) =

B
G(•)

r,k,j
◦ Mr−dj

(gjy, Ik). As the maximal chordal extension is chosen for (4.32), the matrix B
G(•)

r,k,j
◦

Mr−dj
(gjy, Ik) is block diagonal up to permutation. It follows from B

G(•)
r,k,j

◦ Mr−dj
(gjy, Ik) ∈
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Π
G(•)

r,k,j
(S

tk,j
+ ) that Mr−dj

(gjy, Ik) ⪰ 0 for j ∈ {0} ∪ Jk, k ∈ [p]. Therefore y is a feasible solution

of Pr
cs and so Ly( f ) = Ly( f ) ≥ f r

cs. Hence f r,•
cs-ts ≥ f r

cs since y is an arbitrary feasible solution of
Pr,•

cs-ts. By Theorem 4.24, we already have f r,•
cs-ts ≤ f r

cs. Therefore, f r,•
cs-ts = f r

cs. 2

By Theorem 3.6 in [Las06b], the sequence ( f r
cs)r≥rmin converges to the global optimum fmin

of POP (3.1) (after adding some redundant quadratic constraints). Therefore, this together with
Theorem 4.26 offers the global convergence of the CS-TSSOS hierarchy.

Proceeding along Theorem 4.24, we are able to provide a sparse representation theorem based
on both CS and TS for a polynomial positive on a compact basic semialgebraic set.

Theorem 4.27 Let f ∈ R[x], S ⊆ Rn and {Ik}
p
k=1, {Jk}

p
k=1 be defined in Assumption (4.1). Assume

that the sign symmetries of A = supp( f ) ∪ ⋃m
j=1 supp(gj) are represented by the columns of the

binary matrix R. If f is positive on S, then f admits a representation of form

f =
p

∑
k=1

(
σk,0 + ∑

j∈Jk

σk,jgj

)
, (4.36)

for some polynomials σk,j ∈ Σ[x(Ik)], j ∈ {0} ∪ Jk, k ∈ [p], satisfying R⊺α ≡ 0 (mod 2) for any
α ∈ supp(σk,j).

PROOF By Corollary 3.9 of [Las06b], there exist polynomials σ′
k,j ∈ Σ[x(Ik)], j ∈ {0} ∪ Jk, k ∈ [p]

such that

f =
p

∑
k=1

(
σ′

k,0 + ∑
j∈Jk

σ′
k,jgj

)
. (4.37)

Let r = max{⌈deg(σ′
k,jgj)/2⌉ : j ∈ {0} ∪ Jk, k ∈ [p]}. Let G′

k,j be a PSD Gram matrix associated

with σ′
k,j and indexed by the monomial basis N

nk
r−dj

. Then for all k, j, we define Gk,j ∈ Stk,j (indexed

by N
nk
r−dj

) by

[Gk,j]βγ :=

{
[Q′

k,j]βγ, if R⊺(β + γ) ≡ 0 (mod 2),

0, otherwise,

and let σk,j = (x
N

nk
r−dj )⊺Gk,jx

N
nk
r−dj . One can easily verify that Gk,j is block diagonal up to per-

mutation (see also [WML21b]) and each block is a principal submatrix of G′
k,j. Then the positive

semidefiniteness of G′
k,j implies that Gk,j is also positive semidefinite. Thus σk,j ∈ Σ[x(Ik)].

By construction, substituting σ′
k,j with σk,j in (4.37) boils down to removing the terms with

exponents α that do not satisfy R⊺α ≡ 0 (mod 2) from the right hand side of (4.37). Since any
α ∈ supp( f ) satisfies R⊺α ≡ 0 (mod 2), this does not change the match of coefficients on both
sides of the equality. Thus we obtain

f =
p

∑
k=1

(
σk,0 + ∑

j∈Jk

σk,jgj

)

with the desired property. 2

In the case of the dense moment-SOS hierarchy, there is a standard procedure described in
[HL05a] to extract globally optimal solutions when the moment matrix satisfies the so-called flat-
ness condition. This procedure was generalized to the correlative sparse setting in [Las06b, S 3.3]
and [ND09]. In the term sparse setting, however, the corresponding procedure cannot be applied
because the information on the moment matrix is incomplete. In order to extract a solution in this
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case, we may add an order-one (dense) moment matrix for each clique in (4.33):

inf
y

Ly( f )

s.t. Mr(y, Ik) ∈ Π
G(s)

r,k,0
(S+

tk,0
), k ∈ [p]

M1(y, Ik) ⪰ 0, k ∈ [p]
Mr−dj

(gjy, Ik) ∈ Π
G(s)

r,k,j
(S+

tk,j
), j ∈ Jk, k ∈ [p]

Ly(gj) ≥ 0, j ∈ J′

y0 = 1

(4.38)

Let yopt be an optimal solution of (4.38). Typically, M1(yopt, Ik) (after identifying sufficiently
small entries with zeros) is a block diagonal matrix (up to permutation). If for all k every block of
M1(yopt, Ik) is of rank one, then a globally optimal solution xopt to P (3.1) which is unique up to
sign symmetries can be extracted ([Las06b, Theorem 3.7]), and the global optimality is certified.
Otherwise, the relaxation might be not exact or yield multiple global solutions.

Remark 4.28 Note that (4.38) is a tighter relaxation of P (3.1) than Pr,s
cs-ts (4.33), and so might provide a

better lower bound for P. In particular, if P is a QCQP, then (4.38) is always tighter than Shor’s relaxation
of P.

For POP (3.1), suppose that f is not a homogeneous polynomial or the constraint polynomi-
als {gj}j∈[m] are of different degrees. Then instead of using the uniform minimum relaxation
order rmin, it might be more beneficial, from the computational point of view, to assign different
relaxation orders to different subsystems obtained from the csp for the initial relaxation step of
the CS-TSSOS hierarchy. To this end, we redefine the csp graph Gicsp(V, E) as follows: V = [n]
and {i, j} ∈ E whenever there exists α ∈ A such that {i, j} ⊆ supp(α). This is clearly a sub-
graph of Gcsp defined in Chapter 4.1 and hence typically admits a smaller chordal extension. Let
(Gicsp)′ be a chordal extension of Gicsp and {Ik}k∈[p] be the list of maximal cliques of (Gicsp)′ with
nk := |Ik|. Now we partition the constraint polynomials {gj}j∈[m] into groups {gj | j ∈ Jk}k∈[p]
and {gj | j ∈ J′} which satisfy

(1) J1, . . . , Jp, J′ ⊆ [m] are pairwise disjoint and
⋃p

k=1 Jk ∪ J′ = [m];

(2) for any j ∈ Jk,
⋃

α∈supp(gj)
supp(α) ⊆ Ik, k ∈ [p];

(3) for any j ∈ J′,
⋃

α∈supp(gj)
supp(α) ⊈ Ik for all k ∈ [p].

Suppose f decomposes as f = ∑k∈[p] fk such that
⋃

α∈supp( fk)
supp(α) ⊆ Ik for k ∈ [p]. We

define the vector of minimum relaxation orders o = (ok)k ∈ Np with ok := max{{dj : j ∈
Jk} ∪ {⌈deg( fk)/2⌉}}. Then with s ≥ 1, we define the following minimal initial relaxation step of
the CS-TSSOS hierarchy:

inf
y

Ly( f )

s.t. B
G(s)

ok ,k,0
◦ Mok (y, Ik) ∈ Π

G(s)
ok ,k,0

(S
tk,0
+ ), k ∈ [p]

B
G(s)

ok ,k,j
◦ Mok−dj

(gjy, Ik) ∈ Π
G(s)

ok ,k,j
(S

tk,j
+ ), j ∈ Jk, k ∈ [p]

Ly(gj) ≥ 0, j ∈ J′

y0 = 1

(4.39)

where G(s)
ok ,k,j, j ∈ Jk, k ∈ [p] are defined in the same spirit with Chapter 4.7 and tk,j := (

nk+ok−dj
ok−dj

)

for all k, j.
Fore more details on term sparsity, please refer to [WML21b, WML21a, WMLM20].
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4.8 Other structures

• Reduced monomial basis.
• Quotient ring. Please refer to [Par05].
• Symmetries. Please refer to [RTAL13].



Chapter 5

Extensions

5.1 Complex polynomial optimization

Let i be the imaginary unit, satisfying i2 = −1. Let z = (z1, . . . , zn) be a tuple of complex
variables and z̄ = (z̄1, . . . , z̄n) its conjugate. We denote by C[z] := C[z1, . . . , zn], C[z, z̄] :=
C[z1, . . . , zn, z̄1, . . . , z̄n] the complex polynomial ring in z, the complex polynomial ring in z, z̄,
respectively. For d ∈ N, let Cd[z] denote the set of polynomials in C[z] of degree no greater than
d, and let Cd[z, z̄] denote the set of polynomials in C[z, z̄] of degree w.r.t z and z̄ no greater than
d. A polynomial f ∈ C[z, z̄] can be written as f = ∑(β,γ)∈A fβ,γzβz̄γ with A ⊆ Nn × Nn and
fβ,γ ∈ C. The support of f is defined by supp( f ) = {(β, γ) ∈ A | fβ,γ ̸= 0}. The conjugate of f
is f̄ = ∑(β,γ)∈A f̄β,γzγz̄β. A polynomial σ = ∑(β,γ) σβ,γzβz̄γ ∈ Cd[z, z̄] is called a Hermitian sum of
squares or an HSOS for short if there exist polynomials fi ∈ Cd[z], i ∈ [t] such that σ = ∑t

i=1 fi f̄i.
We use Σd[z, z̄] to denote the set of HSOS polynomials in Cd[z, z̄].

For a positive integer r, the set of r × r Hermitian matrices is denoted by Hr and the set of r × r
positive semidefinite (PSD) Hermitian matrices is denoted by Hr

+. Let A ◦ B ∈ Hr denote the
Hadamard product of A, B ∈ Hr, defined by [A ◦ B]ij = AijBij. The set {zβ | β ∈ Nn

d} is called the
standard (complex) monomial basis up to degree d. For the sake of convenience, we abuse notation
slightly and use the exponent set Nn

d to denote the monomial basis.
In this section, we consider the following complex polynomial optimization problem (CPOP):

(Q) :


infz∈Cn f (z, z̄) := ∑α,β fα,βzαz̄β

s.t. gj(z, z̄) := ∑α,β gj,α,βzαz̄β ≥ 0, j = 1, . . . , m,
hi(z, z̄) := ∑α,β hi,α,βzαz̄β = 0, i = 1, . . . , t,

(5.1)

where n, m, and t are positive integers, z̄ := (z̄1, . . . , z̄n) stands for the conjugate of complex
variables z := (z1, . . . , zn). The functions f , g1, . . . , gm, h1, . . . , ht are real-valued polynomials and
their coefficients satisfy fα,β = f̄β,α, gj,α,β = ḡj,β,α, and hi,α,β = h̄i,β,α. The feasible set is defined as
{z ∈ Cn | gj(z, z̄) ≥ 0, j = 1, . . . , m, hi(z, z̄) = 0, i = 1, . . . , t}. For the sake of brevity, we assume
that there are only inequality constraints in (5.1) in the rest of this paper.

