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1 INTRODUCTION

This article is concerned with solving large-scale polynomial optimization problems. As is often
the case, the polynomials in the problem description involve only a few monomials of low degree
and the ultimate goal is to exploit this crucial feature to provide semidefinite relaxations that are
computationally much cheaper than those of the standard SOS-based hierarchy [20] or its sparse
version [21, 40] based on correlative sparsity.

Throughout this article, we consider large-scale instances of the following polynomial opti-

mization problem (POP):

(Q) : ρ∗ = inf
x
{ f (x) : x ∈ K }, (1.1)

where the objective function f is assumed to be a polynomial inn variables x = (x1, . . . ,xn ) and the
feasible set K ⊆ Rn is assumed to be defined by a finite conjunction of m polynomial inequalities,
namely

K := {x ∈ Rn : д1 (x) ≥ 0, . . . ,дm (x) ≥ 0}, (1.2)

for some polynomials д1, . . . ,дm in x. Here “large-scale” means that the magnitude of the number
of variables n and the number of inequalities m can be both proportional to several thousands. A
nowadays well-established scheme to handle (Q) is the moment-SOS hierarchy [20], where SOS is
the abbreviation of sum of squares. The moment-SOS hierarchy provides a sequence of semidefi-
nite programming (SDP) relaxations, whose optimal values are non-decreasing lower bounds of
the global optimum ρ∗ of (Q). Under some mild assumption slightly stronger than compactness,
the sequence generically converges to the global optimum in finitely many steps [31]. SDP solvers
[48] address a specific class of convex optimization problems, with linear cost and linear matrix in-
equalities. With a priory fixed precision, an SDP can be solved in polynomial time with respect to
its input size. Modern SDP solvers via the interior-point method (e.g., Mosek [3]) can solve an SDP
problem involving matrices of moderate size (say, ≤ 5,000) and equality constraints of moderate
number (say, ≤ 20,000) in reasonable time on a standard laptop [38]. The SDP relaxations arising

from the moment-SOS hierarchy typically involve matrices of size
(

n+d
d

)
and equality constraints

of number
(
n+2d

2d

)
, where d is the relaxation order. For problems with n 	 200, it is thus possible

to compute the first-order SDP relaxation of a quadratically constrained quadratic problem

(QCQP), as one can take d = 1, yielding
(

n+d
d

)
	 200 and

(
n+2d

2d

)
	 20,000 (in this case, this relax-

ation is also known as Shor’s relaxation [34]). However, the quality of the resulting approximation
is often not satisfactory and it is then required to go beyond the first-order relaxation. But for
solving the second-order relaxation (d = 2) one is limited to problems of small size, typically with(

n+4
4

)
≤ 20,000 (hence, with n ≤ 23) on a standard laptop. Therefore, in view of the current state

of SDP solvers, the dense moment-SOS hierarchy does not scale well enough.
One possible remedy is to rely on alternative weaker positivity certificates, such as the hierarchy

of linear programming (LP) relaxations based on Krivine-Stengle’s certificates [19, 23, 35] or the
second-order cone programming (SOCP) relaxation based on (scaled) diagonally dominant sums
of squares (DSOS/SDSOS) [2] to approximate/bound from below the optimum of (Q). Even though
modern LP/SOCP solvers can handle much larger problems by comparison with SDP solvers, they
have been shown to provide less accurate bounds, in particular for combinatorial problems [24],
and do not have the property of finite convergence for continuous problems (not even for convex
QCQP problems [22, Section 9.3]). Another important methodology is to reduce the size of SDPs
arising in the moment-SOS hierarchy via exploiting structure of POPs.

Related Work for Unconstructed POPs. A first option is to exploit term sparsity for sparse uncon-
strained problems, i.e., when K = Rn , and the objective f involves a few terms (monomials). The
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algorithm consists of automatically reducing the size of the corresponding SDP matrix by eliminat-
ing the monomial terms which never appear among the support of SOS decompositions [32]. Other
classes of positivity certificates have been recently developed with a specific focus on sparse un-
constrained problems. Instead of trying to decompose a positive polynomial as an SOS, one can try
to decompose it as a sum of nonnegative circuits (SONC), by solving a geometric program [16]
or a second-order cone program [5, 43], or alternatively as a sum of arithmetic-geometric-mean-
exponentials (SAGE) [8] by solving a relative entropy program. Despite their potential efficiency
on certain sub-classes of POPs (e.g., sparse POPs with a small number of variables and a high
degree), these methods share the common drawback of not providing systematic guarantees of
convergence for constrained problems.

Related Work on Correlative Sparsity. In order to reduce the computational burden associated
with the dense moment-SOS hierarchy while keeping its nice convergence properties, one possi-
bility is to take into account the sparsity pattern satisfied by the variables of the POP [21, 40]. The
resulting algorithm has been implemented in the SparsePOP solver [41] and can handle sparse
problems with up to several hundred variables. Many applications of interest have been success-
fully handled thanks to this framework, for instance certified roundoff error bounds in computer
arithmetics [25, 26] with up to several hundred variables and constraints, optimal power flow prob-
lems [17] (where a multi-ordered Lasserre hierarchy was proposed) with up to several thousand
variables and constraints. More recent extensions have been developed for volume computation
of sparse semialgebraic sets [37], approximating regions of attraction of sparse polynomial sys-
tems [36], noncommutative POPs [18], Lipschitz constant estimation of deep networks [9] and
for sparse positive definite functions [28]. In these applications, the cost polynomial and the con-
straint polynomials possess a specific correlative sparsity pattern. The resulting sparse moment-
SOS hierarchy is obtained by building blocks of SDP matrices with respect to some subsets or
cliques of the input variables. When the sizes of these cliques are reasonably small, one can ex-
pect to handle problems with a large number of variables. For instance, the maximal size of
cliques is less than 10 for some unconstrained problems in [40] or roundoff error problems in
[26], and is less than 20 for the optimal power flow problems handled in [17]. Even though cor-
relative sparsity has been successfully used to tackle several interesting applications, there are
still many POPs that cannot be handled by considering merely correlative sparsity. For instance,
there are POPs for which the correlative sparsity pattern is (nearly) dense or which admits a cor-
relative sparsity pattern with variable cliques of large cardinality (say, > 20), yielding untractable
SDPs.

Related Work on Term Sparsity. To overcome these issues, one can exploit term sparsity as
described in [42], [46], and [47]. The TSSOS hierarchy from [47] as well as the complementary
Chordal-TSSOS from [46] offers some alternative to problems for which the correlative sparsity
pattern is dense or nearly dense. In both TSSOS and Chordal-TSSOS frameworks a so-called term

sparsity pattern (tsp) graph is associated with the POP. The nodes of this tsp graph are monomials
(from a monomial basis) needed to construct SOS relaxations of the POP. Two nodes are connected
via an edge whenever the product of the corresponding monomials appears in the supports of
polynomials involved in the POP or is a monomial square. Note that this graph differs from
the correlative sparsity pattern (csp) graph used in [40] where the nodes are the input variables and
the edges connect two nodes whenever the corresponding variables appear in the same term of the
objective function or in the same constraint. A two-step iterative algorithm takes as input the tsp
graph and enlarges it to exploit the term sparsity in (Q). Each iteration consists of two successive
operations: (i) a support extension operation and (ii) either a block closure operation on adjacency
matrices in the case of TSSOS [47] or a chordal extension operation in the case of Chordal-TSSOS
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[46]. In doing so, one obtains a two-level moment-SOS hierarchy with blocks of SDP matrices. If
the sizes of blocks are relatively small, then the resulting SDP relaxations become more tractable
as their computational cost is significantly reduced. Another interesting feature of TSSOS is that
the block structure obtained at the end of the iterative algorithm automatically induces a partition
of the monomial basis, which can be interpreted in terms of sign symmetries of the initial POP.
TSSOS and Chordal-TSSOS allow one to solve POPs with several hundred variables for which
there is no or little correlative sparsity to exploit; see and [47], for numerous numerical examples.
One can also rely on symmetry exploitation as in [33] but this requires quite strong assumptions
on the input data, such as invariance of each polynomial f ,д1, . . . ,дm under the action of a
finite group.

To tackle large-scale POPs, a natural idea is to simultaneously benefit from correlative and term
sparsity patterns. This is the spirit of our contribution. Also in the same vein the work in [30]
combines the (S)DSOS framework [2] with the TSSOS hierarchy but does not provide systematic
convergence guarantees.

Contribution. Our main contribution is as follows:

• For large-scale POPs with a correlative sparsity pattern, we first apply the usual sparse polyno-
mial optimization framework [21, 40] to get a coarse decomposition in terms of cliques of variables.
Next we apply the term sparsity strategy (either TSSOS or Chordal-TSSOS) to each subsystem
(which involves only one clique of variables) to reduce the size of SDPs even further. While the
overall strategy is quite clear and simple, its implementation is not trivial and needs some care. In-
deed for its coherency one needs to take extra care of the monomials which involve variables that
belong to intersections of variable cliques (those obtained from correlative sparsity). The resulting
combination of correlative sparsity (CS for short) and term sparsity produces what we call the
CS-TSSOS hierarchy—a two-level hierarchy of SDP relaxations with blocks of SDP matrices, which
yields a converging sequence of certified approximations for POPs. Under certain conditions, we
prove that the corresponding sequence of optimal values converges to the global optimum of the
POP.
• Our algorithmic development of the CS-TSSOS hierarchy is fully implemented in the TSSOS

tool [27]. The most recent version of TSSOS has been released within the Julia programming lan-
guage, which is freely available online and documented.1 With TSSOS, the accuracy and scalability
of the CS-TSSOS hierarchy are evaluated on several large-scale benchmarks coming from the con-
tinuous and combinatorial optimization literature. In particular, numerical experiments demon-
strate that the CS-TSSOS hierarchy is able to handle challenging Max-Cut instances and optimal
power flow instances with several thousand (	6,000) variables on a laptop whenever appropri-
ate sparsity patterns are accessible. We remark that the CS-TSSOS framework has been recently
extended to handle noncommutative polynomial optimization [45] and complex polynomial opti-
mization [44].

