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Abstract
We provide a new hierarchy of semidefinite programming relaxations, called 
NCTSSOS, to solve large-scale sparse noncommutative polynomial optimization 
problems. This hierarchy features the exploitation of term sparsity hidden in the 
input data for eigenvalue and trace optimization problems. NCTSSOS complements 
the recent work that exploits correlative sparsity for noncommutative optimiza-
tion problems by Klep et  al. (MP, 2021), and is the noncommutative analogue of 
the TSSOS framework by Wang et al. (SIAMJO 31: 114–141, 2021, SIAMJO 31: 
30–58, 2021). We also propose an extension exploiting simultaneously correlative 
and term sparsity, as done previously in the commutative case (Wang in CS-TSSOS: 
Correlative and term sparsity for large-scale polynomial optimization, 2020). Under 
certain conditions, we prove that the optima of the NCTSSOS hierarchy converge 
to the optimum of the corresponding dense semidefinite programming relaxation. 
We illustrate the efficiency and scalability of NCTSSOS by solving eigenvalue/trace 
optimization problems from the literature as well as randomly generated examples 
involving up to several thousand variables.
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1  Introduction

A polynomial optimization problem (POP) consists of minimizing a polynomial over 
a basic closed semialgebraic set, namely an intersection of finitely many polynomial 
superlevel sets. Even if solving a POP is NP-hard in general [25], one can rely on the 
so-called “moment-sums of squares (SOS) hierarchy”, also referred to as “Lasserre’s 
hierarchy” [23] to compute a sequence of lower bounds for the POP. Each lower 
bound in the sequence is obtained by solving a semidefinite program (SDP) [2]. 
Thanks to Putinar’s Positivstellensatz [35], if the quadratic module generated by the 
polynomials describing the semialgebraic set is Archimedean, the sequence of these 
SDP lower bounds converges from below to the global optimum of the POP.

Although most POPs involve commuting variables, we are also interested in non-
commutative POPs (NCPOP), i.e., POPs involving noncommuting variables (e.g. 
matrices, operators on a Hilbert space). The applications of NCPOPs include control 
theory and linear systems in engineering [37], quantum theory and quantum infor-
mation science [16, 30, 32], matrix factorization ranks [15], machine learning [50, 
51] and so on, and new applications are emerging.

The noncommutative (nc) analogue of Lasserre’s hierarchy [12, 31, 33], often 
called the “Navascués-Pironio-Acín (NPA) hierarchy”, or “moment-sums of her-
mitian squares (SOHS) hierarchy”, allows one to compute arbitrarily close lower 
bounds of the minimal eigenvalue of an nc polynomial over an nc semialgebraic set. 
In the same spirit, one can also obtain a hierarchy of SDP relaxations to approximate 
as closely as desired the minimal trace of an nc polynomial over an nc semialge-
braic set [9]. We also refer the interested reader to [22] for the case of more general 
trace polynomials, i.e., polynomials in noncommuting variables and traces of their 
products.

From the view of applications, the common bottleneck of the Lasserre/NPA hier-
archy is that the involved sequence of SDP relaxations becomes intractable very 
quickly as the number of variables n or the relaxation order d increases. In the com-

mutative setting, the matrices involved at relaxation order d is of size 
(
n + d

d

)
 ; in 

the nc setting, the size of matrices involved at relaxation order d is even larger. It is 
already hard to solve such an SDP for n ≃ 30 ( n ≃ 20 in the nc setting) and d = 2 on 
a modern standard laptop (at least when one relies on interior-point solvers).

1.1 � Remedies by exploiting sparsity for (NC)POP

In certain situations, the SDP relaxations arising from POPs can be solved with ade-
quate first-order methods rather than with costly interior-point algorithms; see e.g., 
[28, 49], where the authors exploit the constant trace property of the matrices in 
SDP relaxations of quadratically constrained quadratic programs or combinatorial 
optimization problems. In any case, it is worth finding remedies in view of the spar-
sity of (NC)POPs to prevent from the computational blow-up of the Lasserre/NPA 
hierarchy, by decreasing the sizes of the matrices involved in the SDP relaxations.
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The first remedy is to partition the input variables into cliques when the polyno-
mials involved in the objective function and the constraints fulfill a so-called correl-
ative sparsity pattern. The resulting moment-SOS hierarchy is obtained by assem-
bling sparse SDP matrices in terms of these cliques of variables [41, 42]. Under 
certain conditions, the lower bounds given by this hierarchy still converge to the 
global optimum of the original problem [24]. When the sizes of these cliques of 
variables are small enough (e.g., less than 10 in [41] or less than 20 in [20]), one can 
significantly improve the scalability of Lasserre’s hierarchy to handle problems with 
a large number of variables. For instance, by exploiting correlative sparsity, one can 
compute roundoff error bounds [26, 27] with up to several hundred variables, and 
solve optimal power flow problems [20] or deep learning problems [13] with up to 
thousands of variables. Several extensions have been investigated, including volume 
computation of sparse semialgebraic sets [38], or minimization of rational func-
tions [8, 29]. Recently, Klep, the second author and Povh designed an nc analogue 
of this sparsity adapted hierarchy for both eigenvalue and trace minimization prob-
lems [21]. Nevertheless, when the sizes of variable cliques provided by correlative 
sparsity are relatively big (say ≥ 20 in the commutative setting and ≥ 10 in the nc 
setting), or when the correlative sparsity pattern is even fully dense, one might face 
again the same issue of untractable SDPs.

Another complementary remedy consists of exploiting term sparsity. For uncon-
strained problems, it means that the objective function involves few terms (mono-
mials or words). One can then reduce the size of the associated SDP matrix by 
computing a smaller monomial basis via the Newton polytope method [36]. The nc 
analogue for this method is the Newton chip method [11, §2.3] in the context of 
eigenvalue optimization and the tracial Newton polytope [11, §3.3] in the context of 
trace optimization.

Besides obtaining a smaller monomial basis, in both unconstrained and con-
strained cases, one can rely on a term-sparsity adapted moment-SOS hierarchy 
(called TSSOS), following the line of research recently pursued by the two authors, 
Lasserre and Mai in [44, 46, 47]. The core idea of TSSOS is partitioning the mono-
mial bases used to construct SDP relaxations into blocks in view of the correlations 
between monomials and then building SDP matrices to comply with this block 
structure. More precisely, one first define the term sparsity pattern (tsp) graph asso-
ciated with a POP whose nodes are monomials from the monomial basis. Two nodes 
of the tsp graph are connected via an edge if and only if the product of the cor-
responding monomials belongs to the supports of the polynomials involved in the 
POP or is a monomial square. TSSOS is based on an iterative procedure, whose 
input is the tsp graph of the POP. Each iteration consists of two steps: first one per-
forms a support extension operation on the graph and successively one performs a 
chordal extension operation on the graph (“maximal” chordal extensions are used 
in [47] while approximately minimum chordal extensions are used in [46]). At each 
iteration, one can construct an SDP relaxation with matrices of sparsity pattern rep-
resented by the corresponding graph. In doing so, TSSOS provides us with a two-
level moment-SOS hierarchy involving sparse SDP matrices. TSSOS can be further 
combined with correlative sparsity, which allows one to solve large-scale POPs with 
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several thousand variables and constraints [48]. Apart from (commutative) POPs, 
the idea of TSSOS can be also used to develop more efficient SOS-based algorithms 
for other problems, e.g. the approximation of joint spectral radius [45].

Contributions Motivated by the performance of TSSOS for commutative POPs, 
we develop an nc analogue of the TSSOS framework (called NCTSSOS) in this 
paper, in order to handle large-scale eigenvalue/trace optimization problems with 
sparse input data.

First, we extend in Sect. 3 the notion of term sparsity patterns to unconstrained 
eigenvalue optimization problems. We show how to build the tsp graph and derive 
a two-step iterative procedure to enlarge the graph via the support extension opera-
tion and the chordal extension operation. Based on this, we then give the NCTSSOS 
hierarchy. The generalization to constrained eigenvalue optimization problems 
is provided in Sect. 3.2. Under certain conditions, we prove that the optima of the 
NCTSSOS hierarchy converge to the optimum of the corresponding dense relaxa-
tion. In Sect. 4, we show how to benefit simultaneously from both correlative and 
term sparsity, to obtain an nc variant of the so-called “CS-TSSOS” hierarchy [48]. 
Section 5 is dedicated to trace optimization. For both unconstrained and constrained 
trace optimization problems, we provide a term sparsity (and combined with cor-
relative sparsity) adapted hierarchy of SDP relaxations. In Sect. 6, we demonstrate 
the computational efficiency, scalability and accuracy of the NCTSSOS hierarchy by 
various numerical examples involving up to several thousand variables.

The algorithmic framework of the NCTSSOS hierarchy has been released as an 
open-source Julia [4] package, also called NCTSSOS, which is available online and 
comes together with a documentation.1

Our term sparsity (and combined with correlative sparsity) adapted moment-
SOHS hierarchies appear in a similar manner as the ones obtained for the com-
mutative case [46–48]. We believe that it is of interest for researchers using non-
commutative optimization tools to have a self-contained paper stating explicitly the 
construction of tsp graphs, support/chordal extension operations, as well as the dif-
ferent term sparsity (and combined with correlative sparsity) adapted SDP formula-
tions, either for eigenvalue or trace optimization. While the overall strategy to obtain 
tsp graphs for eigenvalue optimization is very similar to the commutative case, it is 
less straightforward for trace optimization, where it is mandatory to introduce the 
cyclic analog of the tsp graph and the support extension operation. Furthermore, 
we would like to emphasize that the main contribution of this paper is to show a 
significant quantitative improvement with respect to the previous results obtained 
for various nc eigenvalue/trace optimization problems. We hope that these results 
will convince researchers in related fields, including quantum information physicists 
relying on the NPA hierarchy, about the potential impact that NCTSSOS could have 
on solving their problems more efficiently.

1  https://​github.​com/​wangj​ie212/​NCTSS​OS.

https://github.com/wangjie212/NCTSSOS
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2 � Notation and preliminaries

In this section, we recall some notations, definitions and basic results that will be 
used in the rest of this paper.