5.1.1 The complex moment-HSOS hierarchy

Let y = (yβ,γ)(β,γ)∈Nn×Nn ⊆ C be a sequence indexed by (β, γ) ∈ Nn × Nn and satisfies yβ,γ =

ȳγ,β. Let Lc
y : C[z, z̄] → R be the linear functional

f = ∑
(β,γ)

fβ,γzβz̄γ 7→ Lc
y( f ) = ∑

(β,γ)
fβ,γyβ,γ.

The complex moment matrix Mc
r(y) (r ∈ N) associated with y is the matrix with rows and columns

indexed by Nn
r such that

Mc
d(y)βγ := Lc

y(z
βz̄γ) = yβ,γ, ∀β, γ ∈ Nn

r .

40
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Suppose that g = ∑(β′ ,γ′) gβ′ ,γ′zβ′ z̄γ′ ∈ C[z, z̄] is a Hermitian polynomial, i.e., ḡ = g. The complex
localizing matrix Mc

r(gy) associated with g and y is the matrix with rows and columns indexed by
Nn

r such that

Mc
r(g y)βγ := Lc

y(g zβz̄γ) = ∑
(β′ ,γ′)

gβ′ ,γ′yβ+β′ ,γ+γ′ , ∀β, γ ∈ Nn
r .

Both the complex moment matrix and the complex localizing matrix are Hermitian matrices.
Note that a distinguished difference between the real moment matrix and the complex mo-

ment matrix is that the former has the Hankel property, whereas the latter does not have.
There are two ways to construct a “moment-SOS” hierarchy for CPOP (5.1). The first way is

introducing real variables for both real and imaginary parts of each complex variable in (5.1), i.e.,
letting zi = xi + xi+ni for i ∈ [n]. Then one can convert CPOP (5.1) to a POP involving only real
variables at the price of doubling the number of variables. Therefore the usual real moment-SOS
hierarchy applies to the resulting real POP.

On the other hand, as the second way, it might be advantageous to handle CPOP (5.1) directly
with the complex moment-HSOS hierarchy introduced in [JM18]. Let d0 := max{|β|, |γ| : fβ,γ ̸=
0}, dj := max{|β|, |γ| : gj

β,γ ̸= 0}, and let rmin := max{d0, d1, . . . , dm}. Then the complex moment
hierarchy indexed by r ≥ rmin (called the relaxation order) for CPOP (5.1) is given by

(Qr) :


inf Lc

y( f )
s.t. Mc

r(y) ⪰ 0,
Mc

r−dj
(gjy) ⪰ 0, j ∈ [m],

y0,0 = 1,

(5.2)

which is a semidefinite program (SDP) with optimum denoted by ρd. The dual of (Qr) (5.2) can
be formulized as the following HSOS relaxation:

(Qr)
∗ :


sup ρ

s.t. f − ρ = σ0 + σ1g1 + . . . + σmgm,
σj is an HSOS, j = 0, . . . , m,
σ0 ∈ Σr[z, z̄], σj ∈ Σr−dj

[z, z̄], j ∈ [m].

(5.3)

Remark 5.1 In (5.2), the expression “X ⪰ 0" means an Hermitian matrix X to be positive semidefinite.
Since popular SDP solvers deal with only real SDPs, it is necessary to convert this condition to a condition
involving only real matrices. The reader is referred to [Wan23].

Remark 5.2 The first order moment-(H)SOS relaxation for quadratically constrained quadratic programs
(QCQP) is also known as Shor’s relaxation. It was proved in [JM15] that the real Shor’s relaxation and the
complex Shor’s relaxation for homogeneous QCQPs yield the same bound. However, generally the complex
hierarchy is weaker (i.e., producing looser bounds) than the real hierarchy at the same relaxation order r > 1
as Hermitian sums of squares are a special case of real sums of squares; see [JM18].

Remark 5.3 By the complex Positivstellensatz theorem due to D’Angelo and Putinar [DP09], global con-
vergence of the complex hierarchy is guaranteed when a sphere constraint is present.

5.1.2 Correlative sparsity

The procedure to exploit correlative sparsity for the complex hierarchy consists of two steps: 1)
partition the set of variables into subsets according to the correlations between variables emerg-
ing in the problem data, and 2) construct a sparse complex hierarchy with respect to the former
partition of variables [JM18, WKKM06].

Let us discuss in more details. Consider the CPOP defined by (5.1). Fix a relaxation order
r ≥ dmin. Let J′ := {j ∈ [m] | dj = r}. For β = (βi)i ∈ Nn, let supp(β) := {i ∈ [n] | βi ̸= 0}. We
define the correlative sparsity pattern (csp) graph associated with CPOP (5.1) to be the graph Gcsp

with nodes V = [n] and edges E satisfying {i, j} ∈ E if one of the following holds:
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(i) there exists (β, γ) ∈ supp( f ) ∪⋃j∈J′ supp(gj) such that {i, j} ⊆ supp(β) ∪ supp(γ);

(ii) there exists k ∈ [m]\J′ such that {i, j} ⊆ ⋃
(β,γ)∈supp(gk)

(supp(β) ∪ supp(γ)).

Let Gcsp be a chordal extension of Gcsp and {Il}l∈[p] be the list of maximal cliques of Gcsp with
nl := |Il |. Let C[z(Il)] denote the ring of complex polynomials in the nl variables z(Il) = {zi | i ∈
Il}. We then partition the constraint polynomials gj, j ∈ [m]\J′ into groups {gj | j ∈ Jl}, l ∈ [p]
which satisfy:

(i) J1, . . . , Jp ⊆ [m]\J′ are pairwise disjoint and ∪p
l=1 Jl = [m]\J′;

(ii) for any j ∈ Jl ,
⋃
(β,γ)∈supp(gj)

(supp(β) ∪ supp(γ)) ⊆ Il , l ∈ [p].

Example 5.4 Consider the following CPOP
infz∈C3 z1z̄2 + z̄1z2 + |z3|2

s.t. g1 = 1 − |z1|2 − |z2|2 ≥ 0,
g2 = 1 − |z2|2 − |z3|2 ≥ 0,
g3 = |z1|4 + z2z̄3 + z̄2z3 ≥ 0.

Taking r = dmin = 2, we have two variable cliques I1 = {1, 2}, I2 = {2, 3}, and J′ = {3}, J1 = {1}, J2 =
{2}; taking r = 3, we have one variable clique I1 = {1, 2, 3}, and J′ = ∅, J1 = {1, 2, 3}.

Next, with l ∈ [p] and g ∈ C[z(Il)], let Mc
d(y, Il) (resp. Mc

d(gy, Il)) be the complex moment
(resp. complex localizing) submatrix obtained from Mc

d(y) (resp. Mc
d(gy)) by retaining only those

rows and columns indexed by β ∈ Nn
d of Mc

d(y) (resp. Mc
d(gy)) with supp(β) ⊆ Il .

Then, the complex (moment) hierarchy based on correlative sparsity for CPOP (5.1) is defined
as

(Qcs
r ) :



inf Lc
y( f )

s.t. Mc
d(y, Il) ⪰ 0, l ∈ [p],

Mc
r−dj

(gjy, Il) ⪰ 0, j ∈ Jl , l ∈ [p],

Lc
y(gj) ≥ 0, j ∈ J′,

y0,0 = 1.

(5.4)

We denote the optimum of (Qcs
r ) by ρcs

d .

Proposition 5.5 If CPOP (5.1) is a QCQP, then (Qcs
1 ) and (Q1) yield the same lower bound for (5.1), i.e.,

ρcs
1 = ρ1.

PROOF By construction, the objective function and the affine constraints of (Q1) involve only
the decision variables {yβ,γ}(β,γ) with supp(β) ∪ supp(γ) ⊆ Il for some l ∈ [p]. Therefore, we
can replace Mc

1(y) ⪰ 0 by BG ◦ Mc
1(y) ∈ ΠG(Hn+1

+ ) without changing the optimum, where G is
the graph obtained from Gcsp by adding a node 0 (corresponding to 0 ∈ Nn) and adding edges
{0, i}, i ∈ [n]. Note that G is again a chordal graph and so the equality of optima of (Q1) and
(Qcs

1 ) follows from Theorem 1.6.

5.1.3 Term sparsity

Let A = supp( f ) ∪ ⋃m
j=1 supp(gj). We define the term sparsity pattern (tsp) graph at relaxation

order r associated with CPOP (5.1) or the set A , to be the graph Gtsp
r with nodes V = Nn

r and
edges

E := {{β, γ} ⊆ Nn
d | (β, γ) ∈ A }. (5.5)

Remark 5.6 There is a difference on the definitions of tsp graphs between the complex and real cases. In
the real case, we use A ∪ 2Nn

r rather than A in (5.5) due to the Hankel structure of real moment matrices.
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Example 5.7 Consider the following CPOP{
infz∈C3 z2

1 + z̄2
1 + z1z̄2 + z̄1z2 + z2z̄3 + z̄2z3 + z1z2z̄3 + z̄1z̄2z3

s.t. g1 = 1 − |z1|2 − |z2|2 − |z3|2 ≥ 0.

Figure 5.1 illustrates the tsp graph Gtsp
2 for this CPOP, where the nodes are labeled by zβ instead of β for

better visualization.

1 z2
2

z2
1 z2

3

z1 z2 z3

z2z3 z1z3 z1z2

Figure 5.1: The tsp graph with r = 2 for Example 5.7

For any graph G with V ⊆ Nn and g = ∑(β′ ,γ′) gβ′ ,γ′zβ′ z̄γ′ ∈ C[z, z̄], we define the g-support
of G by

suppg(G) := {(β + β′, γ + γ′) | β = γ ∈ V(G) or {β, γ} ∈ E(G), (β′, γ′) ∈ supp(g)}.