The rest of this aticle is organized as follows: in Section 2, we provide preliminary background
on SOS polynomials, the moment-SOS hierarchy, correlative sparsity and the (Chordal-)TSSOS
hierarchy. In Section 3, we explain how to combine correlative sparsity and term sparsity to obtain
a two-level CS-TSSOS hierarchy. Its convergence is analyzed in Section 4. Eventually, we provide
numerical experiments for large-scale POP instances in Section 5. Discussions and conclusions are
made in Section 6.

1https://github.com/wangjie212/TSSOS.
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2 NOTATION AND PRELIMINARIES

2.1 Notation and SOS Polynomials

Let x = (x1, . . . ,xn ) be a tuple of variables and R[x] = R[x1, . . . ,xn] be the ring of real n-variate
polynomials. For d ∈ N, the set of polynomials of degree no more than 2d is denoted by R2d [x].
A polynomial f ∈ R[x] can be written as f (x) =

∑
α ∈A fα xα with A ⊆ Nn and fα ∈ R, xα =

xα1

1 · · · x
αn
n . The support of f is defined by supp( f ) := {α ∈ A | fα � 0}. We use | · | to denote

the cardinality of a set. For a finite set A ⊆ Nn , let xA be the |A |-dimensional column vector
consisting of elements xα ,α ∈ A (fix any ordering on Nn ). For a positive integer r , the set of r ×r
symmetric matrices is denoted by Sr and the set of r × r positive semidefinite (PSD) matrices is
denoted by Sr

+. A matrix A ∈ Sr
+ is written as A 
 0. For matrices A,B ∈ Sr , let 〈A,B〉 ∈ R denote

the trace inner-product, defined by 〈A,B〉 = Tr(ATB), and let A ◦ B ∈ Sr denote the Hadamard
product, defined by [A ◦ B]i j = Ai jBi j . For d ∈ N, let Nn

d
:= {α = (αi )n

i=1 ∈ Nn | ∑n
i=1 αi ≤ d }.

For β = (βi ) ∈ Nn ,γ = (γi ) ∈ Nn , let β + γ := (βi + γi ) ∈ Nn . For α ∈ Nn ,A ,B ⊆ Nn , let
α + B := {α + β | β ∈ B} and A + B := {α + β | α ∈ A , β ∈ B}. For m ∈ N\{0}, let
[m] := {1, 2, . . . ,m}.

Given a polynomial f (x) ∈ R[x], if there exist polynomials f1 (x), . . . , ft (x) such that f (x) =∑t
i=1 fi (x)2, then we call f (x) a sum of squares (SOS) polynomial. The set of SOS polynomials is

denoted by Σ[x]. Assume that f ∈ Σ2d [x] := Σ[x]∩R2d [x] and xN
n
d is the standard monomial basis.

Then, the SOS condition for f is equivalent to the existence of a PSD matrix Q , which is called a

Gram matrix [32], such that f = (xN
n
d )TQxN

n
d . For convenience, we abuse notation in the sequel

and denote byNn
d

instead of xN
n
d the standard monomial basis and use the exponentα to represent

a monomial xα .

2.2 The Moment-SOS Hierarchy for POPs

With y = (yα )α being a sequence indexed by the standard monomial basis Nn of R[x], let Ly :
R[x]→ R be the linear functional

f =
∑
α

fα xα �→ Ly ( f ) =
∑
α

fαyα .

For d ∈ N, the moment matrix Md (y) of order d associated with y is the matrix with rows and
columns indexed by the standard monomial basis Nn

d
such that

Md (y)βγ := Ly (xβ xγ ) = yβ+γ , ∀β ,γ ∈ Nn
d .

Suppose д =
∑

α дα xα ∈ R[x] and let y = (yα ) be given. The localizing matrix Md (дy) of order
d associated with д and y is the matrix with rows and columns indexed by Nn

d
such that

Md (д y)βγ := Ly (д xβ xγ ) =
∑
α

дαyα+β+γ , ∀β,γ ∈ Nn
d .

Consider the POP (Q) defined by (1.1) and (1.2). Throughout this article, letdj := �deg(дj )/2�, j =
1, . . . ,m and dmin := max{�deg( f )/2�,d1, . . . ,dm }. Then the moment hierarchy for (Q) indexed by
integer d ≥ dmin is defined by ([20]):

(Qd ) :

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

inf Ly ( f )

s.t. Md (y) 
 0,

Md−dj
(дj y) 
 0, j = 1, . . . ,m,

y0 = 1.

(2.1)

We call d the relaxation order.
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Fig. 1. An example of chordal extension.

For the sake of convenience, we setд0 := 1 andd0 := 0 throughout this article. For each j, writing

Md−dj
(дj y) =

∑
α D j

αyα for appropriate symmetry matrices {D j
α }, the dual of (2.1) reads as

(Qd )∗ :

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

sup ρ

s.t.

m∑
j=0

〈Q j ,D
j
α 〉 + ρδ0α = fα , ∀α ∈ Nn

2d ,

Q j 
 0, j = 0, . . . ,m,

(2.2)

where δ0α is the usual Kronecker symbol.

2.3 Chordal Graphs and Sparse Matrices

In this subsection, we recall some basic results on chordal graphs and sparse matrices which are
crucial for our subsequent development. Our notation and definitions here mostly follow from
[39].

An (undirected) graph G (V ,E) or simply G consists of a set of nodes V and a set of edges E ⊆
{{vi ,vj } | vi � vj , (vi ,vj ) ∈ V ×V }. For a graph G, we use V (G ) and E (G ) to indicate the node set
of G and the edge set of G, respectively. The adjacency matrix of a graph G is denoted by BG for
which we put ones on its diagonal. For two graphsG,H , we say thatG is a subgraph of H , denoted
by G ⊆ H , if both V (G ) ⊆ V (H ) and E (G ) ⊆ E (H ) hold.

Definition 2.1. A graph is called a chordal graph if all its cycles of length at least four have a
chord.2

The notion of chordal graphs plays an important role in sparse matrix theory. Any non-chordal
graph G (V ,E) can be always extended to a chordal graph G ′(V ,E ′) by adding appropriate edges
to E, which is called a chordal extension of G (V ,E). As an example, in Figure 1 the two dashed
edges are added to obtain a chordal extension. The chordal extension of G is usually not unique
and the symbol G ′ is used to represent any specific chordal extension ofG throughout this article.
For graphs G ⊆ H , we assume that G ′ ⊆ H ′ always holds in this article.

A complete graph is a graph in which any two nodes have an edge. A clique of a graph is a subset
of nodes that induces a complete subgraph. A maximal clique is a clique that is not contained in
any other clique. It is known that for a chordal graph, its maximal cliques can be enumerated
efficiently in linear time in terms of the number of nodes and edges. See, e.g., [7], [11], and [12] for
the details.

From now on, we consider graphs with the node setV ⊆ Nn . Given a graphG (V ,E), a symmetric
matrixQ with rows and columns indexed byV is said to have sparsity patternG ifQβγ = Qγ β = 0

whenever β � γ and {β,γ } � E. Let SG be the set of symmetric matrices with sparsity pattern G.

2A chord is an edge that joins two nonconsecutive nodes in a cycle.
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For a matrix in SG , its submatrices/blocks indexed by the maximal cliques of G play a crucial role,
especially in the case when G is a chordal graph (see Theorems 2.3 and 2.4). The maximal size of
blocks is the maximal size of maximal cliques of G, namely, the clique number of G.

Remark 2.2. For a graphG, among all chordal extensions ofG, there is a particular oneG ′ which
makes every connected component of G to be a complete subgraph. Accordingly, the matrix with
sparsity patternG ′ is block diagonal (after an appropriate permutation on rows and columns): each
block corresponds to a connected component of G. We call this chordal extension the maximal

chordal extension. In this article, we only consider chordal extensions that are subgraphs of the
maximal chordal extension.

Given a graph G (V ,E), the PSD matrices with sparsity pattern G form a convex cone

S
|V |
+ ∩ SG = {Q ∈ SG | Q 
 0}. (2.3)

Once the sparsity pattern graphG (V ,E) is a chordal graph, the cone S
|V |
+ ∩SG can be decomposed as

a sum of simple convex cones thanks to the following theorem and hence the related optimization
problem can be solved more efficiently.

Theorem 2.3 ([1], Theorem 2.3). Let G (V ,E) be a chordal graph and assume that C1, . . . ,Ct are

the list of maximal cliques of G (V ,E). Then a matrix Q ∈ S
|V |
+ ∩ SG if and only if Q can be written

as Q =
∑t

i=1 Qi , where Qi ∈ S
|V |
+ has nonzero entries only with row and column indices coming from

Ci for i = 1, . . . , t .

Given a graph G (V ,E), let ΠG be the projection from S |V | to the subspace SG , i.e., for Q ∈ S |V | ,

ΠG (Q )βγ =
⎧⎪⎨⎪⎩
Qβγ , if β = γ or {β,γ } ∈ E,
0, otherwise.