2.1 � Noncommutative polynomials

For a positive integer r, let us denote by �r (resp. �+
r
 ) the space of all symmetric 

(resp. positive semidefinite (PSD)) matrices of size r, and by �n
r
 the set of n-tuples 

A = (A1,… ,An) of symmetric matrices Ai of size r. For matrices A,B ∈ �r (resp. 
vectors �, v ∈ ℝ

r ), let ⟨A,B⟩ ∈ ℝ (resp. ⟨�, v⟩ ∈ ℝ ) be the trace inner-product, 
defined by ⟨A,B⟩ = Tr(ATB) (resp. ⟨�, v⟩ = �Tv ) and let A◦B ∈ �r denote the Had-
amard, or entrywise, product of A and B, defined by [A◦B]ij = AijBij . For a fixed 
n ∈ ℕ�{0} , let X = (X1,… ,Xn) be a tuple of letters and consider the set of all pos-
sible words of finite length in X which is denoted by ⟨X⟩ . The empty word is denoted 
by 1. We denote by ℝ⟨X⟩ the ring of real polynomials in the noncommutating vari-
ables X . An element f in ℝ⟨X⟩ can be written as f =

∑
w∈⟨X⟩ aww , aw ∈ ℝ , which is 

called a noncommutative polynomial (nc polynomial for short). The support of f is 
defined by supp(f ) ∶= {w ∈ ⟨X⟩ ∣ aw ≠ 0} and the degree of f, denoted by deg(f ) , 
is the length of the longest word in supp(f ) . For a given d ∈ ℕ , let us denote by 
�d the column vector of all words of degree at most d arranged with respect to. 
the lexicographic order. The ring ℝ⟨X⟩ is equipped with the involution ⋆ that fixes 
ℝ ∪ {X1,… ,Xn} point-wise and reverses words, so that ℝ⟨X⟩ is the ⋆-algebra freely 
generated by n symmetric letters X1,… ,Xn . The set of symmetric elements in ℝ⟨X⟩ 
is defined as Symℝ⟨X⟩ ∶= {f ∈ ℝ⟨X⟩ ∣ f⋆ = f } . We use | ⋅ | to denote the cardinal-
ity of a set and let [m] ∶= {1, 2,… ,m} for m ∈ ℕ�{0}.

2.2 � Sums of hermitian squares

An nc polynomial of the form g⋆g is called a hermitian square. An nc polynomial 
f ∈ ℝ⟨X⟩ is called a sum of hermitian squares (SOHS) if there exist nc polynomi-
als g1,… , gr ∈ ℝ⟨X⟩ such that f = g⋆

1
g1 + g⋆

2
g2 +…+ g⋆

r
gr . The set of SOHS is 

denoted by �⟨X⟩ . Checking whether a given nc polynomial f ∈ Symℝ⟨X⟩ is an 
SOHS can be cast as a semidefinite program (SDP) due to the following theorem.

Theorem  1  ( [19],  Theorem  1.1) Let f ∈ Symℝ⟨X⟩ with deg(f ) = 2d . Then 
f ∈ �⟨X⟩ if and only if there exists a matrix Q ⪰ 0 satisfying

Any symmetric matrix Q (not necessarily PSD) satisfying (1) is called a Gram 
matrix of f. The standard monomial basis �d used in (1) can be reduced via the 
Newton chip method; see Chapter 2 in [11].

(1)f = �⋆

d
Q�d.
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2.3 � Semialgebraic sets and quadratic modules

Given S = {g1,… , gm} ⊆ Symℝ⟨X⟩ , the semialgebraic set DS associated with S is 
defined by

The operator semialgebraic set D∞
S

 is the set of all bounded self-adjoint operators A 
on a Hilbert space endowed with a scalar product ⟨⋅, ⋅⟩ making g(A) a PSD operator, 
for all g ∈ S . The quadratic module MS , generated by S, is defined by

and the truncated quadratic module MS,d of order d ∈ ℕ , generated by S, is

A quadratic module M is Archimedean if for each h ∈ ℝ⟨X⟩ , there exists N ∈ ℕ 
such that N − h⋆h ∈ M . The noncommutative analog of Putinar’s Positivstellensatz 
describing noncommutative polynomials positive on D∞

S
 with Archimedean MS is 

due to Helton and McCullough:

Theorem 2  ( [18], Theorem 1.2) Let {f } ∪ S ⊆ Symℝ⟨X⟩ and assume that MS is 
Archimedean. If f (A) ≻ 0 for all A ∈ D

∞
S

 , then f ∈ MS.

2.4 � Moment and localizing matrices

With � = (yw)w∈⟨X⟩ being a sequence indexed by the standard monomial basis ⟨X⟩ of 
ℝ⟨X⟩ , let L� ∶ ℝ⟨X⟩ → ℝ be the linear functional

Given a monomial basis � , the noncommutative moment matrix M�(�) associated 
with � and � is the matrix with rows and columns indexed by � such that

If � is the standard monomial basis �d , we also denote M�d
(�) by Md(�).

Suppose g =
∑

w bww ∈ Symℝ⟨X⟩ and let � = (yw)w∈⟨X⟩ be given. For any posi-
tive integer d, the noncommutative localizing matrix Md(g�) associated with g and � 
is the matrix with rows and columns indexed by �d such that

(2)DS ∶=
⋃

r∈ℕ�{0}

{A = (A1,… ,An) ∈ 𝕊
n
r
∣ gj(A) ⪰ 0, j ∈ [m]}.

(3)MS ∶= {

s�

j=1

h⋆
j
gjhj ∣ s ∈ ℕ�{0}, hj ∈ ℝ⟨X⟩, gj ∈ {1} ∪ S},

(4)

MS,d ∶= {

s�

j=1

h⋆
j
gjhj ∣ s ∈ ℕ�{0}, hj ∈ ℝ⟨X⟩, gj ∈ {1} ∪ S, deg(h⋆

j
gjhj) ≤ 2d}.

f =
∑

w

aww ↦ L�(f ) =
∑

w

awyw.

M�(�)uv ∶= L�(u
⋆v) = yu⋆v, ∀u, v ∈ �.
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2.5 � Eigenvalue optimization for noncommutative polynomials

Given f =
∑

w aww ∈ Symℝ⟨X⟩ , the eigenvalue minimization problem for f is 
defined by:

Assume that � is a monomial basis. Then (EP0) is equivalent to the following SDP ( 
[11]):

Writing M�(�) =
∑

w Awyw for appropriate matrices {Aw}w , the dual SDP of (6) is

where �⋆� ∶= {u⋆v ∣ u, v ∈ �} and �1w is the usual Kronecker symbol.
Given f =

∑
w aww ∈ Symℝ⟨X⟩ and S = {g1,… , gm} ⊆ Symℝ⟨X⟩ , let us con-

sider the following eigenvalue minimization problem for f over the operator semi-
algebraic set D∞

S
:

For convenience, we set g0 ∶= 1 and let dj = ⌈deg(gj)∕2⌉ for j = 0, 1,… ,m . Assume 
that d̂ ≥ d ∶= max{⌈deg(f )∕2⌉, d1,… , dm} is a positive integer. As shown in [34], 
one has the following hierarchy of moment relaxations, indexed by d̂ , to obtain a 
sequence of lower bounds for the optimum �min(f , S) of ( EQ0):

We call d̂ the relaxation order. If the quadratic module MS generated by S is Archi-
medean, then the sequence of lower bounds (𝜆d̂(f , S))d̂≥d converges to �min(f , S) . See, 
e.g., [11, Corollary 4.11] for a proof.

For each j, writing Md̂−dj
(gj�) =

∑
w D

j
wyw for appropriate matrices {Dj

w}j,w , we 
can write the dual SDP of (9) as

Md(g�)uv ∶= L�(u
⋆gv) =

∑

w∈supp(g)

bwyu⋆wv, ∀u, v ∈ �d.

(5)
�
EP0

�
∶ �min(f ) ∶= inf{⟨f

�
A
�
v, v⟩ ∶ A ∈ 𝕊

n
r
, r ∈ ℕ�{0}, ��v�� = 1}.

(6)(EP) ∶

�min(f ) = inf L�(f )

s.t. M�(�) ⪰ 0,

y1 = 1.

(7)
sup 𝜆

s.t. ⟨Q,Aw⟩ + 𝜆𝛿1w = aw, ∀w ∈ �⋆�,

Q ⪰ 0,

(8)
�
EQ0

�
∶ �min(f , S) ∶= inf{⟨f

�
A
�
v, v⟩ ∶ A ∈ D

∞
S
, ��v�� = 1}.

(9)
(
EQd̂

)
∶

𝜆d̂(f , S) ∶= inf L�(f )

s.t. Md̂(�) ⪰ 0,

Md̂−dj
(gj�) ⪰ 0, j ∈ [m],

y1 = 1.
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2.6 � Trace optimization for noncommutative polynomials

Given g, h ∈ ℝ⟨X⟩ , the nc polynomial [g, h] ∶= gh − hg is called a commutator. 
Two nc polynomials g, h ∈ ℝ⟨X⟩ are said to be cyclically equivalent, denoted by 
g
cyc
∼h , if g − h is a sum of commutators. Let w ∈ ⟨X⟩ . The canonical representa-

tive [w] of w is the minimal one with respect to the lexicographic order among all 
words cyclically equivalent to w. For � ⊆ ⟨X⟩ , [�] ∶= {[w] ∣ w ∈ �} . For an nc pol-
ynomial f =

∑
w aww ∈ Symℝ⟨X⟩ , the canonical representative of f is defined by 

[f ] ∶=
∑

w aw[w] ∈ ℝ⟨X⟩ and the cyclic degree of f is defined as cdeg(f ) ∶= deg([f ]) . 
We warn the reader about a small abuse of notation as [k] stands for {1,… , k} when 
k is a positive integer.

The normalized trace of a matrix A = [aij] ∈ �r is given by trA =
1

r

∑r

i=1
aii . 

Given f =
∑

w aww ∈ Symℝ⟨X⟩ , the trace minimization problem for f is defined by

Let d = cdeg(f ) . As shown in [11], (TP0) admits the following moment relaxation:

The dual of (TP) reads as

Given f =
∑

w aww ∈ Symℝ⟨X⟩ and S = {g1,… , gm} ⊆ Symℝ⟨X⟩ , the trace mini-
mization problem for f over the semialgebraic set DS is defined by

We produce lower bounds on trmin(f , S) by restricting ourselves to a specific sub-
set of D∞

S
 , obtained by considering the algebra of all bounded operators on a Hil-

bert space to finite von Neumann algebras [39] of type I and type II. We introduce 
trmin(f , S)

II 1 as the trace minimum of f on D II 1
S

 . Since DS is contained in D II 1
S

 , one 
has trmin(f , S)

II 1 ≤ trmin(f , S) . For a proper definition of D II 1
S

 , we refer the interested 
reader to, e.g., [11, Definition 1.59]. As shown in [10], one has the following series 

(10)

sup 𝜆

s.t.

m�

j=0

⟨Qj,D
j
w
⟩ + 𝜆𝛿1w = aw, ∀w ∈ �2d̂,

Qj ⪰ 0, j ∈ {0} ∪ [m].