Let us set d0 := 0 and g0 := 1. Now assume that G(0)
r,0 = Gtsp

r and G(0)
r,j , j ∈ [m] are empty graphs.

Then, we iteratively define an ascending chain of graphs (G(k)
r,j (Vr,j, E(k)

r,j ))k≥1 with Vr,j = Nn
r−dj

for each j ∈ {0} ∪ [m] by

G(k)
r,j := F(k)

r,j , (5.6)

where F(k)
r,j is the graph with V(F(k)

r,j ) = Nn
r−dj

and

E(F(k)
r,j ) = {{β, γ} ⊆ Nn

r−dj
| ((β, γ) + supp(gj)) ∩ (

m⋃
i=0

suppgi
(G(k−1)

r,i )) ̸= ∅}. (5.7)

Let rj := (
n+r−dj

r−dj
) for j ∈ {0} ∪ [m]. Then with r ≥ rmin and k ≥ 1, the complex (moment)

hierarchy based on term sparsity for CPOP (5.1) is defined as

(Qts
r,k) :



inf Lc
y( f )

s.t. B
G(k)

r,0
◦ Mc

d(y) ∈ Π
G(k)

r,0
(Hr0

+),

B
G(k)

r,j
◦ Mc

r−dj
(gjy) ∈ Π

G(k)
r,j
(H

rj
+), j ∈ [m],

y0,0 = 1,

(5.8)

with optimum denoted by ρts
r,k. The above hierarchy is called the (complex) TSSOS hierarchy,

which is indexed by two parameters: the relaxation order r and the sparse order k.

Theorem 5.8 Consider CPOP (5.1). The following hold:

(i) Fixing a relaxation order r ≥ rmin, the sequence (ρts
r,k)k≥1 is monotonically nondecreasing and

ρts
r,k ≤ ρr for all k (with ρr defined in Section 5.1.1).

(ii) Fixing a sparse order k ≥ 1, the sequence (ρts
r,k)r≥rmin is monotonically nondecreasing.
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PROOF (i). For all j, k, by construction we have G(k)
r,j ⊆ G(k+1)

r,j , which implies that B
G(k)

r,j
◦Mc

r−dj
(gjy) ∈

Π
G(k)

r,j
(H

rj
+) is less restrictive than B

G(k+1)
r,j

◦Mc
r−dj

(gjy) ∈ Π
G(k+1)

r,j
(H

rj
+). Hence, (Qts

r,k) is a relaxation

of (Qts
r,k+1) and is clearly also a relaxation of (Qr). As a result, (ρts

r,k)k≥1 is monotonically nonde-
creasing and ρts

r,k ≤ ρr for all k.

(ii). The conclusion follows if we can show that the inclusion G(k)
r,j ⊆ G(k)

r+1,j holds for all r, j

since this implies that (Qts
r,k) is a relaxation of (Qts

r+1,k). Let us prove G(k)
r,j ⊆ G(k)

r+1,j by induction

on k. For k = 1, we have E(Gtsp
r ) ⊆ E(Gtsp

r+1) by (5.5), which implies G(1)
r,j ⊆ G(1)

r+1,j for all r, j.

Now assume that G(k)
r,j ⊆ G(k)

r+1,j holds for all r, j for a given k ≥ 1. Then by (5.6), (5.7) and by

the induction hypothesis, we deduce that G(k+1)
r,j ⊆ G(k+1)

r+1,j holds for all r, j, which completes the
induction.

When building (Qts
r,k), we have the freedom to choose a specific chordal extension for any

involved graph G(k)
r,j , which offers a trade-off between the quality of obtained bounds and the

computational cost. We show that if the maximal chordal extension is chosen, then with r fixed,
the resulting sequence of optima of the hierarchy (as k increases) converges in finitely many steps
to the optimum of the corresponding dense relaxation.

Theorem 5.9 Consider CPOP (5.1). If the maximal chordal extension is used in (5.6), then for r ≥ rmin,
(ρts

r,k)k≥1 converges to ρr in finitely many steps.

PROOF Let r be fixed. It is clear that for all j ∈ {0} ∪ [m], the graph sequence (G(k)
r,j )k≥1 stabilizes

after finitely many steps and we denote the stabilized graph by G(◦)
r,j . Let (Qts

r,◦) be the moment
relaxation corresponding to the stabilized graphs and let y∗ = (y∗β,γ) be an arbitrary feasible

solution. Notice that {yβ,γ | (β, γ) ∈ ⋃m
i=0 suppgj

(G(◦)
r,j )} is the set of decision variables involved

in (Qts
r,◦) and {yβ,γ | (β, γ) ∈ Nn

d × Nn
d} is the set of decision variables involved in (Qr). Define

y∗ = (y∗β,γ)(β,γ)∈Nn
d×Nn

d
as follows:

y∗β,γ =

{
y∗β,γ, if (β, γ) ∈ ⋃m

i=0 suppgj
(G(◦)

r,j ),

0, otherwise.

If the maximal chordal extension is used in (5.6), then we have that the matrices in Π
G(k)

r,j
(H

rj
+) are

block-diagonal (up to permutation on rows and columns) for all j, k. As a consequence, B
G(k)

r,j
◦

Mc
r−dj

(gjy) ∈ Π
G(k)

r,j
(H

rj
+) implies B

G(k)
r,j

◦Mc
r−dj

(gjy) ⪰ 0. By construction, we have Mc
r−dj

(gjy∗) =

B
G(◦)

r,j
◦ Mc

r−dj
(gjy∗) ⪰ 0 for all j ∈ {0} ∪ [m]. Therefore, y∗ is a feasible solution of (Qr) and hence

Lc
y∗( f ) = Lc

y∗( f ) ≥ ρr, which yields ρts
r,◦ ≥ ρr since y∗ is an arbitrary feasible solution of (Qts

r,◦).
By (i) of Theorem 5.8, we already have ρts

r,◦ ≤ ρr. So ρts
r,◦ = ρr as desired.

Proposition 5.10 If CPOP (5.1) is a QCQP, then (Qts
1,1) and (Q1) yield the same lower bound for CPOP

(5.1), i.e., ρts
1,1 = ρ1.

PROOF For a QCQP, (Q1) reads as

(Q1) :


inf Lc

y( f )
s.t. Mc

1(y) ⪰ 0,
Lc

y(gj) ≥ 0, j ∈ [m],
y0,0 = 1.
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Note that the objective function and the affine constraints of (Q1) involve only the decision vari-
ables {y0,0} ∪ {yβ,γ}(β,γ)∈A with A = supp( f ) ∪ ⋃m

j=1 supp(gj). Hence there is no discrepancy
of optima in replacing (Q1) with (Qts

1,1) by construction.

5.1.4 Correlative-term sparsity

We are now prepared to exploit correlative sparsity and term sparsity simultaneously in the com-
plex hierarchy for CPOP (5.1).

Let {Il}l∈[p], {nl}l∈[p], J′, {Jl}l∈[p] be defined as in Section 5.1.2. We apply the iterative proce-
dure of exploiting term sparsity to each subsystem involving variables z(Il) for l ∈ [p] as follows.
Let

A := supp( f ) ∪
m⋃

j=1

supp(gj) (5.9)

and
Al := {(β, γ) ∈ A | supp(β) ∪ supp(γ) ⊆ Il} (5.10)

for l ∈ [p]. As before, rmin := max{⌈deg( f )/2⌉, d1, . . . , dm}, d0 := 0 and g0 := 1. Fix a relaxation
order r ≥ rmin. Let Gtsp

r,l be the tsp graph with nodes N
nl
r−dj

associated with Al defined as in

Section 5.1.3. Note that here we embed N
nl
r−dj

into Nn
r−dj

via the map α = (αi)i∈Il ∈ N
nl
r−dj

7→
α′ = (α′i)i∈[n] ∈ Nn

r−dj
which satisfies

α′i =

{
αi, if i ∈ Il ,
0, otherwise.

Assume that G(0)
r,l,0 = Gtsp

r,l and G(0)
r,l,j, j ∈ Jl , l ∈ [p] are empty graphs. Letting

C
(k−1)
r :=

p⋃
l=1

⋃
j∈{0}∪Jl

suppgj
(G(k−1)

r,l,j ), k ≥ 1, (5.11)

we iteratively define an ascending chain of graphs (G(k)
r,l,j(Vr,l,j, E(k)

r,l,j))k≥1 with Vr,l,j = N
nl
r−dj

for

each j ∈ {0} ∪ Jl and each l ∈ [p] by

G(k)
r,l,j := F(k)

r,l,j, (5.12)

where F(k)
r,l,j is the graph with V(F(k)

r,l,j) = N
nl
r−dj

and

E(F(k)
r,l,j) = {{β, γ} ⊆ N

nl
r−dj

| ((β, γ) + supp(gj)) ∩ C
(k−1)
r ̸= ∅}. (5.13)

Let rr,l,j := (
nl+r−dj

r−dj
) for all l, j. Then with r ≥ rmin and k ≥ 1, the complex (moment) hierarchy

based on correlative-term sparsity for CPOP (5.1) is defined as

(Qcs-ts
r,k ) :



inf Lc
y( f )

s.t. B
G(k)

r,l,0
◦ Mc

d(y, Il) ∈ Π
G(k)

r,l,0
(Hrr,l,0

+ ), l ∈ [p],

B
G(k)

r,l,j
◦ Mc

r−dj
(gjy, Il) ∈ Π

G(k)
r,l,j

(H
rr,l,j
+ ), j ∈ Jl , l ∈ [p],

Lc
y(gj) ≥ 0, j ∈ J′,

y0,0 = 1,

(5.14)

with optimum denoted by ρcs-ts
r,k . The above hierarchy is called the (complex) CS-TSSOS hierarchy

indexed by the relaxation order r and the sparse order k.
By similar arguments as for Theorem 5.8, we can prove the following theorem.
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Theorem 5.11 Consider CPOP (5.1). The following hold:

(i) Fixing a relaxation order r ≥ rmin, the sequence (ρcs-ts
r,k )k≥1 is monotonically nondecreasing and

ρcs-ts
r,k ≤ ρcs

r for all k (with ρcs
r defined in Section 5.1.2).

(ii) Fixing a sparse order k ≥ 1, the sequence (ρcs-ts
r,k )r≥rmin is monotonically nondecreasing.

From Theorem 5.11, we have the following two-level hierarchy of lower bounds for the opti-
mum of CPOP (5.1):

ρcs-ts
rmin,1 ≤ ρcs-ts

rmin,2 ≤ · · · ≤ ρcs
rmin

≥ ≥ ≥

ρcs-ts
rmin+1,1 ≤ ρcs-ts

rmin+1,2 ≤ · · · ≤ ρcs
rmin+1

≥ ≥ ≥

...
...