(2.4)

The set ΠG (S |V |+ ) denotes matrices that are projections of PSD matrices onto SG . More precisely,

ΠG (S |V |+ ) = {ΠG (Q ) | Q ∈ S
|V |
+ }. (2.5)

One can easily check that the cone ΠG (S |V |+ ) and the cone S
|V |
+ ∩ SG form a pair of dual cones in

SG (see [39, Chapter 10]). Moreover, for a chordal graph G, the decomposition result for matrices

in S
|V |
+ ∩ SG given in Theorem 2.3 leads to the following characterization of matrices in the cone

ΠG (S |V |+ ).

Theorem 2.4 ([14], Theorem 7). Let G (V ,E) be a chordal graph and assume that C1, . . . ,Ct are

the list of maximal cliques of G (V ,E). Then, a matrix Q ∈ ΠG (S |V |+ ) if and only if Q[Ci ] 
 0 for

i = 1, . . . , t , where Q[Ci ] denotes the principal submatrix of Q indexed by the clique Ci .

By Theorem 2.4, to check Q ∈ ΠG (S |V |+ ), it suffices to check the positive semidefiniteness of
certain blocks of Q . For more details on chordal graphs and sparse matrices, the reader may refer
to [39].

2.4 Correlative Sparsity

To exploit correlative sparsity in the moment-SOS hierarchy for POPs, one proceeds in two steps:
(1) decompose the set of variables into cliques according to the links between variables emerging
in the input polynomial system, and (2) construct a sparse moment-SOS hierarchy with respect to
the former decomposition of variables [40].

More concretely, we define the correlative sparsity pattern (csp) graph associated with POP (1.1)
to be the graph Gcsp with nodesV = [n] and edges E satisfying {i, j} ∈ E if one of following holds:

ACM Transactions on Mathematical Software, Vol. 48, No. 4, Article 42. Publication date: December 2022.
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(i) there exists α ∈ supp( f ) s.t. αi > 0,α j > 0;
(ii) there exists k ∈ [m] such that xi ,x j ∈ var(дk ), where var(дk ) is the set of variables involved

in дk .

Let (Gcsp)′ be a chordal extension of Gcsp and {Il }pl=1
be the list of maximal cliques of (Gcsp)′ with

nl := |Il |. Let R[x(Il )] denote the ring of polynomials in the nl variables x(Il ) = {xi | i ∈ Il }. We
then partition the constraint polynomials д1, . . . ,дm into groups {дj | j ∈ Jl }, l = 1, . . . ,p which
satisfy

(i) J1, . . . , Jp ⊆ [m] are pairwise disjoint and ∪p

l=1
Jl = [m];

(ii) for any j ∈ Jl , var(дj ) ⊆ Il , l = 1, . . . ,p.

Next, with l ∈ {1, . . . ,p} fixed, for d ∈ N and д ∈ R[x(Il )], let Md (y, Il ) (respectively, Md (дy, Il ))
be the moment (respectively, localizing) submatrix obtained from Md (y) (respectively, Md (дy)) by
retaining only those rows and columns indexed by β = (βi ) ∈ Nn

d
of Md (y) (respectively, Md (дy))

with supp(β ) ⊆ Il , where supp(β ) := {i | βi � 0}.
Then, with d ≥ dmin, the moment hierarchy based on correlative sparsity for POP (1.1) is defined

as

(Qcs
d ) :

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

inf Ly ( f )

s.t. Md (y, Il ) 
 0, l = 1, . . . ,p,

Md−dj
(дj y, Il ) 
 0, j ∈ Jl , l = 1 . . . ,p,

y0 = 1,

(2.6)

with optimal value denoted by ρd . In the following, we refer to (Qcs
d

) (2.6) as the CSSOS hierarchy
for POP (1.1).

Remark 2.5. As shown in [21] under some compactness assumption, the sequence (ρd )d ≥dmin

monotonically converges to the global optimum ρ∗ of POP (1.1).

2.5 Term Sparsity

In contrast to the correlative sparsity pattern which focuses on links between variables, the term
sparsity pattern focuses on links between monomials (or terms). To exploit term sparsity in the
moment-SOS hierarchy one also proceeds in two steps: (1) decompose each involved monomial
basis into blocks according to the links between monomials emerging in the input polynomial sys-
tem, and (2) construct a sparse moment-SOS hierarchy with respect to the former decomposition
of monomial bases [46, 47].

More concretely, let A = supp( f ) ∪⋃m
j=1 supp(дj ) and Nn

d−dj
be the standard monomial basis

for j = 0, . . . ,m (recall d0 = 0). Fixing a relaxation order d ≥ dmin, we define the term sparsity

pattern (tsp) graph associated with POP (1.1) or the support set A , to be the graph G
tsp

d
with node

set Vd,0 := Nn
d

and edge set

E (G
tsp

d
) := {{β,γ } | β � γ ∈ Vd,0, β +γ ∈ A ∪ (2N)n }, (2.7)

where (2N)n := {2α | α ∈ Nn }.
For a graph G (V ,E) with V ⊆ Nn , let supp(G ) := {β + γ | β = γ or {β,γ } ∈ E}. We define the

graphs G (0)
d,0

:= G
tsp

d
and, for j = 1, . . . ,m, G (0)

d, j
is the empty graph with node set Vd, j := Nn

d−dj
and

empty edge set. Note that supp(G (0)
d,0

) = A ∪ 2Nn
d

and supp(G (0)
d, j

) = ∅ for j ≥ 1. Now for each

j ∈ {0} ∪ [m], we iteratively define an ascending chain of graphs (G (k )
d, j

(Vd, j ,E
(k )
d, j

))k≥1. To this end,

we start with the initial graph G (0)
d, j

and each iteration consists of two successive operations:
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Fig. 2. The support extension of G.

(1) Support Extension. Define F (k )
d, j

to be the graph with nodes Vd, j and with (recall д0 = 1)

E
(
F (k )

d, j

)
=
{
{β,γ } | β � γ ∈ Vd, j , (2.8)

(β +γ + supp(дj )) ∩
(
∪m

i=0supp
(
G (k−1)

d,i

))
� ∅

}
, j ∈ {0} ∪ [m].

(2) Chordal Extension. Let

G (k )
d, j

:=
(
F (k )

d, j

) ′
, j ∈ {0} ∪ [m]. (2.9)

Note that F (1)
d,0

has edges {β,γ } with β +γ ∈ A ∪ (2N)n . To summarise, the iterative process

is

G (0)
d, j
→ · · · → G (k−1)

d, j

support extension
−−−−−−−−−−−−−→ F (k )

d, j

chordal extension−−−−−−−−−−−−−→ G (k )
d, j
→ · · · ,

for each j ∈ {0} ∪ [m].

Example 2.6 (Support Extension). Assume m = 0,d = 2, and consider the graph G with solid
edges shown in Figure 2. Then, by support extension, the two dashed edges are added to G for
x1x2x3 ∈ supp(G ).

Let r j := |Nn
d−dj
| =
(

n+d−dj

d−dj

)
, j = 0, . . . ,m. Then, with d ≥ dmin and k ≥ 1, the moment hierarchy

based on term sparsity for POP (1.1) is defined as

(Qts
d,k ) :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

inf Ly ( f )

s.t. B
G

(k )
d,0

◦Md (y) ∈ Π
G

(k )
d,0

(Sr0
+ ),

B
G

(k )
d, j

◦Md−dj
(дj y) ∈ Π

G
(k )
d, j

(S
r j

+ ), j = 1, . . . ,m,

y0 = 1.

(2.10)

The notation BG ◦A in (2.10) refers to a matrix whose (β ,γ )-entry isAβγ if β = γ or {β ,γ } ∈ E (G ),
and 0 otherwise. We call k the sparse order and, in the remainder of this article, the TSSOS hierarchy
for POP (1.1) refers to the hierarchy (Qts

d,k
).

Remark 2.7. In (Qts
d,k

), one has the freedom to choose a specific chordal extension for any in-

volved graph G (k )
d, j

. As shown in [47], if one chooses the maximal chordal extension then with d

fixed, the resulting sequence of optimal values of the TSSOS hierarchy (as k increases) monoton-
ically converges in finitely many steps to the optimal value of the corresponding dense moment
relaxation for POP (1.1).
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3 THE CS-TSSOS HIERARCHY

When applicable, one can significantly improve the scalability of the moment-SOS hierarchy by ex-
ploiting correlative sparsity or term sparsity. For large-scale POPs, it is then natural to ask whether
one can combine correlative sparsity and term sparsity to further reduce the size of SDPs involved
in the moment-SOS hierarchy and to improve its scalability even more. As we shall see in the
following sections, the answer is affirmative.

3.1 The CS-TSSOS Hierarchy for General POPs

Let us continue considering POP (1.1).3 The first natural idea to combine correlative sparsity and
term sparsity would be to apply the TSSOS hierarchy for each subsystem (involving one variable
clique) separately, once the cliques have been obtained from the csp graph of POP (1.1). However,
with this naive approach convergence may be lost and, in the following, we take extra care to avoid
this annoying consequence.

Let Gcsp be the csp graph associated with POP (1.1), (Gcsp)′ a chordal extension of Gcsp and

{Il }pl=1
be the list of maximal cliques of (Gcsp)′ with nl := |Il |. As in Section 2.4, the set of variables

x is decomposed into x(I1), x(I2), . . . , x(Ip ). Let J1, . . . , Jp be defined as in Section 2.4.
Now we apply the term sparsity pattern to each subsystem involving variables x(Il ), l = 1, . . . ,p

respectively as follows: Let

A := supp( f ) ∪
m⋃
j=1

supp(дj ) and Al := {α ∈ A | supp(α ) ⊆ Il } (3.1)

for l = 1, . . . ,p. As before, we set dmin := max{�deg( f )/2�,d1, . . . ,dm }, d0 := 0 and д0 := 1. Fix a
relaxation order d ≥ dmin and letN

nl

d−dj
be the standard monomial basis for j ∈ {0}∪ Jl , l = 1, . . . ,p.