(11)
(
TP0

)
∶ trmin(f ) ∶= inf{tr f (A) ∶ A ∈ 𝕊

n
r
, r ∈ ℕ�{0}}.

(12)(TP) ∶

𝜇(f ) ∶= inf L�(f )

s.t. Md(�) ⪰ 0,

Md(�)uv = Md(�)wz, for all u⋆v
cyc
∼w⋆z,

y1 = 1.

(13)
sup �

s.t.
∑

w
cyc
∼ v

�
⟨Q,Aw⟩ + ��1w

�
=
∑

w
cyc
∼ v

aw, ∀v ∈ �2d,

Q ⪰ 0.

(14)
(
TQ0

)
∶ trmin(f , S) ∶= inf{tr f (A) ∶ A ∈ DS}.
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of moment relaxations indexed by d̂ ≥ d to obtain a hierarchy of lower bounds for 
trmin(f , S)

II 1:

We call d̂ the relaxation order. If the quadratic module MS generated by S is Archi-
medean, then the sequence of lower bounds (𝜇d̂(f , S))d̂≥d converges to trmin(f , S)

II 1 . 
See, e.g., [11, Corollary 5.5] for a proof.

The dual of (15) reads as

2.7 � Chordal graphs and sparse matrices

In this subsection, we briefly revisit the relationship between chordal graphs and 
sparse matrices, which is crucial for the sparsity-exploitation of this paper. For more 
details on chordal graphs and sparse matrices, the reader is referred to [40].

An (undirected) graph G(V, E) or simply G consists of a set of nodes V and a set 
of edges E ⊆ {{vi, vj} ∣ (vi, vj) ∈ V × V} . When G is a graph, we also use V(G) and 
E(G) to indicate the node set of G and the edge set of G, respectively. The adja-
cency matrix of G is denoted by BG for which we put ones on its diagonal. For two 
graphs G, H, we say that G is a subgraph of H if V(G) ⊆ V(H) and E(G) ⊆ E(H) , 
denoted by G ⊆ H . For a graph G(V,  E), a cycle of length k is a set of nodes 
{v1, v2,… , vk} ⊆ V  with {vk, v1} ∈ E and {vi, vi+1} ∈ E , for i = 1,… , k − 1 . A chord 
in a cycle {v1, v2,… , vk} is an edge {vi, vj} that joins two nonconsecutive nodes in 
the cycle.

A graph is called a chordal graph if all its cycles of length at least four have a 
chord. Note that any non-chordal graph G(V, E) can always be extended to a chordal 
graph G(V ,E) by adding appropriate edges to E, which is called a chordal exten-
sion of G(V, E). A clique C ⊆ V  of G is a subset of nodes where {vi, vj} ∈ E for any 
vi, vj ∈ C . If a clique C is not a subset of any other clique, then it is called a maximal 
clique. It is known that maximal cliques of a chordal graph can be enumerated effi-
ciently in linear time in the number of nodes and edges of the graph [5].

Given a graph G(V, E) with V = [|V|] , a symmetric matrix Q with rows and col-
umns indexed by V is said to have sparsity pattern G if Qij = Qji = 0 whenever i ≠ j 
and {i, j} ∉ E , i.e., BG◦Q = Q . Let �G be the set of symmetric matrices with sparsity 
pattern G. A matrix in �G exhibits a block structure: each block corresponds to a maxi-
mal clique of G. The maximal block size is the maximal size of maximal cliques of 

(15)(TQd̂) ∶

𝜇d̂(f , S) ∶= inf L�(f )

s.t. Md̂(�) ⪰ 0,

Md̂−dj
(gj�) ⪰ 0, j ∈ [m],

Md̂(�)uv = Md̂(�)wz, for all u⋆v
cyc
∼w⋆z,

y1 = 1.

(16)

sup 𝜇

s.t.
∑

w
cyc
∼ v

�∑m

j=0
⟨Qj,D

j
w⟩ + 𝜇𝛿1w

�
=
∑

w
cyc
∼ v

aw, ∀v ∈ �2d̂,

Qj ⪰ 0, j ∈ {0} ∪ [m].
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G, namely, the clique number of G. Note that there might be overlaps between blocks 
because different maximal cliques may share nodes.

Given a maximal clique C of G(V, E), we define a matrix PC ∈ ℝ
|C|×|V| as

where C(i) denotes the i-th node in C, sorted in the ordering compatibly with V. 
Note that PCQP

T
C
∈ �|C| extracts a principal submatrix defined by the indices in the 

clique C from a symmetric matrix Q ∈ �|V| , and PT
C
QCPC inflates a |C| × |C| matrix 

QC into a sparse |V| × |V| matrix.
The PSD matrices with sparsity pattern G form a convex cone

When the sparsity pattern graph G is chordal, the cone �+
|V| ∩ �G can be decom-

posed as a sum of simple convex cones, as stated in the following theorem.

Theorem  3  ( [1], see also [40]) Let G(V, E) be a chordal graph and assume that 
C1,… ,Ct are the list of maximal cliques of G(V, E). Then a matrix Q ∈ �

+
|V| ∩ �G if 

and only if there exists Qi ∈ �
+
|Ci|

 for i = 1,… , t such that Q =
∑t

i=1
PT
Ci
QiPCi

.

Given a graph G(V, E) with V = [|V|] , let �G be the projection from �|V| to the sub-
space �G , i.e., for Q ∈ �|V|,

We denote by �G(�
+
|V|) the set of matrices in �G that have a PSD completion, i.e.,

One can check that the PSD completable cone �G(�
+
|V|) and the PSD cone �+

|V| ∩ �G 
form a pair of dual cones in �G ; see [40, Section 10.1] for a proof. Moreover, for a 
chordal graph G, the decomposition result for the cone �+

|V| ∩ �G in Theorem 3 leads 
to the following characterization of the PSD completable cone �G(�

+
|V|).

Theorem 4  ( [17], see also [40]) Let G(V, E) be a chordal graph and assume that 
C1,… ,Ct are the list of maximal cliques of G(V, E). Then a matrix Q ∈ �G(�

+
|V|) if 

and only if Qi = PCi
QPT

Ci
⪰ 0 for i = 1,… , t.

(17)[PC]ij =

{
1, if C(i) = j,

0, otherwise,

(18)�
+
|V| ∩ �G = {Q ∈ �G ∣ Q ⪰ 0}.

(19)�G(Q)ij =

{
Qij, if {i, j} ∈ E or i = j,

0, otherwise.

(20)�G

(
�
+
|V|

)
= {�G(Q) ∣ Q ∈ �

+
|V|}.
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3 � Eigenvalue optimization for noncommutative polynomials 
with term sparsity

In this section, we consider the eigenvalue optimization problem for noncommu-
tative polynomials with term sparsity. For the reader’s convenience, we first deal 
with the unconstrained case and then generalize to the constrained case.

3.1 � The unconstrained case

In this subsection, we describe an iterative procedure to exploit term sparsity for 
the moment-SOHS relaxations (6–7) of the unconstrained NCPOP (EP0) defined 
in (5).

Let f =
∑

w∈� aww ∈ Symℝ⟨X⟩ with supp(f ) = � (w.l.o.g. assuming 1 ∈ � ). 
Assume that � is the monomial basis returned by the Newton chip method ( [11, 
§2.3]) with r = |�| . To represent the term sparsity in f, in the sequel we will consider 
graphs with V ∶= � as the set of nodes. Suppose that G(V, E) is such a graph. We 
define the support of G by

We further define two operations on G: support extension and chordal extension.
(1) support extension The support extension of G, denoted by SE(G) , is the graph 

with nodes � and with edges

where �2 ∶= {u⋆u ∣ u ∈ �}.

Example 1  Consider the graph G(V, E) with

Then E(SE(G)) = {{1,YZ}, {Y , ZX}, {Y , Z}} . See Fig.  1 for the support extension 
SE(G) of G.

supp(G) ∶= {u⋆v ∣ (u, v) ∈ V × V , {u, v} ∈ E}.

E(SE(G)) ∶= {{u, v} ∣ (u, v) ∈ V × V , u ≠ v, u⋆v ∈ supp(G) ∪ �2},

V = {1,X, Y , Z, YZ, ZX,XY} and E = {{1,YZ}, {Y , ZX}}.

1 X Y Z

Y Z ZX XY

Fig. 1   The support extension SE(G) of G for Example 1. The dashed edges are added after the support 
extension
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(2) Chordal extension: For a graph G, we denote any specific chordal extension 
of G by G . There are generally various chordal extensions of G. In this paper, we 
will consider two particular types of chordal extensions: the maximal chordal exten-
sion and approximately smallest chordal extensions. By the maximal chordal exten-
sion, we refer to the chordal extension that completes every connected component of 
G. The maximal chordal extension can be easily computed by listing all connected 
components. Another advantage of the maximal chordal extension is that there is 
no overlap among maximal cliques. However, the clique number of the maximal 
chordal extension may be large among all possible chordal extensions. A chordal 
extension with the smallest clique number is called a smallest chordal extension. 
Computing a smallest chordal extension of a graph is an NP-complete problem in 
general. Fortunately, several heuristic algorithms, e.g., the greedy minimum degree 
and the greedy minimum fill-ins, are known to efficiently produce a good approxi-
mation; see [6] for more detailed discussions. Throughout the paper, we assume that 
for graphs G, H,

This assumption is reasonable since any chordal extension of H restricting to G is 
also a chordal extension of G.

Example 2  Consider the graph G(V,  E) with V = {X1,X2,X3,X4,X5, X6} and 
E = {{X1,X2}, {X2,X3}, {X3,X4}, {X4,X5}, {X5,X6}, {X6,X1}}. See Fig.  2 for a 
smallest chordal extension G of G which has 4 maximal cliques of size 3. On the 
other hand, the maximal chordal extension of G has one maximal clique of size 6.

(21)G ⊆ H ⟹ G ⊆ H.

Fig. 2   A smallest chordal exten-
sion G of G for Example 2. The 
dashed edges are added after the 
chordal extension

X1

X2

X3

X4

X5

X6
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Now we define G0(V ,E0) to be the graph with V = � and

which is called the term sparsity pattern (tsp) graph associated with f. We then itera-
tively define a sequence of graphs (Gk(V ,Ek))k≥1 by alternately performing support 
extension and chordal extension to G0(V ,E0):

When f is sparse (i.e., G1 is not complete), by replacing M�(�) ⪰ 0 with the weaker 
condition BGk

◦M�(�) ∈ �Gk
(�+

r
) in (6), we obtain a series of sparse moment relaxa-

tions of (EP) (and (EP0) ) indexed by k ≥ 1:

We call k the sparse order. By construction, one has Gk ⊆ Gk+1 for all k ≥ 1 and 
therefore the sequence of graphs (Gk(V ,Ek))k≥1 stabilizes after a finite number of 
steps. We denote the stabilized graph by G∙(V ,E∙) and the corresponding moment 
relaxation by (EP∙) (with optimum �∙(f )).