...
...

≥ ≥ ≥

ρcs-ts
r,1 ≤ ρcs-ts

r,2 ≤ · · · ≤ ρcs
r

≥ ≥ ≥

...
...

...
...

(5.15)

By similar arguments as for Theorem 5.9, we can prove the convergence of the CS-TSSOS
hierarchy at each relaxation order when the maximal chordal extension is chosen.

Theorem 5.12 Consider CPOP (5.1). If the maximal chordal extension is used in (5.12), then for r ≥
rmin, (ρcs-ts

r,k )k≥1 converges to ρcs
r in finitely many steps.

Fore more details on exploiting structures in complex polynomial optimization, please refer
to [WM22, WM23].

5.2 Noncommutative polynomial optimization

5.2.1 Noncommutative polynomials

We consider a finite alphabet x1, . . . , xn (called noncommutating variables) and generate all pos-
sible words (monomials) of finite length in these letters. The empty word is denoted by 1. The
resulting set of words is ⟨x⟩, with x = (x1, . . . , xn). We denote by R⟨x⟩ the ring of real polynomi-
als in the noncommutating variables x. An element in R⟨x⟩ is called a nc polynomial. The support
of an nc polynomial f = ∑w∈⟨x⟩ aww is defined by supp( f ) := {w ∈ ⟨x⟩ | aw ̸= 0} and the degree
of f , denoted by deg( f ), is the length of the longest word in supp( f ). The set of nc polynomials of
degree at most r is denoted by R⟨x⟩r. Let us denote by Wr the vector of all words of degree at most
r with resepct to the lexicographic order. Note that Wr serves as a monomial basis of R⟨x⟩r and
the length of Wr is equal to σ(n, r) := ∑r

i=0 ni = nr+1−1
n−1 . The ring R⟨x⟩ is equipped with the in-

volution ⋆ that fixes R∪ {x1, . . . , xn} point-wise and reverses words, so that R⟨x⟩ is the ⋆-algebra
freely generated by n symmetric letters x1, . . . , xn. For instance (x1x2 + x2

2 + 1)⋆ = x2x1 + x2
2 + 1.

The set of all symmetric elements is defined as Sym R⟨x⟩ := { f ∈ R⟨x⟩ | f = f ⋆}. A simple exam-
ple of element of Sym R⟨x⟩ is x1x2 + x2x1 + x2

2 + 1. An nc polynomial of the form g⋆g is called an
hermitian square. A given f ∈ Sym R⟨x⟩ is a SOHS if there exist nc polynomials h1, . . . , ht ∈ R⟨x⟩
such that f = h⋆1h1 + · · ·+ h⋆t ht. Let Σ⟨x⟩ stand for the set of SOHS. We denote by Σ⟨x⟩r ⊆ Σ⟨x⟩
the set of SOHS polynomials of degree at most 2r. We now recall how to check whether a given
f ∈ Sym R⟨x⟩ is an SOHS. The existing procedure, known as the Gram matrix method, relies on the
following proposition.

Proposition 5.13 Assume that f ∈ Sym R⟨x⟩ is of degree at most 2d. Then f ∈ Σ⟨x⟩ if and only if there
exists G f ⪰ 0 satisfying

f = W⋆
d G f Wd. (5.16)

Conversely, given such G f ⪰ 0 of rank t, one can construct g1, . . . , gt ∈ R⟨x⟩ of degree at most d such
that f = ∑t

i=1 g⋆i gi.
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Any symmetric matrix G f (not necessarily positive semidefinite) satisfying (5.16) is called a Gram
matrix of f .

Given a set of nc polynomials g = {g1, . . . , gm} ⊆ Sym R⟨x⟩, the nc semialgebraic set Dg

associated to g is defined as follows:

Dg :=
⋃

k∈N∗
{A = (A1, . . . , An) ∈ (Sk)

n | gj(A) ⪰ 0, j ∈ [m]}. (5.17)

When considering only tuples of k × k symmetric matrices, we use the notation Dk
g := Dg ∩ (Sk)

n.
The operator semialgebraic set D∞

g is the set of all bounded self-adjoint operators A on a Hilbert
space H endowed with a scalar product ⟨· | ·⟩, making g(A) a positive semidefinite operator for
all g ∈ g, i.e., ⟨g(A)v | v⟩ ≥ 0, for all v ∈ H. We say that an nc polynomial f is positive (denoted
by f ≻ 0) on D∞

g if for all A ∈ D∞
g the operator f (A) is positive definite, i.e., ⟨ f (A)v | v⟩ > 0, for

all nonzero v ∈ H. The quadratic module M(g), generated by g, is defined by

M(g) :=

{
t

∑
i=1

a⋆i giai | t ∈ N∗, ai ∈ R⟨x⟩, gi ∈ g∪ {1}
}

. (5.18)

Given r ∈ N∗, the truncated quadratic module M(g)r of order r, generated by g, is

M(g)r :=

{
t

∑
i=1

a⋆i giai | t ∈ N∗, ai ∈ R⟨x⟩, gj ∈ g∪ {1}, deg(a⋆i giai) ≤ 2r

}
. (5.19)

A quadratic module M is said to be Archimedean if for each a ∈ R⟨x⟩, there exists N > 0 such
that N − a⋆a ∈ M. One can show that this is equivalent to the existence of an N > 0 such that
N − ∑n

i=1 x2
i ∈ M.

Theorem 5.14 (Helton-McCullough) Let { f }∪g ⊆ Sym R⟨x⟩ and assume that M(g) is Archimedean.
If f (A) ≻ 0 for all A ∈ D∞

g , then f ∈ M(g).

Assuming f = ∑w aww ∈ Sym R⟨x⟩ and g = {g1, . . . , gm} ⊆ Sym R⟨x⟩, we define the csp
graph associated with f and g to be the graph Gcsp with nodes V = [n] and with edges E satisfying
{i, j} ∈ E if one of following conditions holds:

(i) there exists w ∈ supp( f ) s.t. xi, xj ∈ var(w);

(ii) there exists k ∈ [m] s.t. xi, xj ∈ var(gk),

where we use var(g) to denote the set of variables effectively involved in g ∈ R⟨x⟩. Let (Gcsp)′

be a chordal extension of Gcsp and Ik, k ∈ [p] be the maximal cliques of (Gcsp)′ with cardinality
being denoted by nk, k ∈ [p]. We denote by ⟨x(Ik)⟩ (resp. R⟨x, Ik⟩) the set of words (resp. nc
polynomials) in the nk variables x(Ik) = {xi : i ∈ Ik}. We also define Sym R⟨x, Ik⟩ := Sym R⟨x⟩ ∩
R⟨x, Ik⟩. Let Σ⟨x, Ik⟩ stand for the set of SOHS in R⟨x, Ik⟩ and we denote by Σ⟨x, Ik⟩r the restriction
of Σ⟨x, Ik⟩ to nc polynomials of degree at most 2r. In the sequel, we will rely on two specific
assumptions. The first one is as follows.

Assumption 5.15 (Boundedness) Let Dg be as in (5.17). There exists N > 0 such that ∑n
i=1 x2

i ⪯ N,
for all x ∈ D∞

g .

Then, Assumption 5.15 implies that ∑j∈Ik
x2

j ⪯ N, for all k ∈ [p]. Thus we define

gm+k := N − ∑
j∈Ik

x2
j , k ∈ [p], (5.20)

and set m′ = m + p in order to describe the same set Dg again as

Dg :=
⋃

k∈N∗
{A ∈ (Sk)

n | gj(A) ⪰ 0, j ∈ [m′]}, (5.21)

as well as the operator semialgebraic set D∞
g .

The second assumption, which is the strict nc analog of Assumption 4.1 (i)–(iii), is as follows.
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Assumption 5.16 Let Dg be as in (5.21) and let f ∈ Sym R⟨x⟩. The index set J := {1, . . . , m′} is
partitioned into p disjoint sets J1, . . . , Jp and the two collections {I1, . . . , Ip} and {J1, . . . , Jp} satisfy

(i) The objective function f can be decomposed as f = f1 + · · ·+ fp, with fk ∈ Sym R⟨x, Ik⟩ for all
k ∈ [p];

(ii) For all k ∈ [p] and j ∈ Jk, gj ∈ Sym R⟨x, Ik⟩;

(iii) The RIP (1.7) holds for I1, . . . , Ip (possibly after some reordering).

Given a sequence y = (yw)w∈W2r ∈ Rσ(n,2r) (here we allow r = ∞), let us define the linear
functional Ly : R⟨x⟩2r → R by Ly( f ) := ∑w awyw, for every polynomial f = ∑w aww of degree at
most 2r. The sequence y is said to be unital if y1 = 1 and is said to be symmetric if yw⋆ = yw for all
w ∈ W2r. Suppose g ∈ Sym R⟨x⟩ with deg(g) ≤ 2r. We further associate to y the following two
matrices:

(1) the (noncommutative) moment matrix Mr(y) is the matrix indexed by words u, v ∈ Wr, with
[Mr(y)]u,v = Ly(u⋆v) = yu⋆v;

(2) the localizing matrix Mr−⌈deg(g)/2⌉(gy) is the matrix indexed by words u, v ∈ Wr−⌈deg(g)/2⌉,
with [Mr−⌈deg(g)/2⌉(gy)]u,v = Ly(u⋆gv).

We recall the following useful facts.

Lemma 5.17 Let g ∈ Sym R⟨x⟩ with deg(g) ≤ 2r and let L be the linear functional associated to a
symmetric sequence y := (yw)w∈W2r ∈ Rσ(n,2r). Then,

(1) Ly(h⋆h) ≥ 0 for all h ∈ R⟨x⟩r if and only if the moment matrix Mr(y) ⪰ 0;

(2) Ly(h⋆gh) ≥ 0 for all h ∈ R⟨x⟩r−⌈deg(g)/2⌉ if and only if the localizing matrix Mr−⌈deg(g)/2⌉(gy) ⪰
0.

Definition 5.18 Let y = (yw)w∈W2r+2δ
∈ Rσ(n,2r+2δ) and ỹ = (yw)w∈W2r be its truncation. We can

write the moment matrix Mr+δ(y) in block form:

Mr+δ(y) =
[

Mr(ỹ) B
B⊺ C

]
.