LetG
tsp

d,l
be the tsp graph with nodes N

nl

d
associated with Al defined as in Section 2.5, i.e., its node

set is N
nl

d
and {β,γ } is an edge if β + γ ∈ Al ∪ (2N)nl . Note that we embed Nnl into Nn via the

map α = (αi ) ∈ Nnl �→ α ′ = (α ′i ) ∈ Nn which satisfies

α ′i =
⎧⎪⎨⎪⎩
αi , if i ∈ Il ,
0, otherwise.

Let us define G (0)
d,l,0

:= G
tsp

d,l
and G (0)

d,l, j
, j ∈ Jl , l = 1, . . . ,p are all empty graphs with nodes N

nl

d−dj
.

Next, for an integer k ≥ 1, for each j ∈ {0} ∪ Jl , l = 1, . . . ,p, we iteratively define an ascending

chain of graphs (G (k )
d,l, j

(Vd,l, j ,E
(k )
d,l, j

))k≥1 with Vd,l, j := N
nl

d−dj
via two successive operations:

(1) Support Extension. Define F (k )
d,l, j

to be the graph with nodes Vd,l, j and with

E
(
F (k )

d,l, j

)
= {{β,γ } | β � γ ∈ Vd,l, j , (β +γ + supp(дj )) ∩ C (k−1)

d
� ∅}, (3.2)

where

C (k−1)
d

:=

p⋃
l=1

(
∪j ∈{0}∪Jl

(
supp(дj ) + supp

(
G (k−1)

d,l, j

)))
. (3.3)

(2) Chordal Extension. Let

G (k )
d,l, j

:=
(
F (k )

d,l, j

)
′, j ∈ {0} ∪ Jl , l = 1, . . . ,p. (3.4)

3Though we only include inequality constraints in the definition of K (1.2) for the sake of simplicity, equality constraints

can be treated in a similar way.
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Fig. 3. The tsp graphs of Example 3.1. The dashed edge is added after the maximal chordal extension.

Example 3.1. Let f = 1 + x2
1 + x

2
2 + x

2
3 + x1x2 + x2x3 + x3 and consider the unconstrained POP:

min{ f (x) : x ∈ Rn }. We have n = 3,m = 0 and take the relaxation order d = dmin = 1. The
variables are decomposed into two cliques: {x1,x2} and {x2,x3}. The tsp graphs with respect to
these two cliques are illustrated in Figure 3. The left graph corresponds to the first clique: x1 and
x2 are connected because of the term x1x2. The right graph corresponds to the second clique: 1
and x3 are connected because of the term x3; x2 and x3 are connected because of the term x2x3. If
we apply the TSSOS hierarchy (using the maximal chordal extension in (3.4)) separately for each

clique, then the graph sequences (G (k )
1,l

)k≥1, l = 1, 2 (the subscript j is omitted here since there is no

constraint) stabilize at k = 1. However, the added (dashed) edge in the right graph corresponds to
the monomial x2, which only involves the variable x2 belonging to the first clique. Hence we need
to add the edge connecting 1 and x2 to the left graph in order to get the guarantee of convergence

as we shall see in Section 4.1. Consequently, the graph sequences (G (k )
1,l

)k≥1, l = 1, 2 stabilize at

k = 2.

Let rl, j := |Nnl

d−dj
| =
(
nl+d−dj

d−dj

)
for all l , j. Then, with k ≥ 1, the moment hierarchy based on

correlative-term sparsity for POP (1.1) is defined as:

(Qcs-ts
d,k ) :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

inf Ly ( f )

s.t. B
G

(k )
d,l,0

◦Md (y, Il ) ∈ Π
G

(k )
d,l,0

(S
rl,0

+ ), l = 1, . . . ,p,

B
G

(k )
d,l, j

◦Md−dj
(дj y, Il ) ∈ Π

G
(k )
d,l, j

(S
rl, j

+ ), j ∈ Jl , l = 1, . . . ,p,

y0 = 1,

(3.5)

with optimal value denoted by ρ (k )
d

. Recall that the optimal value of the CSSOS hierarchy (Qcs
d

)
(2.6) for POP (1.1) is denoted by ρd .

Proposition 3.2. Fixing a relaxation order d ≥ dmin, the sequence (ρ (k )
d

)k≥1 is monotonically

non-decreasing and ρ (k )
d
≤ ρd for all k .

Proof. By construction, we have G (k )
d,l, j

⊆ G (k+1)
d,l, j

for all d, l , j and all k . It follows that each

maximal clique of G (k )
d,l, j

is a subset of some maximal clique of G (k+1)
d,l, j

. Hence, by Theorem 2.4,

(Qcs-ts
d,k

) is a relaxation of (Qcs-ts
d,k+1

) and is clearly also a relaxation of (Qcs
d

). Therefore, (ρ (k )
d

)k≥1 is

monotonically non-decreasing and ρ (k )
d
≤ ρd for all k . �

Proposition 3.3. Fixing a sparse order k ≥ 1, the sequence (ρ (k )
d

)d ≥dmin
is monotonically non-

decreasing.

Proof. The conclusion follows if we can show that G (k )
d,l, j

⊆ G (k )
d+1,l, j

for all d, l , j,k since by

Theorem 2.4 this implies that (Qcs-ts
d,k

) is a relaxation of (Qcs-ts
d+1,k

). Let us prove G (k )
d,l, j
⊆ G (k )

d+1,l, j
by
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induction on k . For k = 1, from (2.7), we have G (0)
d,l,0
= G

tsp

d,l
⊆ G

tsp

d+1,l
= G (0)

d+1,l,0
, which together

with (3.2) and (3.3) implies that F (1)
d,l, j
⊆ F (1)

d+1,l, j
for j ∈ {0} ∪ Jl , l = 1, . . . ,p. It then follows that

G (1)
d,l, j

= (F (1)
d,l, j

)′ ⊆ (F (1)
d+1,l, j

)′ = G (1)
d+1,l, j

. Now assume that G (k )
d,l, j

⊆ G (k )
d+1,l, j

, j ∈ {0} ∪ Jl , l =

1, . . . ,p, holds for some k ≥ 1. Then, by (3.2) and (3.3) and by the induction hypothesis, we have

F (k+1)
d,l, j

⊆ F (k+1)
d+1,l, j

for j ∈ {0} ∪ Jl , l = 1, . . . ,p. Thus,G (k+1)
d,l, j

= (F (k+1)
d,l, j

)′ ⊆ (F (k+1)
d+1,l, j

)′ = G (k+1)
d+1,l, j

which

completes the induction. �

From Propositions 3.2 and 3.3, we deduce the following two-level hierarchy of lower bounds for
the optimum ρ∗ of (Q) (1.1):

ρ (1)
dmin

≤ ρ (2)
dmin

≤ · · · ≤ ρdmin

≥ ≥ ≥

ρ (1)
dmin+1

≤ ρ (2)
dmin+1

≤ · · · ≤ ρdmin+1

≥ ≥ ≥

...
...

...
...

≥ ≥ ≥

ρ (1)
d

≤ ρ (2)
d

≤ · · · ≤ ρd

≥ ≥ ≥
...

...
...

...

(3.6)

The array of lower bounds (3.6) (and its associated SDP relaxations (3.5)) is what we call the CS-

TSSOS hierarchy associated with (Q) (1.1).

Example 3.4. Let f = 1 +
∑6

i=1 x
4
i + x1x2x3 + x3x4x5 + x3x4x6 + x3x5x6 + x4x5x6, and consider

the unconstrained POP: min{ f (x) : x ∈ Rn }. We have n = 6,m = 0. Let us apply the CS-TSSOS
hierarchy (using the maximal chordal extension in (3.4)) to this problem by taking the relaxation
order d = dmin = 2 and the sparse order k = 1. First, according to the csp graph (see Figure 4), we
decompose the variables into two cliques: {x1,x2,x3} and {x3,x4,x5,x6}. Figures 5 and 6 illustrate
the tsp graphs for the first clique and the second clique, respectively. For the first clique, one obtains
four blocks of SDP matrices with respective sizes 4, 2, 2, 2. For the second clique, one obtains two
blocks of SDP matrices with respective sizes 5, 10. As a result, the original SDP matrix of size 28
has been reduced to six blocks of maximal size 10.

If one applies the TSSOS hierarchy (using the maximal chordal extension in (2.9)) directly to the
problem by taking d = dmin = 2,k = 1 (i.e., without decomposing variables), then the tsp graph
is illustrated in Figure 7. One obtains 11 SDP blocks with respective sizes 7, 2, 2, 2, 1, 1, 1, 1, 1, 1, 10.
Compared to the CS-TSSOS case, there are six additional blocks of size one and the two blocks
with respective sizes 4, 5 are replaced by a single block of size 7.

The CS-TSSOS hierarchy entails a tradeoff. Indeed, one has the freedom to choose a specific
chordal extension for any graph involved in (3.5). This choice affects the resulting size of blocks of
SDP matrices and the quality of optimal values of corresponding relaxations. Intuitively, chordal
extensions with small clique numbers lead to blocks of small size and optimal values of (possibly)
low quality while chordal extensions with large clique numbers lead to blocks of large size and
optimal values of (possibly) high quality.