For each k ≥ 1 , the dual SDP of (24) reads as

where Aw is defined in Sect. 2.5.

Theorem 5  Assume that f ∈ Symℝ⟨X⟩ . Then the following hold: 

(1)	 For each k ≥ 1 , there is no duality gap between (EPk) (24) and its dual (25).
(2)	 The sequence (�k(f ))k≥1 is monotone nondecreasing and �k(f ) ≤ �min(f ) for all k 

(with �min(f ) defined in (6)).
(3)	 If the maximal chordal extension is used in (23), then (�k(f ))k≥1 converges to 

�min(f ) in finitely many steps, i.e., �∙(f ) = �min(f ).

Proof  (i) Note that the SDP problem (EP) (6) has a Slater’s point, i.e., a strictly fea-
sible solution (see, e.g., Proposition 4.9 in [11]), say M�(�

opt ) . Since each block of 
BGk

◦M�(�
opt ) is a principal submatrix of M�(�

opt ) , we have that BGk
◦M�(�

opt ) is a 
Slater’s point of (EPk) by Theorem 4. So by the duality theory of convex program-
ming, there is no duality gap between (EPk) and its dual.

(ii) Because Gk ⊆ Gk+1 , each maximal clique of Gk is a subset of some maximal 
clique of Gk+1 . Thus by Theorem 4, we have that (EPk) is a relaxation of (EPk+1) (and 
also a relaxation of (EP) ). This yields the desired conclusions.

(22)E0 =
{
{u, v} ∣ (u, v) ∈ V × V , u ≠ v, u⋆v ∈ � ∪ �2

}
,

(23)Gk ∶= SE(Gk−1).

(24)
(
EPk

)
∶

�k(f ) ∶= inf L�(f )

s.t. BGk
◦M�(�) ∈ �Gk

(�+
r
),

y1 = 1.

(25)
sup �

s.t. ⟨Q,Aw⟩ + ��1w = aw, ∀w ∈ supp(Gk) ∪ �2,

Q ∈ �
+
r
∩ �Gk

,
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(iii) Let � opt = (y
opt
w )w be an arbitrary feasible solution of (EP∙) . Note that 

{yw ∣ w ∈ supp(G∙) ∪ �2} is the set of decision variables involved in (EP∙) and 
{yw ∣ w ∈ �⋆�} is the set of decision variables involved in (EP) . We then define a 
vector � opt

= (y
opt

w
)w∈�⋆� as follows:

If the maximal chordal extension is used in (23), then matrices in �Gk
(�+

r
) 

for all k ≥ 1 are block-diagonal (up to permutation). As a consequence, 
BGk

◦M�(�) ∈ �Gk
(�+

r
) implies BGk

◦M�(�) ⪰ 0 . By construction, we have 
M�(�

opt
) = BG∙

◦M�(�
opt ) ⪰ 0 . Therefore � opt is a feasible solution of (EP) and 

hence L� opt (f ) = L
�
opt (f ) ≥ �min(f ) . This yields �∙(f ) ≥ �min(f ) since � opt is an arbi-

trary feasible solution of (EP∙) . By (ii), we already have �∙(f ) ≤ �min(f ) . Therefore, 
�∙(f ) = �min(f ) . 	�  ◻

If approximately smallest chordal extensions are used in (23), the sequence 
(�k(f ))k≥1 doesn’t necessarily converge to �min(f ) . The following is an example.

Example 3  Consider the nc polynomial f = X2 − XY − YX + 3Y2 − 2XYX + 2XY2X − YZ − ZY + 6Z2

+9X2
Y + 9Z2

Y − 54ZYZ + 142ZY2
Z ( [21]). The monomial basis 

given by the Newton chip method is {1,X, Y , Z, YX, YZ} . We have 
E0 = {{1,YX}, {1,YZ}, {X, YX}, {X, Y}, {Y , Z}, {Y , YZ}, {Z, YZ}} . Figure  3 shows 
the tsp graph G0 (without dashed edges) and its chordal extension G1 (with dashed 
edges) for f. The graph sequence (Gk)k≥1 immediately stabilizes at k = 1 . Solving 
the SDP problem ( EP1 ) associated with G1 , we obtain �1(f ) ≈ −0.00355 whereas we 
have �min(f ) = 0.

The next result states that �1(f ) = �min(f ) always holds for a quadratic f.

y
opt

w
=

{
y
opt
w , if w ∈ supp

(
G∙

)
∪ �2,

0, otherwise.

X Y Z

Y X 1 Y Z

Fig. 3   The tsp graph G0 and its chordal extension G1 for Example 3



497

1 3

Exploiting term sparsity in noncommutative polynomial…

Proposition 1  Suppose that the nc polynomial f ∈ Symℝ⟨X⟩ in ( EP0 ) is quadratic, 
i.e., deg(f ) = 2 . Then �1(f ) = �min(f ).

Proof  Let � = supp(f ) . As f is quadratic, we may take � = {1,X1,… ,Xn} as a 
monomial basis. Let G0 be the tsp graph associated with f. We only need to prove 
that if f admits a PSD Gram matrix, then f admits a Gram matrix in �+

n+1
∩ �G0

 . Sup-
pose that Q = [qij]

n
i,j=0

 is a PSD Gram matrix for f indexed by � . Note that for i, j > 0 , 
if {Xi,Xj} ∉ E(G0) , then we must have XiXj,XjXi ∉ � , which implies qij = 0 ; for 
i = 0, j > 0 , if {1,Xj} ∉ E(G0) , then we must have Xj ∉ � , which implies 
q0j = qj0 = 0 . It follows that Q ∈ �G0

 as desired. 	�  ◻

3.2 � The constrained case

In this subsection, we generalize the iterative procedure in Sect.  3.1 to the con-
strained case and we show how to iteratively exploit term sparsity for the moment-
SOHS hierarchy (9–10) of the constrained NCPOP (EQ0) defined in (8).

Assume that f =
∑

w aww ∈ Symℝ⟨X⟩ and S = {g1,… , gm} ⊆ Symℝ⟨X⟩ . Let

As in Sect.  2.5, we set g0 ∶= 1 , and let dj = ⌈deg(gj)∕2⌉ , j ∈ {0} ∪ [m] and 
d = max{⌈deg(f )∕2⌉, d1,… , dm} . Fixing a relaxation order d̂ ≥ d , we define a graph 
G

tsp

d̂
(V

tsp

d̂
,E

tsp

d̂
) with V tsp

d̂
= �d̂ and

where �2

d̂
∶= {u⋆u ∣ u ∈ �d̂} . We call Gtsp

d̂
 the term sparsity pattern (tsp) graph 

associated with � (or f and S).
For a graph G(V, E) with V ⊆ ⟨X⟩ and g ∈ ℝ⟨X⟩ , let us define

Let G(0)

d̂,0
= G

tsp

d̂
 and G(0)

d̂,j
 be the empty graph for j ∈ [m] . Then for each j ∈ {0} ∪ [m] , 

we iteratively define a sequence of graphs (G(k)

d̂,j
(Vd̂,j,E

(k)

d̂,j
))k≥1 with Vd̂,j = �d̂−dj

 via 
two successive operations:

(1) support extension Let F(k)

d̂,j
 be the graph with V(F(k)

d̂,j
) = �d̂−dj

 and

where u⋆supp(gj)v ∶= {u⋆wv ∣ w ∈ supp(gj)}.

(26)� = supp(f ) ∪

m⋃

j=1

supp(gj).

(27)E
tsp

d̂
= {{u, v} ∣ (u, v) ∈ �d̂ ×�d̂, u ≠ v, u⋆v ∈ � ∪�2

d̂
},

(28)suppg(G) ∶= {u⋆wv ∣ (u, v) ∈ V × V , {u, v} ∈ E,w ∈ supp(g)}.

(29)

E
(
F
(k)

d̂,j

)
={{u, v} ∣ (u, v) ∈ �d̂−dj

×�d̂−dj
, u ≠ v,

u⋆supp(gj)v ∩

(
m⋃

j=0

suppgj

(
G

(k−1)

d̂,j

)
∪�2

d̂

)
≠ �},
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(2) chordal extension: Let

Let rj = |�d̂−dj
| for j ∈ {0} ∪ [m] . Then by replacing Md̂−dj

(gj�) ⪰ 0 with the 
weaker condition B

G
(k)

d̂,j

◦Md̂−dj
(gj�) ∈ 𝛱

G
(k)

d̂,j

(�+
rj
) for j ∈ {0} ∪ [m] in (9), we obtain 

the following series of sparse moment relaxations for ( EQd̂ ) indexed by k ≥ 1:

We call k the sparse order. By construction, one has G(k)

d̂,j
⊆ G

(k+1)

d̂,j
 for all j, k. There-

fore, for every j, the sequence of graphs (G(k)

d̂,j
)k≥1 stabilizes after a finite number of 

steps. We denote the stabilized graphs by G(∙)

d̂,j
 for all j and denote the corresponding 

moment relaxation by (EQts

d̂,∙
) (with optimum 𝜆ts

d̂,∙
(f , S)).

For each k ≥ 1 , the dual of (EQts

d̂,k
) reads as

where {Dj
w}j,w is defined in Sect. 2.5.

For 𝜀 > 0 , we define the nc �-neighborhood of 0 to be

Theorem 6  Let {f } ∪ S ⊆ Symℝ⟨X⟩ . Then the following hold: 

(1)	 Suppose that DS contains an nc �-neighborhood of 0.
	   Then for all d̂, k , there is no duality gap between (EQts

d̂,k
) (31) and its dual (32).

(2)	 Fixing a relaxation order d̂ ≥ d , the sequence (𝜆ts
d̂,k
(f , S))k≥1 is monotone nonde-

creasing and 𝜆ts
d̂,k
(f , S) ≤ 𝜆d̂(f , S) for all k (with 𝜆d̂(f , S) defined in (9)).

(3)	 Fixing a sparse order k ≥ 1 , the sequence (𝜆ts
d̂,k
(f , S))d̂≥d is monotone nondecreas-

ing.
(4)	 If the maximal chordal extension is used in (30), then (𝜆ts

d̂,k
(f , S))k≥1 converges to 

𝜆d̂(f , S) in finitely many steps, i.e., 𝜆ts
d̂,∙
(f , S) = 𝜆d̂(f , S).