We say that y is δ-flat or that y is a flat extension of ỹ, if Mr+δ(y) is flat over Mr(L̃), i.e., if rank Mr+δ(y) =
rank Mr(ỹ).

For a subset I ⊆ [n], let us define Mr(y, I) to be the moment submatrix obtained from Mr(y) after
retaining only those rows and columns indexed by w ∈ ⟨x(I)⟩r. For g ∈ R⟨x, I⟩ with deg(g) ≤ 2r,
we also define the localizing submatrix Mr−⌈deg(g)/2⌉(gy, I) in a similar fashion.

5.2.2 Sparse representations

Here, we state our main theoretical result, which is a sparse version of the Helton-McCullough
Positivstellensatz (Theorem 5.14). For this, we rely on amalgamation theory for C⋆-algebras.

Given a Hilbert space H, we denote by B(H) the set of bounded operators on H. A C⋆-algebra
is a complex Banach algebra A (thus also a Banach space), endowed with a norm ∥ · ∥, and with
an involution ⋆ satisfying ∥xx⋆∥ = ∥x∥2 for all x ∈ A. Equivalently, it is a norm closed subalgebra
with involution of B(H) for some Hilbert space H. Given a C⋆-algebra A, a state φ is defined to be
a positive linear functional of unit norm on A, and we write often (A, φ) when A comes together
with the state φ. Given two C⋆-algebras (A1, φ1) and (A2, φ2), a homomorphism ι : A1 → A2
is called state-preserving if φ2 ◦ ι = φ1. Given a C⋆-algebra A, a unitary representation of A in H
is a ∗-homomorphism π : A → B(H) which is strongly continuous, i.e., the mapping A → H,
g 7→ π(g)ξ is continuous for every ξ ∈ H.
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(C, φ)

(
B1, φ1

) (
B2, φ2

)

(
A, φ0

)

j1 j2

ι2ι1

Figure 5.2: Illustration of Theorem 5.19 in the case I = {1, 2}.

Theorem 5.19 Let (A, φ0) and {(Bk, φk) : k ∈ I} be C⋆-algebras with states, and let ιk be a state-
preserving embedding of A into Bk, for each k ∈ I. Then there exists a C⋆-algebra C amalgamating the
(Bk, φk) over (A, φ0). That is, there is a state φ on C, and state-preserving homomorphisms jk : Bk → C,
such that jk ◦ ιk = ji ◦ ιi, for all k, i ∈ I, and such that

⋃
k∈I jk(Bk) generates C.

Theorem 5.19 is illustrated in Figure 5.2 in the case I = {1, 2}. We also recall the GNS construc-
tion establishing a correspondence between ⋆-representations of a C⋆-algebra and positive linear
functionals on it. In our context, the next result restricts to linear functionals on R⟨x⟩ which are
positive on an Archimedean quadratic module.

Theorem 5.20 Let g ⊆ Sym R⟨x⟩ be given such that its quadratic module M(g) is Archimedean. Let
L : R⟨x⟩ → R be a nontrivial linear functional with L(M(g)) ⊆ R≥0. Then there exists a tuple
A = (A1, . . . , An) ∈ D∞

g and a vector v such that L( f ) = ⟨ f (A)v, v⟩, for all f ∈ R⟨x⟩.

Let Ik, k ∈ [p] and Jk, k ∈ [p] be given as in Chapter 4.1. For k ∈ [p], let us define

M(g)k :=

{
a⋆0 a0 + ∑

i∈Jk

a⋆i giai | ai ∈ R⟨x, Ik⟩, i ∈ Jk ∪ {0}
}

and

M(g)cs := M(g)1 + · · ·+M(g)p. (5.22)

Next, we state the main foundational result of this section.

Theorem 5.21 Let { f } ∪ g ⊆ Sym R⟨x⟩ and let Dg be as in (5.21) with the additional quadratic
constraints (5.20). Suppose Assumption 5.16 holds. If f (A) ≻ 0 for all A ∈ D∞

g , then f ∈ M(g)cs.

We provide an example demonstrating that sparsity without an RIP-type condition is not suf-
ficient to deduce sparsity in SOHS decompositions.

Example 5.22 Consider the case of three variables x = (x1, x2, x3) and the polynomial

f = (x1 + x2 + x3)
2

= x2
1 + x2

2 + x2
3 + x1x2 + x2x1 + x1x3 + x3x1 + x2x3 + x3x2 ∈ Σ⟨x⟩.
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Then f = f1 + f2 + f3, with

f1 =
1
2

x2
1 +

1
2

x2
2 + x1x2 + x2x1 ∈ R⟨x1, x2⟩,

f2 =
1
2

x2
2 +

1
2

x2
3 + x2x3 + x3x2 ∈ R⟨x2, x3⟩,

f3 =
1
2

x2
1 +

1
2

x2
3 + x1x3 + x3x1 ∈ R⟨x1, x3⟩.

However, the sets I1 = {1, 2}, I2 = {2, 3} and I3 = {1, 3} do not satisfy the RIP condition (1.7) and
f ̸∈ Σ⟨x⟩cs := Σ⟨x1, x2⟩+ Σ⟨x2, x3⟩+ Σ⟨x1, x3⟩ since it has a unique Gram matrix by homogeneity.

Now consider g = {1 − x2
1, 1 − x2

2, 1 − x2
3}. Then Dg is as in (5.21), M(g)cs is as in (5.22) and

f |D∞
g
⪰ 0. However, we claim that f − b ∈ M(g)cs if and only if b ≤ −3. Clearly,

f + 3 = (x1 + x2)
2 + (x1 + x3)

2 + (x2 + x3)
2

+ (1 − x2
1) + (1 − x2

2) + (1 − x2
3) ∈ M(g)cs.

So one has −3 ≤ sup {b : f − b ∈ M(g)cs}, and the dual of this latter problem is given by

inf
yk

∑3
k=1 Lyk ( fk)

s.t. Lyk (1) = 1, k = 1, 2, 3
Lyk (h

⋆h) ⪰ 0, ∀h ∈ R⟨x, Ik⟩, k = 1, 2, 3
Lyk (h

⋆(1 − x2
i )h) ⪰ 0, ∀h ∈ R⟨x, Ik⟩, i ∈ Ik, k = 1, 2, 3

Lyj |R⟨X(Ij∩Ik)⟩ = Lyk |R⟨X(Ij∩Ik)⟩, j, k = 1, 2, 3

(5.23)

Hence, by weak duality, it suffices to show that there exist linear functionals Lyk : R⟨x, Ik⟩ → R satisfying
the constraints of problem (5.23) and such that ∑k Lyk ( fk) = −3. Define

A =

[
0 1
1 0

]
, B = −A

and let
Lyk (g) = tr(g(A, B)) for g ∈ R⟨x, Ik⟩.

Since Lyk ( fk) = −1, the three first constraints of problem (5.23) are easily verified and ∑k Lyk ( fk) = −3.
For the last one, given, say h ∈ R⟨x, I1⟩ ∩ R⟨x, I2⟩ = R⟨x2⟩, we have

Ly1(h) = tr(h(B)),
Ly2(h) = tr(h(A)),

since Ly1 (resp. Ly2 ) is defined on R⟨x1, x2⟩ (resp. R⟨x2, x3⟩) and h depends only on the second (resp. first)
variable x2 corresponding to B (resp. A).

But matrices A and B are orthogonally equivalent as UAU⊺ = B for

U =

[
0 1

−1 0

]
,

whence h(B) = h(UAU⊺) = Uh(A)U⊺ and h(A) have the same trace.

5.2.3 Sparse GNS construction

Next, we provide the main theoretical tools to extract solutions of nc optimization problems with
CS. To this end, we first present sparse nc versions of theorems by Curto and Fialkow. As recalled
in Section 3.2 for the commutative case, Curto and Fialkow provided sufficient conditions for
linear functionals on the set of degree 2r polynomials to be represented by integration with respect
to a nonnegative measure. The main sufficient condition to guarantee such a representation is
flatness (see Definition 5.18) of the corresponding moment matrix. We recall this result, which
relies on a finite-dimensional GNS construction.
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Theorem 5.23 Let g ⊆ Sym R⟨x⟩ and set δ := max {⌈deg(g)/2⌉ : g ∈ g}. For r ∈ N∗, let Ly :
R⟨x⟩2r+2δ → R be the linear functional associated to a unital sequence y = (yw)w∈W2r+2δ

∈ Rσ(n,2r+2δ)

satisfying Ly(M(g)r+δ) ⊆ R≥0. If y is δ-flat, then there exists Â ∈ Dr
g for some t ≤ σ(n, r) and a unit

vector v such that

Ly(g) = ⟨g(Â)v, v⟩, (5.24)

for all g ∈ Sym R⟨x⟩2r.

We now give the sparse version of Theorem 5.23.

Theorem 5.24 Suppose r ∈ N∗. Let g ⊆ Sym R⟨x⟩2r, and assume Dg is as in (5.21) with the addi-
tional quadratic constraints (5.20). Suppose Assumption 5.16(i) holds. Set δ := max {⌈deg(g)/2⌉ :
g ∈ g}. Let Ly : R⟨x⟩2r+2δ → R be the linear functional associated to a unital sequence
y = (yw)w∈W2r+2δ

∈ Rσ(n,2r+2δ) satisfying Ly(M(g)r+δ) ⊆ R≥0. Assume that the following
holds:

(H1) Mr+δ(y, Ik) and Mr+δ(y, Ik ∩ Ij) are δ-flat, for all j, k ∈ [p].

Then, there exist finite-dimensional Hilbert spaces H(Ik) with dimension tk, for all k ∈ [p], Hilbert
spaces H(Ij ∩ Ik) ⊆ H(Ij),H(Ik) for all pairs (j, k) with Ij ∩ Ik ̸= 0, and operators Âk, Âjk, acting
on them, respectively. Further, there are unit vectors vj ∈ H(Ij) and vjk ∈ H(Ij ∩ Ik) such that

Ly( f ) = ⟨ f (Âj)vj, vj⟩ for all f ∈ R⟨x, Ij⟩2r,

Ly(g) = ⟨g(Âjk)vjk, vjk⟩ for all g ∈ R⟨X(Ij ∩ Ik)⟩2r.
(5.25)

Assuming that for all pairs (j, k) with Ij ∩ Ik ̸= ∅, one has

(H2) the matrices (Âjk
i )i∈Ij∩Ik have no common complex invariant subspaces,

then there exist A ∈ Dt
g, with t := t1 · · · tp, and a unit vector v such that

Ly( f ) = ⟨ f (A)v, v⟩, (5.26)

for all f ∈ ∑k R⟨x, Ik⟩2r.