For all l , j, write Md−dj
(дj y, Il ) =

∑
α Dl, j

α yα for appropriate symmetry matrices {Dl, j
α }. Then,

for each k ≥ 1, the dual of (Qcs-ts
d,k

) reads as:
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Fig. 4. The csp graph of Example 3.4.

Fig. 5. The tsp graph for the first clique of Example 3.4.

Fig. 6. The tsp graph for the second clique of Example 3.4.

Fig. 7. The tsp graph without decomposing variables of Example 3.4.
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(Qcs-ts
d,k )∗ :

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
sup ρ

s.t.
∑p

l=1

∑
j ∈{0}∪Jl

〈Ql, j ,D
l, j
α 〉 + ρδ0α = fα , ∀α ∈ C (k )

d
,

Ql, j ∈ S
rl, j

+ ∩ S
G

(k )
d,l, j

, j ∈ {0} ∪ Jl , l = 1, . . . ,p,

(3.7)

where C (k )
d

is defined in (3.3).

Proposition 3.5. Let f ∈ R[x] and K be as in (1.2). Assume that K has a nonempty interior. Then,

there is no duality gap between (Qcs-ts
d,k

) and (Qcs-ts
d,k

)∗ for any d ≥ dmin and k ≥ 1.

Proof. By the duality theory of convex programming, this easily follows from Theorem 3.6 of
[21] and Theorem 2.4. �

Note that the number of equality constraints in (3.7) is equal to the cardinality of C (k )
d

. We next

give a description of the elements in C (k )
d

in terms of sign symmetries.

3.2 Sign Symmetries

Definition 3.6. Given a finite set A ⊆ Nn , the sign symmetries of A are defined by all vectors
r ∈ Zn

2 := {0, 1}n such that rTα ≡ 0 (mod 2) for all α ∈ A .

For any α ∈ Nn , we define (α )2 := (α1 (mod 2), . . . ,αn (mod 2)) ∈ Zn
2 . We also use the same

notation for any subset A ⊆ Nn , i.e., (A )2 := {(α )2 | α ∈ A } ⊆ Zn
2 . For a subset S ⊆ Zn

2 , the

orthogonal complement space of S in Zn
2 , denoted by S⊥, is the set {α ∈ Zn

2 | αT s ≡ 0 (mod 2),
∀s ∈ S }.

Remark 3.7. By definition, the set of sign symmetries of A is exactly the orthogonal complement
space (A )⊥2 in Zn

2 , which therefore can be essentially represented by a basis of the subspace (A )⊥2
in Zn

2 .

For a subset S ⊆ Zn
2 , we say that S is closed under addition modulo 2 if s1, s2 ∈ S implies

(s1+s2)2 ∈ S . The minimal set containing S with elements which are closed under addition modulo
2 is denoted by 〈S〉Z2 . It is easy to prove 〈S〉Z2 = {(

∑
i si )2 | si ∈ S } which is the subspace spanned

by S in Zn
2 .

Lemma 3.8. Let S ⊆ Zn
2 . Then, (S⊥)⊥ = 〈S〉Z2 .

Proof. It is immediate from the definitions. �

Lemma 3.9. Suppose G is a graph with V (G ) ⊆ Nn . Then it holds (supp(G ′))2 ⊆ 〈(supp(G ))2〉Z2 .

Proof. By definition, we need to show (β+γ )2 ∈ 〈(supp(G ))2〉Z2 for any {β,γ } ∈ E (G ′). Since in
the process of chordal extensions, edges are added only if two nodes belong to the same connected
component, for any {β,γ } ∈ E (G ′) there is a path connecting β and γ inG: {β,υ1, . . . ,υr ,γ } with
{β,υ1}, {υr ,γ } ∈ E (G ) and {υi ,υi+1} ∈ E (G ), i = 1, . . . , r−1. From (β+υ1)2, (υ1+υ2)2 ∈ (supp(G ))2,
we deduce that (β+υ2)2 ∈ 〈(supp(G ))2〉Z2 because 〈(supp(G ))2〉Z2 is closed under addition modulo
2. Likewise, we can prove (β + υi )2 ∈ 〈(supp(G ))2〉Z2 for i = 3, . . . , r + 1 with υr+1 := γ . Hence,
(β +γ )2 ∈ 〈(supp(G ))2〉Z2 as desired. �

Proposition 3.10. Let A be defined as in (3.1), C (k )
d

be defined as in (3.3) and assume that the

sign symmetries of A are represented by the column vectors of a binary matrix, denoted by R. Then,

for any k ≥ 1 and any α ∈ C (k )
d

, it holds RTα ≡ 0 (mod 2) . In other words, (C (k )
d

)2 ⊆ R⊥, where we

regard R as a set of its column vectors.
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Proof. By Lemma 3.8, we only need to prove (C (k )
d

)2 ⊆ 〈(A )2〉Z2 . Let us do induction on k ≥ 0.

For k = 0, by (3.3), C (0)
d
=
⋃p

l=1
supp(G (0)

d,l,0
) =
⋃p

l=1
supp(G

tsp

d,l
) ⊆ ⋃p

l=1
(Al ∪ (2N)nl ) ⊆ A ∪ (2N)n .

Hence, (C (0)
d

)2 ⊆ 〈(A )2〉Z2 . Now assume that (C (k )
d

)2 ⊆ 〈(A )2〉Z2 holds for some k ≥ 0. By (3.2),

for any l , j and any {β,γ } ∈ E (F (k+1)
d,l, j

), we have (supp(дj ) + β + γ ) ∩ C (k )
d
� ∅, i.e., there exists

α ∈ supp(дj ) such that α + β + γ ∈ C (k )
d

, which implies (α + β + γ )2 ∈ (C (k )
d

)2. Hence, by the

induction hypothesis, (α + β + γ )2 ∈ 〈(A )2〉Z2 . Since 〈(A )2〉Z2 is closed under addition modulo

2 and (α )2 ∈ (A )2, we have (β + γ )2 ∈ 〈(A )2〉Z2 . It follows (supp(F (k+1)
d,l, j

))2 ⊆ 〈(A )2〉Z2 . Because

G (k+1)
d,l, j

= (F (k+1)
d,l, j

)′, by Lemma 3.9, we have (supp(G (k+1)
d,l, j

))2 ⊆ 〈(supp(F (k+1)
d,l, j

))2〉Z2 ⊆ 〈(A )2〉Z2 .

From this, (3.3) and the fact that 〈(A )2〉Z2 is closed under addition modulo 2, we then deduce the

inclusion (C (k+1)
d

)2 ⊆ 〈(A )2〉Z2 which completes the induction. �

Remark 3.11. Proposition 3.10 actually indicates that the block structure produced by the
CS-TSSOS hierarchy is consistent with the sign symmetries of the POP.

4 CONVERGENCE ANALYSIS

4.1 Global Convergence

We next prove that if for any graph involved in (3.5), the chordal extension is chosen to be maximal,

then for any relaxation order d ≥ dmin the sequence of optimal values (ρ (k )
d

)k≥1 of the CS-TSSOS
hierarchy converges to the optimal value ρd of the corresponding CSSOS hierarchy (2.6). In turn,
as the relaxation order d increases, the latter sequence converges to the global optimum ρ∗ of the
original POP (1.1) (after adding some redundant quadratic constraints) as shown in [21].

Obviously, the sequences of graphs (G (k )
d,l, j

(Vd,l, j ,E
(k )
d,l, j

))k≥1 stabilize for all j ∈ {0} ∪ Jl , l =

1, . . . ,p after finitely many steps. We denote the resulting stabilized graphs byG (∗)
d,l, j
, j ∈ {0}∪Jl , l =

1, . . . ,p and the corresponding SDP (3.5) by (Qcs-ts
d,∗ ).

Theorem 4.1. Assume that the chordal extension in (3.4) is the maximal chordal extension. Then

for any d ≥ dmin, the sequence (ρ (k )
d

)k≥1 converges to ρd in finitely many steps.

Proof. Let y = (yα ) be an arbitrary feasible solution of (Qcs-ts
d,∗ ) and ρ∗

d
be the optimal value

of (Qcs-ts
d,∗ ). Note that {yα | α ∈

⋃p

l=1
(∪j ∈{0}∪Jl

(supp(дj ) + supp(G (∗)
d,l, j

)))} is the set of decision

variables involved in (Qcs-ts
d,∗ ). Let R be the set of decision variables involved in (Qcs

d
) (2.6). We then

define a vector y = (yα )α ∈R as follows:

yα =
⎧⎪⎨⎪⎩
yα , if α ∈ ⋃p

l=1

(
∪j ∈{0}∪Jl

(
supp(дj ) + supp

(
G (∗)

d,l, j

)))
,

0, otherwise.

By construction and since G (∗)
d,l, j

stabilizes under support extension for all l , j, we have

Md−dj
(дj y, Il ) = B

G
(∗)
d,l, j

◦ Md−dj
(дj y, Il ). As we use the maximal chordal extension in (3.4), the

matrix B
G

(∗)
d,l, j

◦ Md−dj
(дj y, Il ) is block diagonal up to permutation (see Remark 2.2). So from

B
G

(∗)
d,l, j

◦ Md−dj
(дj y, Il ) ∈ Π

G
(∗)
d,l, j

(S
rl, j

+ ) it follows Md−dj
(дj y, Il ) 
 0 for j ∈ {0} ∪ Jl , l = 1, . . . ,p.