(30)G
(k)

d̂,j
∶= F

(k)

d̂,j
.

(31)
(
EQts

d̂,k

)
∶

𝜆ts
d̂,k
(f , S) ∶= inf L�(f )

s.t. B
G

(k)

d̂,0

◦Md̂(�) ∈ 𝛱
G

(k)

d̂,0

(
�
+
r0

)
,

B
G

(k)

d̂,j

◦Md̂−dj
(gj�) ∈ 𝛱

G
(k)

d̂,j

(
�
+
rj

)
, j ∈ [m],

y1 = 1.

(32)

sup 𝜆

s.t.
∑m

j=0
⟨Qj,D

j
w⟩ + 𝜆𝛿1w = aw, ∀w ∈

⋃m

j=0
suppgj (G

(k)

d̂,j
)) ∪�2

d̂
,

Qj ∈ �
+
rj
∩ �

G
(k)

d̂,j

, j ∈ {0} ∪ [m],

(33)N� ∶=
⋃

r∈ℕ�{0}

{A = (A1,… ,An) ∈ 𝕊
n
r
∣ �2 −

n∑

i=1

A2
i
⪰ 0}.
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Proof  (i) By Proposition 4.9 in [11], the SDP (EQd̂) (9) admits a Slater’s point, say 
� opt . Then Md̂(�

opt ),Md̂−dj
(gj�

opt ) are positive definite. Since each block of 
B
G

(k)

d̂,0

◦Md̂(�
opt ) (resp. B

G
(k)

d̂,j

◦Md̂−dj
(gj�

opt ) ) is a principal submatrix of Md̂(�
opt ) (resp. 

Md̂−dj
(gj�

opt ) ), we have that B
G

(k)

d̂,0

◦Md̂(�
opt ),B

G
(k)

d̂,j

◦Md̂−dj
(gj�

opt ) correspond to a 

Slater’s point of (EQts

d̂,k
) by Theorem 4. So by the duality theory of convex program-

ming, there is no duality gap between (EQts

d̂,k
) and its dual.

(ii) For all j, k, because G(k)

d̂,j
⊆ G

(k+1)

d̂,j
 , each maximal clique of G(k)

d̂,j
 is a subset of 

some maximal clique of G(k+1)

d̂,j
 . Hence by Theorem  4, (EQts

d̂,k
) is a relaxation of 

(EQts

d̂,k+1
) (and also a relaxation of (EQd̂) ). Therefore, (𝜆ts

d̂,k
(f , S))k≥1 is monotone non-

decreasing and 𝜆ts
d̂,k
(f , S) ≤ 𝜆d̂(f , S) for all k.

(iii) The conclusion follows if we can show that G(k)

d̂,j
⊆ G

(k)

d̂+1,j
 for all d̂, j since by 

Theorem  4 this implies that (EQts

d̂,k
) is a relaxation of (EQts

d̂+1,k
) . Let us prove 

G
(k)

d̂,j
⊆ G

(k)

d̂+1,j
 by induction on k. For k = 1 , from (27), we have E(0)

d̂,0
⊆ E

(0)

d̂+1,0
 , which 

implies that G(1)

d̂,j
⊆ G

(1)

d̂+1,j
 for all d̂, j . Now assume that G(k)

d̂,j
⊆ G

(k)

d̂+1,j
 for all d̂, j hold 

for a given k ≥ 1 . Then from (21), (29), (30) and by the induction hypothesis, we 
have G(k+1)

d̂,j
⊆ G

(k+1)

d̂+1,j
 for all d̂, j , which completes the induction and also completes 

the proof.
(iv) Let � opt = (y

opt
w )w be an arbitrary feasible solution of (EQts

d̂,∙
) . Note that 

{yw ∣ w ∈
⋃m

i=0
suppgj (G

(∙)

d̂,j
) ∪�2

d̂
} is the set of decision variables involved in (EQts

d̂,∙
) 

and {yw ∣ w ∈ �⋆

d̂
�d̂} is the set of decision variables involved in ( EQd̂ ). We then 

define a vector � opt
= (y

opt

w
)w∈�⋆

d̂
�d̂

 as follows:

If the maximal chordal extension is used in (30), then the matrices in 𝛱
G

(k)

d̂,j

(�+
rj
) for 

all k ≥ 1 are block-diagonal (up to permutation). As a consequence, 
B
G

(k)

d̂,j

◦Md̂−dj
(gj�) ∈ 𝛱

G
(k)

d̂,j

(�+
rj
) implies B

G
(k)

d̂,j

◦Md̂−dj
(gj�) ⪰ 0 . By construction, we 

have Md̂−dj
(gj�

opt
) = B

G
(∙)

d̂,j

◦Md̂−dj
(gj�

opt ) ⪰ 0 for all j ∈ {0} ∪ [m] . Therefore � opt is 

a feasible solution of ( EQd̂ ) and hence L� opt (f ) = L
�
opt (f ) ≥ 𝜆d̂(f , S) , which yields 

𝜆ts
d̂,∙
(f , S) ≥ 𝜆d̂(f , S) since � opt is an arbitrary feasible solution of (EQts

d̂,∙
) . By (ii), we 

already have 𝜆ts
d̂,∙
(f , S) ≤ 𝜆d̂(f , S) . Therefore, 𝜆ts

d̂,∙
(f , S) = 𝜆d̂(f , S) . 	�  ◻

Following from Theorem  6, we have the following two-level hierarchy of lower 
bounds for the optimum �min(f , S) of (EQ0):

y
opt

w
=

�
y
opt
w , if w ∈

⋃m

i=0
suppgj (G

(∙)

d̂,j
) ∪�2

d̂
,

0, otherwise.
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We call the array of lower bounds (34) (and its corresponding moment-SOHS relax-
ations (31–32)) the NCTSSOS hierarchy associated with (EQ0).

Remark 1  The NCTSSOS hierarchy entails a trade-off between the computational 
cost and the quality of the obtained lower bound via the two parameters d̂ and k. 
Besides, one has the freedom to choose a specific chordal extension for any graph 
involved in (30) (e.g., maximal chordal extensions, approximately smallest chordal 
extensions and so on). This choice affects the resulting sizes of SDP blocks and 
the quality of the lower bound given by the corresponding SDP relaxation. Intui-
tively, chordal extensions with smaller clique numbers should lead to SDP blocks of 
smaller sizes and lower bounds of (possibly) lower quality while chordal extensions 
with larger clique numbers should lead to SDP blocks with larger sizes and lower 
bounds of (possibly) higher quality.

(34)

1

X2

XY Y X

Y 2

X Y

1

X2

XY Y X

Y 2

X Y

Fig. 4   The graph sequence (G(k)

2,0
)
k≥1 in Example 4: left for k = 1 ; right for k = 2 . The dashed edges are 

added after a chordal extension
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Example 4  Consider f = 2 − X2 + XY2X − Y2 + XYXY + YXYX + X3Y + YX3 + XY3 + Y3X and 
S = {1 − X2, 1 − Y2} . The graph sequence (G(k)

2,0
)k≥1 for f and S is given in Fig. 4. In 

fact the graph sequence (G(k)

2,j
)k≥1 stabilizes at k = 2 for all j (with approximately 

smallest chordal extensions). Using NCTSSOS, we obtain that �ts
2,1
(f , S) ≈ −2.55482 , 

�ts
2,2
(f , S) = �2(f , S) ≈ −2.05111.

Remark 2  In the case of eigenvalue minimization over nc balls/multi-balls (as in the 
above example), the first dense relaxation is exact; see Proposition 4.16 and Propo-
sition 4.17 from [11]. We believe that there is no analog of this finite convergence 
result for term sparsity, i.e., the first or the second step is not always exact. Actually, 
we have tested this on randomly generated examples of degree 4 (as we do later 
on for Table 9 in Sect. 6 but without considering correlative sparsity). When using 
the minimum relaxation order 2 and maximal chordal extensions, the NCTSSOS 
hierarchy takes a few (typically 2 ∼ 3 ) steps to converge to the value of the dense 
relaxation (i.e., the exact value in this case). The sizes of the resulting SDPs heavily 
depend on the considered problem.

4 � Eigenvalue optimization for noncommutative polynomials 
with combined correlative‑term sparsity

The exploitation of term sparsity developed in the previous section can be combined 
with the exploitation of correlative sparsity discussed in [21] to reduce the compu-
tational cost further. To begin with, let us recall some basics on correlative sparsity. 
For more details, the reader is referred to [21].

4.1 � Eigenvalue optimization for noncommutative polynomials with correlative 
sparsity

As in the commutative case, the exploitation of correlative sparsity in the moment-
SOHS hierarchy for NCPOPs consists of two steps: (1) partition the set of variables 
into subsets according to the correlations between variables emerging in the prob-
lem, and (2) construct a sparse moment-SOHS hierarchy with respect to the former 
partition of variables [21].

More concretely, assuming f =
∑

w aww ∈ Symℝ⟨X⟩ and S = {g1,… , gm} 
⊆ Symℝ⟨X⟩ , we define the correlative sparsity pattern (csp) graph associated with f 
and S to be the graph Gcsp with nodes V = [n] and edges E satisfying {i, j} ∈ E if one 
of following holds: 

(1)	 there exists w ∈ supp(f ) s.t. Xi,Xj ∈ var(w);
(2)	 there exists l, with 1 ≤ l ≤ m, s.t. Xi,Xj ∈ var(gl),
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where we use var(g) to denote the set of variables effectively involved in g ∈ ℝ⟨X⟩ . Let 
G

csp
 be a chordal extension of Gcsp and Il, l ∈ [p] be the maximal cliques of G

csp
 with 

cardinality denoted by nl, l ∈ [p] . Let ℝ⟨X(Il)⟩ denote the ring of nc polynomials in 
the nl variables X(Il) = {Xi ∣ i ∈ Il} . We then partition the constraints g1,… , gm into 
groups {gj ∣ j ∈ Jl}, l ∈ [p] which satisfy 

(1)	 J1,… , Jp ⊆ [m] are pairwise disjoint and 
⋃p

l=1
Jl = [m];

(2)	 for any j ∈ Jl , var(gj) ⊆ X(Il) , l ∈ [p].

Next, with l ∈ [p] fixed, d a positive integer and g ∈ ℝ⟨X(Il)⟩ , let Md(�, Il) (resp. 
Md(g�, Il) ) be the moment (resp. localizing) submatrix obtained from Md(�) (resp. 
Md(g�) ) by retaining only those rows (and columns) indexed by w ∈ ⟨X(Il)⟩ of Md(�) 
(resp. Md(g�)).