A

A(I1) A(I2)

A(I1 ∩ I2)

j1 j2

ι2ι1

Figure 5.3: Amalgamation of finite-dimensional C⋆-algebras.

Example 5.25 (Non-amalgamation in finite-dimensional algebras) Given I1 and I2, suppose A(I1 ∩
I2) is generated by the 2 × 2 diagonal matrix

A12 =

[
1

2

]
,
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and assume A(I1) = A(I2) = M3(R). (Observe that A(I1 ∩ I2) is the algebra of all diagonal matrices.)
For each k ∈ {1, 2}, let us define ιk(A) := A ⊕ k, for all A ∈ A(I1 ∩ I2). We claim that there is no finite-
dimensional C⋆-algebra A amalgamating the above Figure 5.3. Indeed, by the Skolem-Noether theorem,
every homomorphism Mn(R) → Mm(R) is of the form x 7→ P−1(x ⊗ Im/n)P for some invertible P; in
particular, n divides m. If a desired A existed, then the matrices (A12 ⊕ 1)⊗ Ik and (A12 ⊕ 2)⊗ Ik would
be similar. But they are not as is easily seen from eigenvalue multiplicities.

As in the dense case, we can summarize the sparse GNS construction procedure described in the
proof of Theorem 5.24 into an algorithm, called SparseGNS (see [KMP21, Algorithm 4.6]).

5.2.4 Eigenvalue optimization

We provide SDP relaxations allowing one to under-approximate the smallest eigenvalue that a
given nc polynomial can attain on a tuple of symmetric matrices from a given semialgebraic set.
We first recall the celebrated Helton-McCullough theorem stating the equivalence between SOHS
and positive semidefinite nc polynomials.

Theorem 5.26 (Helton-McCullough) Given f ∈ Sym R⟨x⟩, f (A) ⪰ 0, for all A ∈ (Sk)
n, k ∈ N∗, if

and only if f ∈ Σ⟨x⟩.

In contrast with the constrained case where we obtain the analog of Putinar’s Positivstellensatz
in Theorem 5.21, there is no sparse analog of Theorem 5.26, as shown in the following example.

Lemma 5.27 There exist polynomials which are sparse sums of hermitian squares but are not sums of
sparse hermitian squares.

PROOF Let v =
[
x1 x1x2 x2 x3 x3x2

]
,

G f =


1 −1 −1 0 α

−1 2 0 −α 0
−1 0 3 −1 9

0 −α −1 6 −27
α 0 9 −27 142

 , α ∈ R, (5.27)

and consider

f = vG f v⋆

= x2
1 − x1x2 − x2x1 + 3x2

2 − 2x1x2x1 + 2x1x2
2x1

− x2x3 − x3x2 + 6x2
3 + 9x2

2x3 + 9x3x2
2 − 54x3x2x3 + 142x3x2

2x3.

(5.28)

The polynomial f is clearly sparse with resepct to I1 = {x1, x2} and I2 = {x2, x3}. Note that
the matrix G f is positive semidefinite if and only if 0.270615 ≲ α ≲ 1.1075, whence f is a sparse
polynomial that is an SOHS.

We claim that f ̸∈ Σ⟨x, I1⟩+ Σ⟨x, I2⟩, i.e., f is not a sum of sparse hermitian squares. By the
Newton chip method only monomials in v can appear in an SOHS decomposition of f . Further,
every Gram matrix of f in the monomial basis v is of the form (5.27). However, the matrix G f
with α = 0 is not positive semidefinite, and hence f ̸∈ Σ⟨x, I1⟩+ Σ⟨x, I2⟩.

Here, we focus on providing lower bounds for the constrained eigenvalue optimization of nc
polynomials. Given f ∈ Sym R⟨x⟩ and g = {g1, . . . , gm} ⊆ Sym R⟨x⟩ as in (5.17), let us define
λmin( f , g) as follows:

λmin( f , g) := inf {⟨ f (A)v, v⟩ : A ∈ D∞
g , ∥v∥ = 1}, (5.29)

which is, as for the unconstrained case, equivalent to

λmin( f , g) = sup
b

b

s.t. f (A)− bIk ⪰ 0, ∀A ∈ D∞
g .

(5.30)
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As usual, let dj := ⌈deg(gj)/2⌉ for each j ∈ [m], and let

rmin := max {⌈deg( f )/2⌉, d1, . . . , dm}.

One can approximate λmin( f , g) from below via the following hierarchy of SDP programs, in-
dexed by r ≥ rmin:

λr( f , g) := sup
b

b

s.t. f − b ∈ M(g)r
(5.31)

The dual of SDP (5.31) is

ηr( f , g) := inf
y

Ly( f )

s.t. y1 = 1, Mr(y) ⪰ 0
Mr−dj

(gjy) ⪰ 0, j ∈ [m]

(5.32)

Under additional assumptions, this hierarchy of primal-dual SDP (5.31)-(5.32) converges to the
optimal value of the constrained eigenvalue problem.

Theorem 5.28 Assume that Dg is as in (5.21) with the additional quadratic constraints (5.20) and that
the quadratic module M(g) is Archimedean. Then the following holds for f ∈ Sym R⟨x⟩:

lim
r→∞

ηr( f , g) = lim
r→∞

λr( f , g) = λmin( f , g). (5.33)

The main ingredient of the proof is the nc analog of Putinar’s Positivstellensatz, stated in Theo-
rem 5.14.

Let Dg be as in (5.21) with the additional quadratic constraints (5.20). Let M(g)cs be as in (5.22)
and let us define M(g)cs

r in the same way as the truncated quadratic module M(g)r in (5.19).
Now, let us state the sparse variant of the primal-dual hierarchy (5.31)-(5.32) of lower bounds for
λmin( f , g).

For r ≥ rmin, the sparse variant of SDP (5.32) is

ηr
cs( f , g) := inf

y
Ly( f )

s.t. y1 = 1, Mr(y, Ik) ⪰ 0, k ∈ [p]
Mr−dj

(gjy, Ik) ⪰ 0, j ∈ Jk, k ∈ [p]
(5.34)

whose dual is the sparse variant of SDP (5.31):

λr
cs( f , g) := sup

b
b

s.t. f − b ∈ M(g)cs
r .

(5.35)

An ε-neighborhood of 0 is the set Nε defined for a given ε > 0 by

Nε :=
⋃

k∈N∗

{
(A1, . . . , An) ∈ (Sk)

n : ε2 −
n

∑
i=1

A2
i ⪰ 0

}
.

Proposition 5.29 Let { f } ∪ g ⊆ Sym R⟨x⟩. Assume that Dg contains an ε-neighborhood of 0 and that
Dg is as in (5.21) with the additional quadratic constraints (5.20). Then SDP (5.34) admits strictly feasible
solutions. As a result, there is no duality gap between SDP (5.34) and its dual (5.35).

Moreover, we have the following convergence result implied by Theorem 5.21.

Theorem 5.30 Let { f } ∪ g ⊆ Sym R⟨x⟩. Assume that Dg is as in (5.21) with the additional quadratic
constraints (5.20). Let Assumption 5.16 hold. Then, one has

lim
r→∞

ηr
cs( f , g) = lim

r→∞
λr

cs( f , g) = λmin( f , g). (5.36)
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There is no sparse variant of the “perfect” Positivstellensatz, for constrained eigenvalue optimiza-
tion over convex nc semialgebraic sets [BKP16, Chapter 4.4], such as those associated either to the
sparse nc ball Bcs := {1 − ∑i∈I1

x2
i , . . . , 1 − ∑i∈Ip x2

i } or the nc polydisc D := {1 − x2
1, . . . , 1 − x2

n}.
Namely, for an nc polynomial f of degree 2d + 1, computing only SDP (5.34) with optimal value
λd+1

cs ( f , g) when g = Bcs or g = D does not suffice to obtain the value of λmin( f , g). This is
explained in Example 5.31 below.

Example 5.31 Let us consider a randomly generated cubic polynomial f = f1 + f2 with

f1 = 4 − x1 + 3x2 − 3x3 − 3x2
1 − 7x1x2 + 6x1x3 − x2x1 − 5x3x1 + 5x3x2

− 5x3
1 − 3x2

1x3 + 4x1x2x1 − 6x1x2x3 + 7x1x3x1 + 2x1x3x2 − x1x2
3

− x2x2
1 + 3x2x1x2 − x2x1x3 − 2x3

2 − 5x2
2x3 − 4x2x2

3 − 5x3x2
1

+ 7x3x1x2 + 6x3x2x1 − 4x3x2x2 − x2
3x1 − 2x2

3x2 + 7x3
3,

f2 = − 1 + 6x2 + 5x3 + 3x4 − 5x2
2 + 2x2x3 + 4x2x4 − 4x3x2 + x2

3 − x3x4

+ x4x2 − x4x3 + 2x2
4 − 7x3

2 + 4x2x2
3 + 5x2x3x4 − 7x2x4x3 − 7x2x2

4

+ x3x2
2 + 6x3x2x3 − 6x3x2x4 − 3x2

3x2 − 7x2
3x4 + 6x3x4x2

− 3x3x4x3 − 7x3x2
4 + 3x4x2

2 − 7x4x2x3 − x4x2x4 − 5x4x2
3

+ 7x4x3x4 + 6x2
4x2 − 4x3

4,

and the nc polyball g = Bcs = {1− x2
1 − x2

2 − x2
3, 1− x2

2 − x2
3 − x2

4} corresponding to I1 = {1, 2, 3} and
I2 = {2, 3, 4}. Then, one has λ2

cs( f , g) ≃ −27.536 < λ3
cs( f , g) ≃ −27.467 ≃ λ2

min( f , g) = λmin( f , g).

Corollary 5.32 Let { f } ∪ g ⊆ Sym R⟨x⟩, and assume that Dg is as in (5.21) with the additional
quadratic constraints (5.20). Suppose Assumptions 5.16(i)-(ii) hold. Let y be an optimal solution of
SDP (5.34) with optimal value ηr

cs( f , g) for r ≥ rmin + δ, such that y satisfies the assumptions of Theo-
rem 5.24. Then, there exist t ∈ N∗, A ∈ Dt

g and a unit vector v such that

λmin( f , g) = ⟨ f (A)v, v⟩ = ηr
cs( f , g).