Therefore, y is a feasible solution of (Qcs
d

) and so Ly ( f ) = Ly ( f ) ≥ ρd . Hence, ρ∗
d
≥ ρd since y is

an arbitrary feasible solution of (Qcs-ts
d,∗ ). By Proposition 3.2, we already have ρ∗

d
≤ ρd . Therefore,

ρ∗
d
= ρd . �
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To guarantee the global optimality, we need the following compactness assumption on the fea-
sible set K.

Assumption 1. Let K be as in (1.2). There exists an M > 0 such that | |x| |∞ < M for all x ∈ K.

Because of Assumption 1, one has | |x(Il ) | |22 ≤ nlM
2, l = 1, . . . ,p. Therefore, we can add the p

redundant quadratic constraints

дm+l (x) := nlM
2 − ||x(Il ) | |22 ≥ 0, l = 1, . . . ,p (4.1)

in the definition (1.2) of K and setm′ =m + p, so that K is now defined by

K := {x ∈ Rn | дj (x) ≥ 0, j = 1, . . . ,m′}. (4.2)

Note that дm+l ∈ R[x(Il )] for l = 1, . . . ,p.
Then, by Theorem 3.6 in [21], the sequence (ρd )d ≥dmin

converges to the globally optimal value
ρ∗ of (Q) (1.1). So this together with Theorem 4.1 gives the global convergence of the CS-TSSOS
hierarchy.

4.2 A Sparse Representation Theorem

Proceeding along Theorem 4.1, we are able to provide a sparse representation theorem for a poly-
nomial positive on a compact basic semialgebraic set.

Theorem 4.2 (Sparse Representation). Let f ∈ R[x] and K be as in (4.2) with the additional

quadratic constraints (4.1). Let Il , Jl be defined as in Section 3.1 and A = supp( f ) ∪⋃m′
j=1 supp(дj ).

Assume that the sign symmetries of A are represented by the column vectors of the binary matrix R.

If f is positive on K, then

f =

p∑
l=1

�	

σl,0 +

∑
j ∈Jl

σl, jдj
��
 , (4.3)

for some polynomials σl, j ∈ Σ[x(Il )], j ∈ {0} ∪ Jl , l = 1, . . . ,p, satisfying RTα ≡ 0 (mod 2) for any

α ∈ supp(σl, j ), i.e., (supp(σl, j ))2 ⊆ R⊥, where we regard R as a set of its column vectors.

That is, (4.3) provides a certificate of positivity of f on K.

Proof. By Corollary 3.9 of [21] (or Theorem 5 of [13]), there exist polynomials σ ′
l, j
∈

Σ[x(Il )], j ∈ {0} ∪ Jl , l = 1, . . . ,p such that

f =

p∑
l=1

�	

σ
′
l,0 +

∑
j ∈Jl

σ ′l, jдj
��
 . (4.4)

Let d = max{�deg(σ ′
l, j
дj )/2� : j ∈ {0} ∪ Jl , l = 1, . . . ,p}. Let Q ′

l, j
be a PSD Gram matrix associated

with σ ′
l, j

and indexed by the monomial basis N
nl

d−dj
. Then, for all l , j, we define Ql, j ∈ Srl, j with

rl, j =
(
nl+d−dj

d−dj

)
(indexed by N

nl

d−dj
) by

[Ql, j ]βγ :=
⎧⎪⎨⎪⎩

[Q ′
l, j

]βγ , if RT (β +γ ) ≡ 0 (mod 2),

0, otherwise,

and let σl, j = (x
N

nl
d−dj )TQl, j x

N
nl
d−dj . One can easily verify that Ql, j is block diagonal up to permuta-

tion (see also [47]) and each block is a principal submatrix of Q ′
l, j

. Then, the positive semidefinite-

ness of Q ′
l, j

implies that Ql, j is also positive semidefinite. Thus, σl, j ∈ Σ[x(Il )].

By construction, substituting σ ′
l, j

with σl, j in (4.4) boils down to removing the terms with ex-

ponents α that do not satisfy RTα ≡ 0 (mod 2) from the right hand side of (4.4). Since any
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α ∈ supp( f ) satisfies RTα ≡ 0 (mod 2), this does not change the match of coefficients on both
sides of the equality. Thus, we obtain

f =

p∑
l=1

�	

σl,0 +

∑
j ∈Jl

σl, jдj
��


with the desired property. �

4.3 Extracting a Solution

In the case of dense moment-SOS relaxations, there is a standard procedure described in [15]
to extract globally optimal solutions when the so-called flatness condition for the moment ma-
trix is satisfied. This procedure was partially generalized to the correlative sparsity setting in [21,
section 3.3]. However, in the combined sparsity setting, the corresponding procedure cannot be
applied because we do not have complete information on the moment matrix associated with each
clique. In order to extract a solution in this case, we may add a dense moment matrix of order one
for each clique in (3.5):

(Qcs-ts
d,k )′ :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

inf Ly ( f )

s.t. B
G

(k )
d,l,0

◦Md (y, Il ) ∈ Π
G

(k )
d,l,0

(S
rl,0

+ ), l = 1, . . . ,p,

M1 (y, Il ) 
 0, l = 1, . . . ,p,

B
G

(k )
d,l, j

◦Md−dj
(дj y, Il ) ∈ Π

G
(k )
d,l, j

(S
rl, j

+ ), j ∈ Jl , l = 1, . . . ,p,

y0 = 1.

(4.5)

Let y∗ be an optimal solution of (Qcs-ts
d,k

)′. Typically,M1 (y∗, Il ) (after identifying sufficiently small

entries with zeros) is a block diagonal matrix (up to permutation). If, for all l , every block of
M1 (y∗, Il )) is of rank one, then a globally optimal solution x∗ to (Q) (1.1) which is unique up to
sign symmetries can be extracted, and the global optimality is certified (see [21, Theorem 3.2]).
Otherwise, the relaxation might be not exact or yield multiple global solutions.

Remark 4.3. Note that (Qcs-ts
d,k

)′ is a tighter relaxation of (Q) than (Qcs-ts
d,k

) and so might provide

a better lower bound for (Q).

5 APPLICATIONS AND NUMERICAL EXPERIMENTS

In this section, we conduct numerical experiments for the proposed CS-TSSOS hierarchy and ap-
ply it to two important classes of POPs: Max-Cut problems and AC optimal power flow (AC-

OPF) problems. Depending on specific problems, we consider two types of chordal extensions for
the term sparsity pattern: maximal chordal extensions and approximately smallest chordal exten-
sions.4 The tool TSSOS which executes the CS-TSSOS hierarchy (as well as the CSSOS hierarchy
and the TSSOS hierarchy) is implemented in Julia. For an introduction to TSSOS, one could refer
to [27]. TSSOS is available on the website:

https://github.com/wangjie212/TSSOS.

In the following subsections, we compare the performances of the CSSOS approach, the TSSOS
approach, the CS-TSSOS approach, and the SDSOS approach [2] (implemented in SPOT [29]). Mosek
[4] is used as an SDP (in the CSSOS, TSSOS, CS-TSSOS cases) or SOCP (in the SDSOS case) solver.

4A smallest chordal extension is a chordal extension with the smallest clique number. Computing a smallest chordal exten-

sion is generally NP-complete. So in practice we compute approximately smallest chordal extensions instead with efficient

heuristic algorithms.
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Table 1. Notation

var number of variables

cons number of constraints

mc maximal size of variable cliques

mb maximal size of SDP blocks

opt optimal value

time running time in seconds

gap optimality gap

CE type of chordal extensions used in (3.4)

min approximately smallest chordal extension

max maximal chordal extension

0 a number whose absolute value is less than 1e-5

- an out of memory error

All numerical examples were computed on an Intel Core i5-8265U@1.60 GHz CPU with 8 GB RAM
memory. The timing includes the time required to generate the SDP/SOCP and the time spent to
solve it. The notations used in this section are listed in Table 1.

5.1 Benchmarks for Unconstrained POPs

The Broyden banded function is defined as

fBb (x) =
n∑

i=1

(xi (2 + 5x2
i ) + 1 −

∑
j ∈Ji

(1 + x j )x j )
2,

where Ji = {j | j � i,max(1, i − 5) ≤ j ≤ min(n, i + 1)}.
The task is to minimize the Broyden banded function over Rn which is formulated as an un-

constrained POP. Using the relaxation order d = 3, we solve the CSSOS hierarchy (Qcs
d

) (2.6), the

TSSOS hierarchy (Qts
d,k

) (2.10) with k = 1 and the CS-TSSOS hierarchy (Qcs-ts
d,k

) (3.5) with k = 1. In

the latter two cases, approximately smallest chordal extensions are used. We also solve the POP
with the SDSOS approach. The results are displayed in Table 2.

It can be seen from the table that CS-TSSOS significantly reduces the maximal size of SDP blocks
and is the most efficient approach. CSSOS, TSSOS, and CS-TSSOS all give the exact minimum 0
while SDSOS only gives a very loose lower bound −13731 when n = 20. Due to the limitation of
memory, CSSOS scales up to 180 variables; TSSOS scales up to 40 variables; SDSOS scales up to
20 variables. On the other hand, CS-TSSOS can easily handle instances with up to 500 variables.

5.2 Benchmarks for Constrained POPs

• The generalized Rosenbrock function

fgR (x) = 1 +

n∑
i=2

(100(xi − x2
i−1)2 + (1 − xi )2).