Then with d̂ ≥ d ∶= max{⌈deg(f )∕2⌉, ⌈deg(g1)∕2⌉,… , ⌈deg(gm)∕2⌉} , the 
moment SDP relaxation for (EQ0) based on correlative sparsity is defined as

Remark 3  As shown in [21], under Archimedean’s condition (slightly stronger than 
compactness), the sequence (𝜆cs

d̂
(f , S))d̂≥d converges to the global optimum �min(f , S).

4.2 � Eigenvalue optimization for noncommutative polynomials with combined 
correlative‑term sparsity

The combination of correlative sparsity and term sparsity proceeds in a similar man-
ner as for the commutative case in [48]. Assume that f =

∑
w aww ∈ Symℝ⟨X⟩ 

and S = {g1,… , gm} ⊆ Symℝ⟨X⟩ , Gcsp is the csp graph associated with f and S, 
and G

csp
 is a chordal extension of Gcsp . Let Il, l ∈ [p] be the maximal cliques of G

csp
 

with cardinality denoted by nl, l ∈ [p] . Then the set of variables X is partitioned into 
X(I1),X(I2),… ,X(Ip) . Let J1,… , Jp be defined as in Sect. 4.1.

Now we consider the term sparsity pattern for each subsystem involving the vari-
ables X(Il) , l ∈ [p] respectively as follows. Let

for l ∈ [p] . As before, let g0 = 1 , dj = ⌈deg(gj)∕2⌉ , j ∈ {0} ∪ [m] and 
d = max{⌈deg(f )∕2⌉, d1,… , dm} . Fix a relaxation order d̂ ≥ d . Let �d̂−dj,l

 be the 
standard monomial basis of degree ≤ d̂ − dj with respect to the variables X(Il) and 
G

tsp

d̂,l
 be the tsp graph with nodes �d̂,l associated with �l defined as in Sect.  3.2. 

Assume that G(0)

d̂,l,0
= G

tsp

d̂,l
 and G(0)

d̂,l,j
, j ∈ Jl, l ∈ [p] are empty graphs. Letting

(35)
(
EQcs

d̂

)
∶

𝜆cs
d̂
(f , S) ∶= inf L�(f )

s.t. Md̂(�, Il) ⪰ 0, l ∈ [p],

Md̂−dj
(gj�, Il) ⪰ 0, j ∈ Jl, l ∈ [p],

y1 = 1.

(36)� ∶= supp(f ) ∪

m⋃

j=1

supp(gj) and �l ∶=
{
w ∈ � ∣ var(w) ⊆ X(Il)

}
,
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we iteratively define a sequence of graphs (G(k)

d̂,l,j
(Vd̂,l,j,E

(k)

d̂,l,j
))k≥1 with Vd̂,l,j = �d̂−dj,l

 
for each j ∈ {0} ∪ Jl, l ∈ [p] by

where F(k)

d̂,l,j
 is the graph with V(F(k)

d̂,l,j
) = �d̂−dj,l

 and

Let rl,j = |�d̂−dj,l
| for all l, j. Then for each k ≥ 1 (called the sparse order), the sparse 

moment relaxation based on combined correlative-term sparsity for (EQ0) is given 
by

For any l, j, write Md̂−dj
(gj�, Il) =

∑
w D

l,j
w yw for appropriate matrices {Dl,j

w }l,j,w . Then 
for each k ≥ 1 , the dual of (EQcs-ts

d̂,k
) reads as

where C(k)

d̂
 is defined as in (37).

By similar arguments as for Theorem 6, we can prove the following theorem.

Theorem 7  Assume that {f } ∪ S ⊆ Symℝ⟨X⟩ . Then the following hold: 

(1)	 Fixing a relaxation order d̂ ≥ d , the sequence (𝜆cs-ts
d̂,k

(f , S))k≥1 is monotone non-
decreasing and 𝜆cs-ts

d̂,k
(f , S) ≤ 𝜆cs

d̂
(f , S) for all k ≥ 1 (with 𝜆cs

d̂
(f , S) defined in 

Sect. 4.1).
(2)	 Fixing a sparse order k ≥ 1 , the sequence (𝜆cs-ts

d̂,k
(f , S))d̂≥d is monotone nonde-

creasing.
(3)	 If the maximal chordal extension is used in (38), then (𝜆cs-ts

d̂,k
(f , S))k≥1 converges 

to 𝜆cs
d̂
(f , S) in finitely many steps.

(37)Cd̂
(k−1) ∶=

p⋃

l=1

⋃

j∈{0}∪Jl

suppgj

(
G

(k−1)

d̂,l,j

)
∪�2

d̂
, k ≥ 1,

(38)G
(k)

d̂,l,j
∶= F

(k)

d̂,l,j
,

(39)E
(
F
(k)

d̂,l,j

)
=
{
{u, v} ∣ u ≠ v ∈ �d̂−dj,l

, u⋆supp(gj)v ∩ C
(k−1)

d̂
≠ �

}
.

(40)

(
EQcs-ts

d̂,k

)
∶

𝜆cs-ts
d̂,k

(f , S) ∶= inf L�(f )

s.t. B
G

(k)

d̂,l,0

◦Md̂(�, Il) ∈ 𝛱
G

(k)

d̂,l,0

(
�
+
rl,0

)
, l ∈ [p],

B
G

(k)

d̂,l,j

◦Md̂−dj

(
gj�, Il

)
∈ 𝛱

G
(k)

d̂,l,j

(
�
+
rl,j

)
, j ∈ Jl, l ∈ [p],

y1 = 1.

(41)

sup 𝜆

s.t.
∑p

l=1

∑
j∈{0}∪Jl

⟨Ql,j,D
l,j
w ⟩ + 𝜆𝛿1w = aw, ∀w ∈ C

(k)

d̂
,

Ql,j ∈ �
+
rl,j
∩ �

G
(k)

d̂,l,j

, j ∈ {0} ∪ Jl, l ∈ [p],
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From Theorem 7, we deduce the following two-level hierarchy of lower bounds for 
the optimum �min(f , S) of (EQ0):

5 � Trace optimization for noncommutative polynomials with term 
sparsity

The results presented in the previous sections concerning eigenvalue optimization for 
noncommutative polynomials with term sparsity can be slightly adjusted to deal with 
trace optimization for noncommutative polynomials with term sparsity. We present the 
main results concerning trace optimization in this section and omit the proofs.

5.1 � The unconstrained case

Let f =
∑

w∈� aww ∈ Symℝ⟨X⟩ with supp(f ) = � (w.l.o.g. assuming 1 ∈ � ) and let 
d = cdeg(f ) . We define H0(V ,E0) to be the graph with V = �d and

We iteratively define a sequence of graphs (Hk(V ,Ek))k≥1 by

where CSE(Hk−1) (the cyclic support extension of Hk−1 ) is the graph with nodes �d 
and with edges

Let r = |�d| . As for eigenvalue optimization, we can consider the following series 
of sparse moment relaxations for (TP) indexed by k ≥ 1:

(42)

(43)E0 =
{
{u, v} ∣ (u, v) ∈ V × V , u ≠ v,

[
u⋆v

]
∈
[
� ∪�2

d

]}
.

(44)Hk ∶= CSE
(
Hk−1

)
,

E
(
CSE(Hk−1)

)
∶=

{
{u, v} ∣ (u, v) ∈ V × V , u ≠ v,

[
u⋆v

]
∈
[
supp(Hk−1) ∪�2

d

]}
.
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The dual of (TPk) reads as

where Aw is defined as in Sect. 2.5. We call k the sparse order. There is no duality 
gap between (TPk) and its dual. By construction, one has Hk ⊆ Hk+1 for all k ≥ 1 
and therefore the sequence of graphs (Hk(V ,Ek))k≥1 stabilizes after a finite number 
of steps. We denote the stabilized graph by H∙(V ,E∙) and the optimum of the corre-
sponding SDP relaxation by �∙(f ).

As for eigenvalue optimization, we obtain the following hierarchy of lower 
bounds for trmin(f ):

Moreover, if the maximal chordal extension is used in (44), then (�k(f ))k≥1 converges 
to �(f ) in finitely many steps, i.e., �∙(f ) = �(f ).

Remark 4  The monomial basis �d used in this subsection can be replaced by the 
reduced monomial basis returned by the tracial Newton polytope method [11, §3.3]. 

However, the implementation of this method involves solving 
(
n + d

d

)
 LPs with 

n + 1 decision variables, which becomes expensive for large n. Hence we stick to the 
standard monomial basis �d for the numerical experiments performed in this paper 
(see Sect. 6).

5.2 � The constrained case

Assume that f =
∑

w aww ∈ Symℝ⟨X⟩ and S = {g1,… , gm} ⊆ Symℝ⟨X⟩ . As 
before, let � = supp(f ) ∪

⋃m

j=1
supp(gj) , g0 = 1 and dj = ⌈deg(gj)∕2⌉ , j ∈ {0} ∪ [m] . 

Let d = max{⌈cdeg(f )∕2⌉, d1,… , dm} . Fix a relaxation order d̂ ≥ d . We define a 
graph Htsp

d̂
(Vd̂,E

tsp

d̂
) with Vd̂ = �d̂ and

which is called the cyclic tsp graph associated with � (or f and S). Let H(0)

d̂,0
= H

tsp

d̂
 

and H(0)

d̂,j
 be the empty graph for j ∈ [m] . We iteratively define a sequence of graphs 

(45)

(
TPk

)
∶

𝜇k(f ) ∶= inf L�(f )

s.t. BHk
◦Md(�) ∈ 𝛱Hk

(�+
r
),[

BHk
◦Md(�)

]
uv
=
[
BHk

◦Md(�)
]
wz
, for all u⋆v

cyc
∼w⋆z,

y1 = 1.

(46)
sup �

s.t.
∑

w
cyc
∼ v

�
⟨Q,Aw⟩ + ��1w

�
=
∑

w
cyc
∼ v

aw, ∀v ∈
�
supp(Hk) ∪�2

d

�
,

Q ∈ �
+
r
∩ �Hk

,

(47)�1(f ) ≤ �2(f ) ≤ ⋯ ≤ �∙(f ) ≤ �(f ) ≤ trmin(f ).