Example 5.33 Consider the sparse polynomial f = f1 + f2 from Example 5.31. The moment matrix
M3(y) obtained by solving (5.34) with r = 3 satisfies the flatness (H1) and irreducibility (H2) conditions
of Theorem 5.24. We can thus apply the SparseGNS algorithm yielding

A1 =


0.0059 0.0481 0.1638 0.4570
0.0481 −0.2583 0.5629 −0.2624
0.1638 0.5629 0.3265 −0.3734
0.4570 −0.2624 −0.3734 −0.2337



A2 =


−0.3502 0.0080 0.1411 0.0865

0.0080 −0.4053 0.2404 −0.1649
0.1411 0.2404 −0.0959 0.3652
0.0865 −0.1649 0.3652 0.4117



A3 =


−0.7669 −0.0074 −0.1313 −0.0805
−0.0074 −0.4715 −0.2238 0.1535
−0.1313 −0.2238 0.0848 −0.3400
−0.0805 0.1535 −0.3400 −0.2126



A4 =


0.3302 −0.1839 0.1811 −0.0404

−0.1839 −0.1069 0.5114 −0.0570
0.1811 0.5114 0.1311 −0.3664

−0.0404 −0.0570 −0.3664 0.4440


where

f (A) =


−10.3144 3.9233 −5.0836 −7.7828

3.9233 1.8363 4.5078 −7.5905
−5.0836 4.5078 −19.5827 13.9157
−7.7828 −7.5905 13.9157 8.3381


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has minimal eigenvalue −27.4665 with unit eigenvector

v =
[
0.1546 −0.2507 0.8840 −0.3631

]⊺ .

In this case all the ranks involved are equal to four. So A2 and A3 are computed from M3(y, I1 ∩ I2),
after an appropriate basis change A1 (and the same A2, A3) is obtained from M3(y, I1), and finally A4 is
computed from M3(y, I2).

For more details on exploiting correlative sparsity in noncommutative polynomial optimiza-
tion, please refer to [KMP21].

5.2.5 Eigenvalue optimization with term sparsity

Recall that the eigenvalue optimization problem is defined by

λmin( f , g) := inf{⟨ f (A)v, v⟩ : A ∈ D∞
g , ∥v∥ = 1}, (5.37)

for f ∈ Sym R⟨x⟩ and g = {g1, . . . , gm} ⊆ Sym R⟨x⟩. Let

A = supp( f ) ∪
m⋃

j=1

supp(gj). (5.38)

Fixing a relaxation order r ≥ rmin, we define a graph Gtsp
r with nodes Wr

1 and edges

E(Gtsp
r ) = {{u, v} | (u, v) ∈ Wr × Wr, u ̸= v, u⋆v ∈ A ∪ W2

r}, (5.39)

where W2
r := {u⋆u | u ∈ Wr}. We call Gtsp

r the tsp graph associated with the support A .
For a graph G(V, E) with V ⊆ ⟨x⟩ and g ∈ R⟨x⟩, let us define

suppg(G) := {u⋆wv | u = v ∈ V or {u, v} ∈ E, w ∈ supp(g)}. (5.40)

Let G(0)
r,0 = Gtsp

r and G(0)
r,j be the empty graph with nodes Vr,j := Wr−dj

for j ∈ [m]. Then for each

j ∈ {0} ∪ [m], we iteratively define a sequence of graphs (G(s)
r,j (Vr,j, E(s)

r,j ))s≥1 via two successive
operations:
(1) support extension. Let F(s)

r,j be the graph with nodes Vr,j and

E(F(s)
r,j ) ={{u, v} | (u, v) ∈ Vr,j × Vr,j, u ̸= v,

u⋆ supp(gj)v ∩
m⋃

j=0

suppgj
(G(s−1)

r,j ) ̸= ∅},
(5.41)

where u⋆ supp(gj)v := {u⋆wv | w ∈ supp(gj)}.
(2) chordal extension. Let

G(s)
r,j := (F(s)

r,j )
′. (5.42)

By construction, one has G(s)
r,j ⊆ G(s+1)

r,j for all j, s. Therefore, for every j, the sequence of graphs

(G(s)
r,j )s≥1 stabilizes after a finite number of steps.
Let tj = |Wr−dj

| for j ∈ {0} ∪ [m]. Then by replacing the csp constraint Mr−dj
(gjy) ⪰ 0 with

the weaker constraint B
G(s)

r,j
◦ Mr−dj

(gjy) ∈ Π
G(s)

r,j
(S+

tj
) for j ∈ {0} ∪ [m] in (5.32), we obtain the

following series of sparse moment relaxations for (5.37) indexed by s ≥ 1:

λr,s
ts ( f , g) := inf

y
Ly( f )

s.t. B
G(s)

r,0
◦ Mr(y) ∈ Π

G(s)
r,0
(S+

t0
)

B
G(s)

r,j
◦ Mr−dj

(gjy) ∈ Π
G(s)

r,j
(S+

tj
), j ∈ [m]

y1 = 1

(5.43)

1If g = ∅, then we may replace the monomial basis Wr with the one returned by the Newton chip method; see [BKP16,
§2.3].
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We call s the sparse order. For each s ≥ 1, the dual of (5.43) reads as
sup
Gj ,b

b

s.t. ∑m
j=0⟨Gj, Dj

w⟩+ bδ1w = fw, ∀w ∈ ⋃m
j=0 suppgj

(G(s)
r,j )

Gj ∈ S+
tj
∩ S

G(s)
r,j

, j ∈ {0} ∪ [m]

(5.44)

where {Dj
w}j,w are appropriate matrices satisfying Mr−dj

(gjy) = ∑w Dj
wyw. We then call the TS-

adapted moment-SOHS relaxations (5.43)–(5.44) the NCTSSOS hierarchy associated with (5.37).

Theorem 5.34 Let { f } ∪ g ⊆ Sym R⟨x⟩. Then the following hold:

(1) Suppose that Dg contains an nc ε-neighborhood of 0. Then for all r, s, there is no duality gap
between (5.43) and its dual (5.44).

(2) Fixing a relaxation order r ≥ rmin, the sequence (λr,s
ts ( f , g))s≥1 is monotonically non-

decreasing and λr,s
ts ( f , g) ≤ λr( f , g) for all s (with λr( f , g) being defined in (5.32)).

(3) Fixing a sparse order s ≥ 1, the sequence (λr,s
ts ( f , g))r≥rmin is monotonically non-decreasing.

(4) If the maximal chordal extension is chosen in (5.42), then (λr,s
ts ( f , g))s≥1 converges to λr( f , g)

in finitely many steps.

Following from Theorem 5.34, we have the following two-level hierarchy of lower bounds for
the optimum λmin( f , g) of (5.37):

λrmin,1
ts ( f , g) ≤ λrmin,2

ts ( f , g) ≤ · · · ≤ λrmin( f , g)

≥ ≥ ≥

λrmin+1,1
ts ( f , g) ≤ λrmin+1,2

ts ( f , g) ≤ · · · ≤ λrmin+1( f , g)

≥ ≥ ≥

...
...

...
...

≥ ≥ ≥

λr,1
ts ( f , g) ≤ λr,2

ts ( f , g) ≤ · · · ≤ λr( f , g)

≥ ≥ ≥

...
...

...
...

(5.45)

Example 5.35 Consider f = 2 − x2 + xy2x − y2 + xyxy + yxyx + x3y + yx3 + xy3 + y3x and g =

{1 − x2, 1 − y2}. The graph sequence (G(s)
2,0)s≥1 for f and g is given in Figure 5.4. In fact the graph

sequence (G(s)
2,j )s≥1 stabilizes at s = 2 for j = 0, 1, 2 (with approximately smallest chordal extensions).

Using TSSOS, we obtain that λ2,1
ts ( f , g) ≈ −2.55482, λ2,2

ts ( f , g) = λ2( f , g) ≈ −2.05111.

5.2.6 Combining correlative and term sparsity

Combining CS with TS for eigenvalue optimization proceeds in a similar manner as for the com-
mutative case in Chapter 4.7.

Let f = ∑w fww ∈ Sym R⟨x⟩ and g = {g1, . . . , gm} ⊆ Sym R⟨x⟩. Suppose that Gcsp is the
csp graph associated with f and g, and (Gcsp)′ is a chordal extension of Gcsp. Let {Ik}k∈[p] be the
maximal cliques of (Gcsp)′ with cardinality being denoted by nk, k ∈ [p]. Then the set of variables
x is decomposed into x(I1), x(I2), . . . , x(Ip). Let J1, . . . , Jp be defined as before.
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1

x2

xy yx

y2

x y

1

x2

xy yx

y2

x y

Figure 5.4: The graph sequence (G(s)
2,0)s≥1 in Example 5.35: left for s = 1; right for s = 2. The

dashed edges are added after a chordal extension.

Now we consider the tsp for each subsystem involving the variables x(Ik), k ∈ [p] respectively
as follows. Let

A := supp( f ) ∪
m⋃

j=1

supp(gj) and Ak := {w ∈ A | var(w) ⊆ x(Ik)}, (5.46)

for k ∈ [p]. As before, let g0 = 1, dj = ⌈deg(gj)/2⌉, j ∈ {0}∪ [m] and rmin = max{⌈deg( f )/2⌉, d1, . . . , dm}.
Fix a relaxation order r ≥ rmin. Let Wr−dj ,k be the standard monomial basis of degree ≤ r− dj with

respect to the variables x(Ik) and Gtsp
r,k be the tsp graph with nodes Wr,k associated with Ak defined

as in Chapter 5.2.5. Let G(0)
r,k,0 = Gtsp

r,k and G(0)
r,k,j be the empty graph with nodes Vr,k,j := Wr−dj ,k for

j ∈ Jk, k ∈ [p]. Letting

C
(s)
r :=

p⋃
k=1

⋃
j∈{0}∪Jk

suppgj
(G(s)

r,k,j), (5.47)

we iteratively define a sequence of graphs (G(s)
r,k,j(Vr,k,j, E(s)

r,k,j))s≥1 for each j ∈ {0} ∪ Jk, k ∈ [p] by

G(s)
r,k,j := (F(s)

r,k,j)
′, (5.48)

where F(s)
r,k,j is the graph with nodes Vr,k,j and edges

E(F(s)
r,k,j) = {{u, v} | u ̸= v ∈ Vr,k,j, u⋆ supp(gj)v ∩ C

(s−1)
r ̸= ∅}. (5.49)

Let tk,j = |Wr−dj ,k| for all k, j. Then for each s ≥ 1 (called the sparse order), the moment
relaxation based on correlative-term sparsity for (5.37) is given by

λr,s
cs-ts( f , g) := inf

y
Ly( f )

s.t. B
G(s)

r,k,0
◦ Mr(y, Ik) ∈ Π

G(s)
r,k,0

(S+
rk,0

), k ∈ [p]

B
G(s)

r,k,j
◦ Mr−dj

(gjy, Ik) ∈ Π
G(s)

r,k,j
(S+

rk,j
), j ∈ Jk, k ∈ [p]

y1 = 1

(5.50)

For all k, j, let us write Mr−dj
(gjy, Ik) = ∑w Dk,j

w yw for appropriate matrices {Dk,j
w }k,j,w. Then

for each s ≥ 1, the dual of (5.50) reads as
sup
Gk,j ,b

b

s.t. ∑
p
k=1 ∑j∈{0}∪Jk

⟨Gk,j, Dk,j
w ⟩+ bδ1w = fw, ∀w ∈ C

(s)
r

Gk,j ∈ S+
tk,j

∩ S
G(s)

r,k,j
, j ∈ {0} ∪ Jk, k ∈ [p]

(5.51)
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where C
(s)
r is defined in (5.47).