• The Broyden tridiagonal function

fBt (x) = ((3 − 2x1)x1 − 2x2 + 1)2 +

n−1∑
i=2

((3 − 2xi )xi − xi−1 − 2xi+1 + 1)2

+ ((3 − 2xn )xn − xn−1 + 1)2.
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Table 2. The Result for Broyden Banded Functions (d = 3)

var
CSSOS TSSOS CS-TSSOS SDSOS

mb opt time mb opt time mb opt time opt time

20 120 0 21.7 33 0 4.39 19 0 2.24 −13731 374

40 120 0 44.6 52 0 231 19 0 6.95 - -

60 120 0 81.8 - - - 19 0 13.0 - -

80 120 0 116 - - - 19 0 19.6 - -

100 120 0 151 - - - 19 0 27.0 - -

120 120 0 195 - - - 19 0 34.4 - -

140 120 0 249 - - - 19 0 43.1 - -

160 120 0 298 - - - 19 0 50.2 - -

180 120 0 338 - - - 19 0 63.8 - -

200 120 - - - - - 19 0 72.9 - -

250 120 - - - - - 19 0 106 - -

300 120 - - - - - 19 0 132 - -

400 120 - - - - - 19 0 220 - -

500 120 - - - - - 19 0 313 - -

• The chained Wood function

fcW (x) = 1 +
∑
i ∈J

(100(xi+1 − x2
i )2 + (1 − xi )2 + 90(xi+3 − x2

i+2)2

+ (1 − xi+2)2 + 10(xi+1 + xi+3 − 2)2 + 0.1(xi+1 − xi+3)2),

where J = {1, 3, 5, . . . ,n − 3} and 4|n.
With the generalized Rosenbrock (respectively, Broyden tridiagonal or chained Wood) function

as the objective function, we consider the following constrained POP:

⎧⎪⎨⎪⎩
inf fgR (resp. fBt or fcW)

s.t. 1 − (
∑20j

i=20j−19 x
2
i ) ≥ 0, j = 1, 2, . . . ,n/20,

(5.1)

where 20|n. The generalized Rosenbrock function, the Broyden tridiagonal function and the
chained Wood function involve cliques with 2 or 3 variables, which can be efficiently handled
by the CSSOS hierarchy; see [40]. For them, the CS-TSSOS hierarchy gives almost the same results
with the CSSOS hierarchy. Hence, we add the sphere constraints in (5.1) to increase the clique size
and to show the difference.

For these problems, the minimum relaxation order d = 2 is used. As in the unconstrained case,
we solve the CSSOS hierarchy (Qcs

d
) (2.6), the TSSOS hierarchy (Qts

d,k
) (2.10) with k = 1 and the

CS-TSSOS hierarchy (Qcs-ts
d,k

) (3.5) with k = 1, and use approximately smallest chordal extensions.

We also solve these POPs with the SDSOS approach. The results are displayed in Tables 3–5.
From these tables, one can see that CS-TSSOS significantly reduces the maximal size of SDP

blocks and is again the most efficient approach. For the generalized Rosenbrock function, CSSOS,
TSSOS, and CS-TSSOS give almost the same optimum while SDSOS gives a slightly loose lower
bound (only for n = 40); for the Broyden tridiagonal function, CSSOS, TSSOS, and CS-TSSOS all
give the same optimum while SDSOS gives a very loose lower bound (only for n = 40); for the
chained Wood function, CSSOS, TSSOS, and CS-TSSOS all give the same optimum while SDSOS
gives a slightly loose lower bound (only for n = 40). Due to the limitation of memory, CSSOS scales
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Table 3. The Result for the Generalized Rosenbrock Function (d = 2)

var
CSSOS TSSOS CS-TSSOS SDSOS

mb opt time mb opt time mb opt time opt time

40 231 38.051 126 41 38.049 0.61 21 38.049 0.23 37.625 115

60 231 57.849 232 61 57.845 3.31 21 57.845 0.32 - -

80 231 77.647 306 81 77.641 11.7 21 77.641 0.41 - -

100 231 97.445 377 101 97.436 31.3 21 97.436 0.54 - -

120 231 117.24 408 121 117.23 75.4 21 117.23 0.60 - -

140 231 137.04 495 141 137.03 190 21 137.03 0.75 - -

160 231 156.84 570 161 156.82 367 21 156.82 0.90 - -

180 231 176.64 730 181 176.62 628 21 176.62 1.09 - -

200 231 - - 201 196.41 1327 21 196.41 1.27 - -

300 231 - - - - - 21 295.39 2.26 - -

400 231 - - - - - 21 394.37 3.36 - -

500 231 - - - - - 21 493.35 4.65 - -

1000 231 - - - - - 21 988.24 15.8 - -

Table 4. The Result for the Broyden Tridiagonal Function (d = 2)

var
CSSOS TSSOS CS-TSSOS SDSOS

mb opt time mb opt time mb opt time opt time

40 231 31.234 168 43 31.234 1.95 23 31.234 0.64 −5.8110 138

60 231 47.434 273 63 47.434 8.33 23 47.434 1.14 - -

80 231 63.634 413 83 63.634 33.9 23 63.634 1.50 - -

100 231 79.834 519 103 79.834 104 23 79.834 1.96 - -

120 231 96.034 671 123 96.034 199 23 96.034 2.30 - -

140 231 112.23 872 143 112.23 490 23 112.23 2.94 - -

160 231 128.43 1002 163 128.43 783 23 128.43 3.67 - -

180 231 144.63 1066 183 144.63 1329 23 144.63 4.46 - -

200 231 - - - - - 23 160.83 4.88 - -

300 231 - - - - - 23 241.83 8.67 - -

400 231 - - - - - 23 322.83 13.3 - -

500 231 - - - - - 23 403.83 19.9 - -

1000 231 - - - - - 23 808.83 57.5 - -

up to 180 variables; TSSOS scales up to 180 or 200 variables; SDSOS scales up to 40 variables. On
the other hand, CS-TSSOS can easily handle these instances with up to 1000 variables.

5.3 The Max-Cut Problem

The Max-Cut problem is one of the basic combinatorial optimization problems, which is known
to be NP-hard. Let G (V ,E) be an undirected graph withV = {1, . . . ,n} and with edge weights wi j

for {i, j} ∈ E. Then, the Max-Cut problem for G can be formulated as a QCQP in binary variables:

⎧⎪⎨⎪⎩
max 1

2

∑
{i, j }∈E wi j (1 − xix j )

s.t. 1 − x2
i = 0, i = 1, . . . ,n.

(5.2)

The property of binary variables in (5.2) can be also exploited to reduce the size of SDPs arising
from the moment-SOS hierarchy, which has been implemented in TSSOS.

For the numerical experiments, we construct random instances of Max-Cut problems with a
block-band sparsity pattern (illustrated in Figure 8) which consists of l blocks of size b and two
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Table 5. The Result for the Chained Wood Function (d = 2)

var
CSSOS TSSOS CS-TSSOS SDSOS

mb opt time mb opt time mb opt time opt time

40 231 574.51 164 41 574.51 0.81 21 574.51 0.26 518.11 110

60 231 878.26 254 61 878.26 3.61 21 878.26 0.40 - -

80 231 1182.0 393 81 1182.0 15.3 21 1182.0 0.57 - -

100 231 1485.8 505 101 1485.8 43.2 21 1485.8 0.73 - -

120 231 1789.5 516 121 1789.5 88.4 21 1789.5 0.93 - -

140 231 2093.3 606 141 2093.3 195 21 2093.3 1.16 - -

160 231 2397.0 700 161 2397.0 403 21 2397.0 1.39 - -

180 231 2700.8 797 181 2700.8 867 21 2700.8 1.54 - -

200 231 - - 201 3004.5 1238 21 3004.5 1.91 - -

300 231 - - - - - 21 4523.6 3.39 - -

400 231 - - - - - 21 6042.0 5.72 - -

500 231 - - - - - 21 7560.7 7.88 - -

1000 231 - - - - - 21 15155 23.0 - -

Fig. 8. The block-band sparsity pattern.

bands of width h. Here, we select b = 25 and h = 5. For a given l , we generate a random sparse
binary matrix A ∈ Slb+h according to the block-arrow sparsity pattern: the entries out of the blue
area take zero; the entries in the block area take one with probability 0.16; the entries in the band

area take one with probability 2/
√
l . Then we construct the graphG withA as its adjacency matrix.

For each edge {i, j} ∈ E (G ), the weight wi j randomly takes values 1 or −1 with equal probability.
Doing so, we build 10 Max-Cut instances with l = 20, 40, 60, 80, 100, 120, 140, 160, 180, 200, respec-
tively.5 The largest number of nodes is 5005.

For each instance, we solve the first-order moment-SOS relaxation (Shor’s relaxation), the
CSSOS hierarchy with d = 2, and the CS-TSSOS hierarchy with d = 2,k = 1 for which the
maximal chordal extension is used. The results are displayed in Table 6. From the table, we can
see that for each instance, both CSSOS and CS-TSSOS significantly improve the bound obtained
by Shor’s relaxation. Meanwhile, CS-TSSOS is several times faster than CSSOS at the cost of pos-
sibly providing a sightly weaker bound. In addition, CS-TSSOS yields smaller block sizes than
CSSOS.

5The instances are available at https://wangjie212.github.io/jiewang/code.html.
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Table 6. The Result for Max-Cut Instances

instance nodes edges mc
Shor CSSOS CS-TSSOS
opt mb opt time mb opt time

g20 505 2045 14 570 120 488 51.2 92 488 19.6

g40 1005 3441 14 1032 120 885 134 92 893 41.1

g60 1505 4874 14 1439 120 1227 183 92 1247 71.3

g80 2005 6035 15 1899 136 1638 167 106 1669 84.8

g100 2505 7320 14 2398 120 2073 262 92 2128 112

g120 3005 8431 14 2731 120 2358 221 79 2443 127

g140 3505 9658 13 3115 105 2701 250 79 2812 153

g160 4005 10677 14 3670 120 3202 294 79 3404 166

g180 4505 12081 13 4054 105 3525 354 79 3666 246

g200 5005 13240 13 4584 105 4003 374 79 4218 262

In this table, only the integer part of optimal values is preserved.