(48)E
tsp

d̂
=
{
{u, v} ∣ (u, v) ∈ Vd̂ × Vd̂, u ≠ v,

[
u⋆v

]
∈
[
� ∪�2

d̂

]}
,
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(H
(k)

d̂,j
(Vd̂,j,E

(k)

d̂,j
))k≥1 with Vd̂,j = �d̂−dj

 for each j ∈ {0} ∪ [m] via two successive 
operations:

(1) cyclic support extension Let K(k)

d̂,j
 be the graph with V(K(k)

j,d̂
) = �d̂−dj

 and

(2) chordal extension Let

Let rj = |�d̂−dj
| . As for eigenvalue optimization, we then consider the following 

series of sparse moment relaxations for ( TQd̂ ) indexed by k ≥ 1:

We call k the sparse order. By construction, one has H(k)

d̂,j
⊆ H

(k+1)

d̂,j
 for all j, k. There-

fore, for every j, the sequence of graphs (H(k)

d̂,j
)k≥1 stabilizes after a finite number of 

steps. We denote the stabilized graphs by H(∙)

d̂,j
 for all j and the optimum of the corre-

sponding SDP relaxation by 𝜇d̂,∙(f , S).
For each k ≥ 1 , the dual of (TQts

d̂,k
) reads as

where Dj
w is defined as in Sect. 2.5.

As for eigenvalue optimization, we have the following conclusions.

Theorem 8  Assume that {f } ∪ S ∈ Symℝ⟨X⟩ . Then the following hold: 

(1)	 If DS contains an nc �-neighborhood of 0, then for all d̂, k , there is no duality 
gap between (TQts

d̂,k
) (51) and its dual (52).

(49)

E
(
K

(k)

d̂,j

)
={{u, v} ∣ (u, v) ∈ �d̂−dj

×�d̂−dj
, u ≠ v,

[
u⋆supp(gj)v

]
∩

[
m⋃

j=0

suppgj

(
H

(k−1)

j,d̂

)
∪�2

d̂

]
≠ �}.

(50)H
(k)

d̂,j
∶= K

(k)

d̂,j
.

(51)

(
TQts

d̂,k

)
∶

𝜇ts

d̂,k
(f , S) ∶= inf L�(f )

s.t. B
H

(k)

d̂,0

◦Md̂(�) ∈ 𝛱
H

(k)

d̂,0

(
�
+
r0

)
,

B
H

(k)

d̂,j

◦Md̂−dj

(
gj�

)
∈ 𝛱

H
(k)

d̂,j

(
�
+
rj

)
, j ∈ [m],

[
B
H

(k)

d̂,0

◦Md̂(�)

]

uv

=

[
B
H

(k)

d̂,0

◦Md̂(�)

]

wz

, for all u⋆v
cyc
∼w⋆z,

y1 = 1.

(52)

sup 𝜇

s.t.
∑

w
cyc
∼ v
(
∑m

j=0
⟨Qj,D

j
w⟩ + 𝜇𝛿1w) =

∑
w
cyc
∼ v

aw,

∀v ∈ [
⋃m

j=0
suppgj (H

(k)

d̂,j
)) ∪�2

d̂
],

Qj ∈ �
+
rj
∩ �

H
(k)

d̂,j

, j ∈ {0} ∪ [m],
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(2)	 Fixing a relaxation order d̂ ≥ d , the sequence (𝜇ts

d̂,k
(f , S))k≥1 is monotone nonde-

creasing and 𝜇ts

d̂,k
(f , S) ≤ 𝜇d̂(f , S) for all k ≥ 1 (with 𝜇d̂(f , S) defined in (15)).

(3)	 Fixing a sparse order k ≥ 1 , the sequence (𝜇ts

d̂,k
(f , S))d̂≥d is monotone nondecreas-

ing.
(4)	 If the maximal chordal extension is used in (50), then (𝜇ts

d̂,k
(f , S))k≥1 converges to 

𝜇d̂(f , S) in finitely many steps, i.e., 𝜇d̂,∙(f , S) = 𝜇d̂(f , S).

Following from Theorem 8, we have the following two-level hierarchy of lower 
bounds for the optimum trmin(f , S)

II 1:

The array of lower bounds (53) (and its associated moment-SOHS relaxations (51)-
(52)) is what we call the NCTSSOS hierarchy associated with (TQ0).

(53)

1

X2

XY Y X

Y 2

X Y

1

X2

XY Y X

Y 2

X Y

Fig. 5   The graph sequence (H(k)

2,0
)
k≥1 in Example 5: left for k = 1 ; right for k = 2 . The dashed edges are 

added after a chordal extension
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Example 5  Consider again f = 2 − X2 + XY2X − Y2 + XYXY + YXYX + X3Y + YX3 + XY3 + Y3X 
and S = {1 − X2, 1 − Y2} . The graph sequence (H(k)

2,0
)k≥1 for f and S is given in Fig. 5. 

In fact the graph sequence (H(k)

2,j
)k≥1 stabilizes at k = 2 for all j (with approximately 

smallest chordal extensions). Using NCTSSOS, we obtain that 
�ts
2,1
(f , S) = �ts

2,2
(f , S) = �2(f , S) ≈ −2.

5.3 � Combining correlative sparsity with term sparsity

We can also combine correlative sparsity with term sparsity for trace optimization. Fix 
a relaxation order d̂ ≥ d . Let �, Il, Jl,�l,�d̂,l,�d̂−dj,l

 be defined as in Sect. 4.2. Let 
H

tsp

d̂,l
 be the cyclic tsp graph with nodes �d̂,l associated with �l defined as in Sect. 5.2. 

Assume that H(0)

d̂,l,0
= H

tsp

d̂,l
 and H(0)

d̂,l,j
, j ∈ Jl, l ∈ [p] are empty graphs. Letting

we iteratively define a sequence of graphs (H(k)

d̂,l,j
(Vd̂,l,j,E

(k)

d̂,l,j
))k≥1 with Vd̂,l,j = �d̂−dj,l

 
for each j ∈ {0} ∪ Jl, l ∈ [p] by

where K(k)

d̂,l,j
 is the graph with V(K(k)

d̂,l,j
) = �d̂−dj,l

 and

Let rl,j = |�d̂−dj,l
| for all l, j. Then for each k ≥ 1 , the moment relaxation based on 

combined correlative-term sparsity for (TQ0) is given by

For each k ≥ 1 , the dual of (TQcs-ts

d̂,k
) reads as

where Dl,j
w  is defined as in Sect. 4.2 and D(k)

d̂
 is defined as in (54).

(54)D
(k−1)

d̂
∶=

p⋃

l=1

⋃

j∈{0}∪Jl

suppgj

(
H

(k−1)

d̂,l,j

)
∪�2

d̂
, k ≥ 1,

(55)H
(k)

d̂,l,j
∶= K

(k)

d̂,l,j
,

(56)E
(
K

(k)

d̂,l,j

)
=
{
{u, v} ∣ u ≠ v ∈ �d̂−dj,l

,
[
u⋆supp(gj)v

]
∩
[
D

(k−1)

d̂

]
≠ �

}
.

(57)

(
TQcs-ts

d̂,k

)
∶

𝜇cs-ts

d̂,k
(f , S) ∶= inf L�(f )

s.t. B
H

(k)

d̂,l,0

◦Md̂(�, Il) ∈ 𝛱
H

(k)

d̂,l,0

(�+
rl,0
), l ∈ [p],

B
H

(k)

d̂,l,j

◦Md̂−dj
(gj�, Il) ∈ 𝛱

H
(k)

d̂,l,j

(�+
rl,j
), j ∈ Jl, l ∈ [p],

[B
H

(k)

d̂,l,0

◦Md̂(�, Il)]uv = [B
H

(k)

d̂,l,0

◦Md̂(�, Il)]wz,

for all u⋆v
cyc
∼w⋆z, l ∈ [p],

y1 = 1.

(58)

sup 𝜇

s.t.
∑

w
cyc
∼ v
(
∑p

l=1

∑
j∈{0}∪Jl

⟨Ql,j,D
l,j
w ⟩ + 𝜇𝛿1w) =

∑
w
cyc
∼ v

aw,∀v ∈ [D
(k)

d̂
],

Ql,j ∈ �
+
rl,j
∩ �

H
(k)

d̂,l,j

, j ∈ {0} ∪ Jl, l ∈ [p],
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Theorem 9  Assume that {f } ∪ S ⊆ Symℝ⟨X⟩ . Let 𝜇cs

d̂
(f , S) be the optimum of the d̂-

th order sparse moment relaxation based on correlative sparsity for (TQ0) . Then the 
following hold: 

(1)	 Fixing a relaxation order d̂ ≥ d , the sequence (𝜇cs-ts

d̂,k
(f , S))k≥1 is monotone non-

decreasing and 𝜇cs-ts

d̂,k
(f , S) ≤ 𝜇cs

d̂
(f , S) for all k ≥ 1.

(2)	 Fixing a sparse order k ≥ 1 , the sequence (𝜇cs-ts

d̂,k
(f , S))d̂≥d is monotone nonde-

creasing.
(3)	 If the maximal chordal extension is used in (55), then (𝜇cs-ts

d̂,k
(f , S))k≥1 converges 

to 𝜇cs

d̂
(f , S) in finitely many steps.

From Theorem  9, we deduce the following two-level hierarchy of lower 
bounds for the optimum trmin(f , S)

II 1:

6 � Numerical experiments

In this section, we present numerical results of the proposed NCTSSOS hierar-
chies for both unconstrained and constrained noncommutative polynomial opti-
mization problems. Our tool to implement these hierarchies, named NCTSSOS, 
is written as a Julia package. NCTSSOS utilizes the Julia packages LightGraphs 
[7] to handle graphs, ChordalGraph [43] to generate approximately smallest 
chordal extensions and JuMP [14] to model SDP. Finally, NCTSSOS relies on 
MOSEK [3] to solve SDP. NCTSSOS is freely available at

https://github.com/wangjie212/NCTSSOS.
All numerical examples were computed on an Intel Core i5-8265U@1.60GHz 

CPU with 8GB RAM memory. The timing includes the time for pre-processing 
(to get the block structure in NCTSSOS), the time for modeling SDP and the 
time for solving SDP. For most examples tested in this paper (except the random 
ones), we use approximately smallest chordal extensions since they are much 
more scalable than the maximal chordal extension while yielding (almost) the 

(59)
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same optimum. For comparison purpose, we also implement the dense moment-
SOHS relaxation in NCTSSOS. The notations that we use in the following sub-
sections are listed in Table 1.

6.1 � Eigenvalue optimization examples

We first focus on the unconstrained case and consider the eigenvalue minimization 
problem for the following functions.