The properties of the relaxations (5.50)–(5.51) are summarized in the following theorem.

Theorem 5.36 Assume that { f } ∪ g ⊆ Sym R⟨x⟩. Then the following hold:

(1) Fixing a relaxation order r ≥ rmin, the sequence (λr,s
cs-ts( f , g))s≥1 is monotonically non-

decreasing and λr,s
cs-ts( f , g) ≤ λr

cs( f , g) for all s ≥ 1 (with λr
cs( f , g) being defined in Chap-

ter 5.34).

(2) Fixing a sparse order s ≥ 1, the sequence (λr,s
cs-ts( f , g))r≥rmin is monotonically non-decreasing.

(3) If the maximal chordal extension is chosen in (5.48), then (λr,s
cs-ts( f , g))s≥1 converges to λr

cs( f , g)
in finitely many steps.

5.2.7 Trace optimization

We start this section by introducing useful notations about commutators and trace zero polyno-
mials. Given g, h ∈ R⟨x⟩, the nc polynomial [g, h] := gh − hg is called a commutator. Two nc

polynomials g, h ∈ R⟨x⟩ are called cyclically equivalent (g
cyc∼ h) if g − h is a sum of commutators.

Given g ⊆ Sym R⟨x⟩ with corresponding quadratic module M(g) and truncated variant M(g)d,

one defines Θ(g)d := {g ∈ Sym R⟨x⟩2d : g
cyc∼ h for some h ∈ M(g)d} and Θ(g) :=

⋃
d∈N Θ(g)d.

In this case, Θ(g) stands for the cyclic quadratic module generated by g and Θ(g)d stands for the
truncated cyclic quadratic module generated by g.

For g ⊆ Sym R⟨x⟩ and Dg as in (5.21) with the additional quadratic constraints (5.20), let us

define Θ(g)k
d := {g ∈ Sym R⟨x⟩2d : g

cyc∼ h for some h ∈ M(g)k
d}, Θ(g)k :=

⋃
d∈N Θ(g)k

d, for all
k ∈ [p] and the sum

Θ(g)cs
d := Θ(g)1

d + · · ·+ Θ(g)
p
d , (5.52)

as well as Θ(g)cs :=
⋃

d∈N Θ(g)cs
d . If g is empty, we drop the g in the above notations. The

normalized trace of a matrix A ∈ St is given by tr A = 1
t trace A. An nc polynomial g ∈ Sym R⟨x⟩

is called a trace zero nc polynomial if tr(g(A)) = 0, for all A ∈ Sn. This is equivalent to g
cyc∼ 0

(see e.g. [KS08, Proposition 2.3]). For a given nc polynomial g, the cyclic degree of g, denoted
by cdeg(g), is the smallest degree of a polynomial cyclically equivalent to g. The next theorem
allows one to obtain a sparse tracial representation of a tracial linear functional, under the same
flatness and irreducibility conditions stated in Theorem 5.24. This is a sparse variant of [BKP16,
Theorem 1.71].

Theorem 5.37 Let g ⊆ Sym R⟨x⟩2d, and assume that the semialgebraic set Dg is as in (5.21) with the
additional quadratic constraints (5.20). Let Assumption 5.16(i) hold. Set δ := max{⌈deg(g)/2⌉ : g ∈
g ∪ {1}}. Let L : R⟨x⟩2d+2δ → R be a unital tracial linear functional satisfying L(Θ(g)cs

d ) ⊆ R≥0.
Assume that the flatness (H1) and irreducibility (H2) conditions of Theorem 5.24 hold. Then there are
finitely many n-tuples A(j) of symmetric matrices in Dr

g for some r ∈ N, and positive scalars λj with
∑j λj = 1, such that for all f ∈ R⟨x, I1⟩2d + · · ·+ R⟨x, Ip⟩2d, one has:

L( f ) = ∑
j

λj tr f (A(j)). (5.53)

In this subsection, we provide the sparse tracial version of Lasserre’s hierarchy to minimize
the trace of a noncommutative polynomial on a semialgebraic set. Given f ∈ Sym R⟨x⟩ and
g = {g1, . . . , gm} ⊂ Sym R⟨x⟩ as in (5.17), let us define trmin( f , S) as follows:

trmin( f , g) := inf{tr f (A) : A ∈ Dg}. (5.54)
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Since an infinite-dimensional Hilbert space does not admit a trace, we obtain lower bounds on
the minimal trace by considering a particular subset of D∞

g . This subset is obtained by restricting
from the algebra of all bounded operators B(H) on a Hilbert space H to finite von Neumann
algebras of type I and type II. We introduce trmin( f , g)II1 as the trace-minimum of f on DII1

g . This
latter set is defined as follows (see [BKP16, Definition 1.59]):

Definition 5.38 Let F be a type-II1-von Neumann algebra [Tak03, Chapter 5]. Let us define DF
g as the

set of all tuples A = (A1, . . . , An) ∈ Fn making g(A) a positive semidefinite operator for every g ∈ g.
The von Neumann semialgebraic set DII1

g generated by g is defined as

DII1
g :=

⋃
F
DF

g ,

where the union is over all type-II1-von Neumann algebras with separable predual.

By [BKP16, Proposition 1.62], if f ∈ Θ(g), then tr f (A) ≥ 0, for all A ∈ Dg and A ∈ DII1
g . Since Dg

can be modeled by DII1
g , one has trmin( f , g)II1 ≤ trmin( f , g). With rmin being defined as before, one

can approximate trmin( f , g)II1 from below via the following hierarchy of SDP programs, indexed
by r ≥ rmin:

trr( f , g) = sup{b : f − b ∈ Θ(g)r}, (5.55)

whose dual is

Lr
Θ( f , g) := inf

y
⟨Mr(y), G f ⟩

s.t. (Mr(y))u,v = (Mr(y))w,z, for all u⋆v
cyc∼ w⋆z,

y1 = 1,
Mr(y) ⪰ 0, Mr−dj

(gjy) ⪰ 0, j ∈ [m],

L : R⟨x⟩2d → R linear.

(5.56)

If the quadratic module M(g) is Archimedean, the resulting hierarchy of SDP programs provides
a sequence of lower bounds trr( f , g) monotonically converging to trmin( f , g)II1 , see e.g. [BKP16,
Corollary 3.5].

Next, we present a sparse variant hierarchy of SDP programs providing a sequence of lower
bounds trr

cs( f , g) monotonically converging to trmin( f , g)II1 . Let g ∪ { f } ⊆ Sym R⟨x⟩ and let Dg

be as in (5.21) with the additional quadratic constraints (5.20). Let us define the sparse variant of
SDP (5.56), indexed by r ≥ rmin:

Lr
Θ,cs( f , g) = inf

y

p

∑
k=1

⟨Mr(y, Ik), G fk
⟩

s.t. (Mr(y, Ik))u,v = (Mr(y, Ik))w,z, for all u⋆v
cyc∼ w⋆z,

y1 = 1,
Mr(y, Ik) ⪰ 0, k ∈ [p],
Mr−dj

(gjL, Ik) ⪰ 0, j ∈ Jk, k ∈ [p],

L : R⟨x, I1⟩2d + · · ·+ R⟨x, Ip⟩2d → R linear.

(5.57)

whose dual is the sparse variant of SDP (5.55):

trr
cs( f , g) = sup{b : f − b ∈ Θ(g)cs

d }, (5.58)

With the same conditions as the ones assumed in Proposition 5.29 for constrained eigenvalue
optimization, SDP (5.57) admits strictly feasible solutions, so there is no duality gap between
SDP (5.57) and SDP (5.58). The proof is the same since the constructed linear functional in
Proposition 5.29 is tracial. In order to prove convergence of the hierarchy of bounds given by
the SDP (5.57)-(5.58), we need the following proposition, which is the sparse variant of [BKP16,
Proposition 1.63].



5.3. OTHER EXTENSIONS 60

Proposition 5.39 Let g ∪ { f } ⊆ Sym R⟨x⟩ and let Dg be as in (5.21) with the additional quadratic
constraints (5.20). Let Assumption 5.16 hold. Then the following are equivalent:

(i) tr f (A) ≥ 0 for all A ∈ DII1
g ;

(ii) for all ε > 0, there exists g ∈ M(g)cs with f + ε
cyc∼ g.

Proposition 5.39 implies the following convergence property.

Corollary 5.40 Let g ∪ { f } ⊆ Sym R⟨x⟩ and let Dg be as in (5.21) with the additional quadratic con-
straints (5.20). Let Assumption 5.16 hold. Then

lim
r→∞

trr
cs( f , g) = lim

r→∞
Lr

Θ,cs( f , g) = trmin( f , g)II1 .

For more details on noncommutative polynomial optimization, please refer to [BKP16]. For
more details on exploiting term sparsity in noncommutative polynomial optimization, please re-
fer to [WM21].

5.3 Other extensions

• Polynomial matrix inequality: please refer to [GW23].



Chapter 6

Applications

6.1 Software

SDP:
• MOSEK: https://www.mosek.com/

POP:
• TSSOS: https://github.com/wangjie212/TSSOS

6.2 Optimal power flow

Please refer to [WML22].

6.3 Polyphase wave design

Please refer to [WM23].

6.4 Quantum maximal violation of Bell inequalities

Please refer to [KMVW23].

6.5 Ground state energy of local Hamiltonian

Please refer to [WSF+23].

6.6 Other applications

Please refer to [Las09, Las15, MW23].
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