5.4 The AC-OPF Problem

The AC optimal power flow (AC-OPF) is a central problem in power systems. It can be formulated
as the following POP in complex variables Vi , S

д
q , Si j :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

inf
Vi ,S

д
q ,Si j

∑
q∈G (c2q (�(S

д
q ))2 + c1q�(S

д
q ) + c0q )

s.t. ∠Vr = 0,

S
дl
q ≤ S

д
q ≤ S

дu
q , ∀q ∈ G,

υl
i ≤ |Vi | ≤ υu

i , ∀i ∈ N ,∑
q∈Gi

S
д
q − Sd

i − Ys
i |Vi |2 =

∑
(i, j )∈Ei∪ER

i
Si j , ∀i ∈ N ,

Si j = (Y∗i j − i
bc

i j

2 ) |Vi |2
|Ti j |2 − Y∗i j

ViV ∗j
Ti j
, ∀(i, j ) ∈ E,

S ji = (Y∗i j − i
bc

i j

2 ) |Vj |2 − Y∗i j

V ∗i Vj

T∗i j
, ∀(i, j ) ∈ E,

|Si j | ≤ su
i j , ∀(i, j ) ∈ E ∪ ER ,

θΔl
i j ≤ ∠(ViV

∗
j ) ≤ θΔu

i j , ∀(i, j ) ∈ E.

(5.3)

The meaning of the symbols in (5.3) is as follows: N - the set of buses, G - the set of generators,
Gi - the set of generators connected to bus i , E - the set of from branches, ER - the set of to branches,
Ei and ER

i - the subsets of branches that are incident to bus i , i - imaginary unit, Vi - the volt-

age at bus i , S
д
q - the power generation at generator q, Si j - the power flow from bus i to bus j,

�(·) - real part of a complex number, ∠(·) - angle of a complex number, | · | - magnitude of a com-
plex number, (·)∗ - conjugate of a complex number, r - the voltage angle reference bus. All symbols

in boldface are constants (c0q , c1q , c2q ,υl
i ,υ

u
i , s

u
i j ,θ

Δl
i j ,θ

Δu
i j ∈ R,S

дl
q , S

дu
q , S

d
i ,Y

s
i ,Yi j , b

c
i j ,Ti j ∈ C). For

a full description on the AC-OPF problem, the reader may refer to [6]. By introducing real variables
for both real and imaginary parts of each complex variable, we can convert the AC-OPF problem
to a POP involving only real variables.6

To tackle an AC-OPF instance, we first compute a locally optimal solution with a local solver
and then rely on an SDP relaxation to certify the global optimality. Suppose that the optimal value

6The expressions involving angles of complex variables can be converted to polynomials by using tan(∠z ) = y/x for

z = x + iy ∈ C.
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Table 7. The Data for AC-OPF Instances

case name var cons mc AC
Shor

opt gap

3_lmbd_api 12 28 6 1.1242e4 1.0417e4 7.34%

5_pjm 20 55 6 1.7552e4 1.6634e4 5.22%

24_ieee_rts_api 114 315 10 1.3495e5 1.3216e5 2.06%

24_ieee_rts_sad 114 315 14 7.6943e4 7.3592e4 4.36%

30_as_api 72 297 8 4.9962e3 4.9256e3 1.41%

73_ieee_rts_api 344 971 16 4.2263e5 4.1041e5 2.89%

73_ieee_rts_sad 344 971 16 2.2775e5 2.2148e5 2.75%

162_ieee_dtc 348 1809 21 1.0808e5 1.0616e5 1.78%

162_ieee_dtc_api 348 1809 21 1.2100e5 1.1928e5 1.42%

240_pserc 766 3322 16 3.3297e6 3.2818e6 1.44%

500_tamu_api 1112 4613 20 4.2776e4 4.2286e4 1.14%

500_tamu 1112 4613 30 7.2578e4 7.1034e4 2.12%

793_goc 1780 7019 18 2.6020e5 2.5636e5 1.47%

1888_rte 4356 18257 26 1.4025e6 1.3748e6 1.97%

3022_goc 6698 29283 50 6.0143e5 5.9278e5 1.44%

reported by the local solver is AC and the optimal value of the SDP relaxation is opt. The optimality

gap between the locally optimal solution and the SDP relaxation is defined by

gap :=
AC − opt

AC
× 100%.

If the optimality gap is less than 1.00%, then we accept the locally optimal solution as globally
optimal. For many AC-OPF instances, the first-order moment-SOS relaxation (Shor’s relaxation)
is already able to certify the global optimality (with an optimality gap less than 1.00%). Therefore,
we focus on the more challenging AC-OPF instances for which the optimality gap given by Shor’s
relaxation is greater than 1.00%. We select such instances from the AC-OPF library PGLiB [6]. Since
we shall go to the second-order moment-SOS relaxation, we can replace the variables Si j and S ji by
their right-hand side expressions in (5.3) and then convert the resulting problem to a POP involving
real variables. The data for these selected AC-OPF instances are displayed in Table 7, where the
AC values are taken from PGLiB.

We solve Shor’s relaxation, the CSSOS hierarchy with d = 2 and the CS-TSSOS hierarchy with
d = 2,k = 1 for these AC-OPF instances and the results are displayed in Tables 7 and 8. For
instances 162_ieee_dtc, 162_ieee_dtc_api, 500_tamu, 1888_rte, with maximal chordal extensions
Mosek ran out of memory and so we use approximately smallest chordal extensions. As the tables
show, CS-TSSOS is more efficient and scales much better with the problem size than CSSOS. In
particular, CS-TSSOS succeeds in reducing the optimality gap to less than 1.00% for all instances.

6 DISCUSSION AND CONCLUSIONS

This article introduces the CS-TSSOS hierarchy, a sparse variant of the moment-SOS hierarchy,
which can be used to solve large-scale real-world nonlinear optimization problems, assuming
that the input data are sparse polynomials. In addition to its theoretical convergence guarantees,
CS-TSSOS allows one to make a trade-off between the quality of optimal values and the computa-
tional efficiency by controlling the types of chordal extensions and the sparse order k .
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Table 8. The Result for AC-OPF Instances

case name
CSSOS CS-TSSOS

mb opt time gap mb opt time gap CE

3_lmbd_api 28 1.1242e4 0.21 0.00% 22 1.1242e4 0.09 0.00% max

5_pjm 28 1.7543e4 0.56 0.05% 22 1.7543e4 0.30 0.05% max

24_ieee_rts_api 66 1.3442e5 5.59 0.39% 31 1.3396e5 2.01 0.73% max

24_ieee_rts_sad 120 7.6943e4 94.9 0.00% 39 7.6942e4 14.8 0.00% max

30_as_api 45 4.9927e3 4.43 0.07% 22 4.9920e3 2.69 0.08% max

73_ieee_rts_api 153 4.2246e5 758 0.04% 44 4.2072e5 96.0 0.45% max

73_ieee_rts_sad 153 2.2775e5 504 0.00% 44 2.2766e5 71.5 0.04% max

162_ieee_dtc 253 − − − 34 1.0802e5 278 0.05% min

162_ieee_dtc_api 253 − − − 34 1.2096e5 201 0.03% min

240_pserc 153 3.3072e6 585 0.68% 44 3.3042e6 33.9 0.77% max

500_tamu_api 231 4.2413e4 3114 0.85% 39 4.2408e4 46.6 0.86% max

500_tamu 496 − − − 31 7.2396e4 410 0.25% min

793_goc 190 2.5938e5 563 0.31% 33 2.5932e5 66.1 0.34% max

1888_rte 378 − − − 27 1.3953e6 934 0.51% min

3022_goc 1326 − − − 76 5.9858e5 1886 0.47% max

By fully exploiting sparsity, CS-TSSOS allows one to go beyond Shor’s relaxation and solve the
second-order moment-SOS relaxation associated with large-scale POPs to obtain more accurate
bounds. Indeed CS-TSSOS can handle second-order relaxations of POP instances with thousands
of variables and constraints on a standard laptop in tens of minutes. Such instances include the
optimal power flow (OPF) problem, an important challenge in the management of electricity net-
works. In particular, our plan is to perform advanced numerical experiments on HPC cluster, for
OPF instances with larger numbers of buses [10].

This work suggests additional investigation tracks for further research:

(1) The standard procedure of extracting optimal solutions for the dense moment-SOS hierarchy
does not apply to the CS-TSSOS hierarchy. It would be interesting to develop a procedure
for extracting (approximate) solutions from partial information of moment matrices.

(2) Recall that chordal extension plays an important role for both correlative and term sparsity
patterns. It turns out that the size of the resulting maximal cliques is crucial for the overall
computational efficiency of the CS-TSSOS hierarchy. So far, we have only considered max-

imal chordal extensions (for convergence guarantee) and approximately smallest chordal
extensions. It would be worth investigating more general choices of chordal extensions.

(3) The CS-TSSOS strategy could be adapted to other applications involving sparse polynomial
problems, including deep learning [9] or noncommutative optimization problems [18] aris-
ing in quantum information.

(4) Last but not least, a challenging research issue is to establish serious computationally
cheaper alternatives to interior-point methods for solving SDP relaxations of POPs. The re-
cent work [49] which reports spectacular results for standard SDPs (and Max-Cut problems
in particular) is a positive sign in this direction.
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