•	 The nc version of the Broyden banded function 

 where Ji = {j ∣ j ≠ i, max(1, i − 5) ≤ j ≤ min(n, i + 1)}.
•	 The nc version of the chained singular function 

 where J = {1, 3, 5,… , n − 3}.
•	 The nc version of the generalized Rosenbrock function 

•	 The nc version of the chained Wood function 

fBb(�) =

n∑

i=1

(
2Xi + 5X3

i
+ 1 −

∑

j∈Ji

(
Xj + X2

j

))⋆(
2Xi + 5X3

i
+ 1 −

∑

j∈Ji

(
Xj + X2

j

))
,

fcs(�) =
∑

i∈J

(
(
Xi + 10Xi+1

)⋆(
Xi + 10Xi+1

)
+ 5

(
Xi+2 − Xi+3

)⋆(
Xi+2 − Xi+3

)

+
(
X2
i+1

− 4Xi+1Xi+2 + 4X2
i+2

)⋆(
X2
i+1

− 4Xi+1Xi+2 + 4X2
i+2

)

+ 10
(
X2
i
− 20XiXi+3 + 100X2

i+3

)⋆(
X2
i
− 20XiXi+3 + 100X2

i+3

)
,

fgR(�) = 1 +

n∑

i=1

(
100

(
Xi − X2

i−1

)⋆(
Xi − X2

i−1

)
+
(
1 − Xi

)⋆(
1 − Xi

))
.

Table 1   The notation n The number of nc variables

d̂ The relaxation order

k The sparse order
t The number of terms
mb The maximal size of blocks
opt The optimal value
Time Running time in seconds
0 A number with absolute value less than 1×−4

– MOSEK running out of memory
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 where J = {1, 3, 5,… , n − 3} and 4|n.
•	 The nc version of the Broyden tridiagonal function 

To solve the unconstrained eigenvalue minimization problem of these functions, we 
always rely on the Newton chip method to compute a monomial basis, which turns 
out to be much smaller than the standard monomial basis. We compute �ts

1
(f ) (the 

optimum of (EQts
1
) ) using approximately smallest chordal extensions and compare 

the resulting values with �min(f ) (the optimum of (EP) ) corresponding to the dense 
approach. The results are reported in Table 2, 3, 4, 5, 6, respectively. It is evident 
from these tables that our sparse approach is much more scalable than the dense 
approach. The dense approach can never be executed due to the memory limit when 
the problem has over 100 variables while the sparse approach can easily handle 
problems with 4000 variables. Meanwhile when the dense approach is executable, 

fcW(�) =1 +
∑

i∈J

(
100

(
Xi+1 − X2

i

)⋆(
Xi+1 − X2

i

)
+
(
1 − Xi

)⋆(
1 − Xi

)
+ 90

(
Xi+3

−X2
i+2

)⋆(
Xi+3 − X2

i+2

)
+
(
1 − Xi+2

)⋆(
1 − Xi+2

)
+ 10

(
Xi+1 + Xi+3

−2)⋆
(
Xi+1 + Xi+3 − 2

)
+ 0.1

(
Xi+1 − Xi+3

)⋆(
Xi+1 − Xi+3

))
,

fBt(�) =
(
3X1 − 2X2

1
− 2X2 + 1

)⋆(
3X1 − 2X2

1
− 2X2 + 1

)

+

n−1∑

i=2

(
3Xi − 2X2

i
− Xi−1 − 2Xi+1 + 1

)⋆(
3Xi − 2X2

i
− Xi−1 − 2Xi+1 + 1

)

+
(
3Xn − 2X2

n
− Xn−1 + 1

)⋆(
3Xn − 2X2

n
− Xn−1 + 1

)
.

Table 2   The eigenvalue 
minimization for the nc 
Broyden banded function with 
d̂ = 3, k = 1

n Sparse Dense

mb opt time mb opt Time

20 15 0 0.34 61 0 1.42
40 15 0 0.77 121 0 34.9
60 15 0 0.97 181 0 367
80 15 0 1.20 – – –
100 15 0 1.57 – – –
200 15 0 3.14 – – –
300 15 0 5.25 – – –
400 15 0 7.11 – – –
500 15 0 9.42 – – –
600 15 0 12.9 – – –
700 15 0 15.6 – – –
800 15 0 18.5 – – –
900 15 0 22.3 – – –
1000 15 0 26.2 – – –
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the optimal value provided by the sparse approach is quite close (or even equal in 
many cases) to the one provided by the dense approach.

Now let us consider the constrained case. Let D be the semialgebraic set 
defined by {1 − X2

1
,… , 1 − X2

n
,X1 − 1∕3,… ,Xn − 1∕3} and the optimization prob-

lem is minimizing the eigenvalue of the nc Broyden banded function over D . We 
compute 𝜆cs-ts

d̂,1
(f , S) (the optimum of (EQcs-ts

d̂,1
) ) using approximately smallest 

Table 3   The eigenvalue 
minimization for the nc 
chained singular function with 
d̂ = 2, k = 1

n sparse dense

mb opt time mb opt Time

20 3 −0.0004 0.06 59 −0.0001 1.65
40 3 −0.0024 0.10 119 −0.0003 54.0
60 3 0 0.16 179 −0.0002 516
80 3 −0.0005 0.19 – – –
100 3 0 0.20 – – –
200 3 −0.0001 0.50 – – –
400 3 −0.0331 0.97 – - –
600 3 −0.0005 1.85 – – –
800 3 −0.0381 2.69 – – –
1000 3 −0.0074 4.10 – – –
2000 3 −0.0004 15.7 – – –
3000 3 −0.0065 32.4 – – –
4000 3 −0.0007 58.7 – – –

Table 4   The eigenvalue 
minimization for the nc 
generalized Rosenbrock 
function with d̂ = 2, k = 1

n Sparse Dense

mb opt Time mb opt Time

20 3 1.0000 0.06 40 1.0000 0.33
40 3 1.0000 0.06 80 1.0000 4.59
60 3 1.0000 0.07 120 1.0000 31.9
80 3 1.0000 0.08 160 1.0000 151
100 3 1.0000 0.08 200 1.0000 557
200 3 0.9999 0.15 – – –
400 3 0.9999 0.45 – – –
600 3 0.9999 0.70 – – –
800 3 0.9999 1.03 – – –
1000 3 0.9998 1.38 – – –
2000 3 1.0000 4.76 – – –
3000 3 1.0000 10.7 – – –
4000 3 0.9999 18.9 – – –
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chordal extensions with d̂ = 3 (the minimum relaxation order). The results are 
reported in Table 7. To show the benefits of our method by contrast with the usual 
sparse approach based on correlative sparsity, we also display the results for the 
latter approach (i.e., (EQcs

d̂
) ) and the results for the dense approach in the table. 

Again one can see from the table that our sparse approach is more scalable than 
the approach that exploits only correlative sparsity as well as the dense approach. 
Actually, the last two can never be executed due to the memory limit even when 
the problem has only 6 variables.

Table 5   The eigenvalue 
minimization for the nc chained 
Wood function with d̂ = 2, k = 1

n Sparse Dense

mb opt Time mb opt Time

20 3 1.0000 0.05 31 1.0000 0.16
40 3 0.9997 0.08 61 1.0000 1.14
60 3 0.9992 0.09 91 1.0000 7.06
80 3 1.0000 0.10 121 1.0000 30.9
100 3 1.0000 0.10 151 1.0000 100
200 3 0.9978 0.16 – – –
400 3 0.9930 0.43 – – –
600 3 0.9871 0.71 – – –
800 3 0.9846 1.04 – – –
1000 3 0.9919 1.41 – – –
2000 3 0.9605 4.95 – – –
3000 3 0.9889 9.93 – – –
4000 3 0.9652 18.6 – – –

Table 6   The eigenvalue 
minimization for the nc Broyden 
tridiagonal function with 
d̂ = 2, k = 1

n Sparse Dense

mb opt Time mb opt Time

20 5 0 0.07 41 0 0.25
40 5 0 0.08 81 0 3.28
60 5 0 0.09 121 0 21.6
80 5 0 0.13 161 0 117
100 5 0 0.15 201 0 335
200 5 0 0.29 – – –
400 5 0 0.66 – – –
600 5 0 0.97 – – –
800 5 0 1.56 – – –
1000 5 0 2.17 – – –
2000 5 0 7.58 – – –
3000 5 0 17.0 – – –
4000 5 0 29.5 — – –
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6.2 � Randomly generated examples

To compare the performance of the maximal chordal extension with approximate 
smallest chordal extensions, let us consider the eigenvalue minimization for a ran-
dom quartic polynomial f over the unit ball. To this end, let h ∈ ℝ⟨X1,… ,X20⟩ be a 
random quartic nc polynomials with t terms and coefficients taken from [−1, 1] , and 
let f = (h + h⋆)∕2 . The results of solving (EQts

2,1
) are provided in Table 8. It can be 

seen that even though approximate smallest chordal extensions might give a slightly 

Table 7   The eigenvalue 
minimization for the nc Broyden 
banded function over D with 
d̂ = 3, k = 1

 “CS + TS" indicates the results for the approach that exploits com-
bined term-correlative sparsity; “CS” indicates the results for the 
approach that exploits only correlative sparsity

n CS+TS CS Dense

mb opt Time mb opt Time mb opt Time

5 11 3.113 0.50 156 3.113 70.7 156 3.113 69.8
10 15 3.011 2.78 400 – – – – –
20 15 9.658 11.4 400 – – – – –
30 15 16.30 22.3 400 – – – – –
40 15 22.94 38.1 400 – – – – –
50 15 29.57 57.7 400 – – – – –
60 15 36.21 80.5 400 – – – – –
70 15 42.85 105 400 – – – – –
80 15 49.49 138 400 – – – – –
90 15 56.13 151 400 – – – – –
100 15 62.77 180 400 – – – – –

Table 8   The maximal 
chordal extension (max) 
versus approximate smallest 
chordal extensions (min) with 
d̂ = 2, k = 1

t max min

mb opt Time mb opt Time

80 34 −0.5366 0.26 2 −0.5366 0.15
100 37 −0.6289 0.34 3 −0.6289 0.12
120 49 −0.7885 0.48 3 −0.7946 0.19
140 54 −0.6265 0.80 3 −0.6265 0.17
160 88 −0.7464 6.37 3 −0.7486 0.34
180 110 −0.6357 17.1 3 −0.6360 0.23
200 117 −0.6899 24.1 3 −0.6930 0.35
220 141 −0.7878 51.2 3 −0.7901 0.38
240 178 −0.7633 213 4 −0.7780 0.36
260 207 – – 5 −0.8190 0.48
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looser bound, it yields significantly smaller block sizes and hence is more efficient 
than using the maximal chordal extension.

Now we construct randomly generated examples whose csp graph consists of p 
maximal cliques of size 15 as follows: let f =

∑p

l=1
(hl + h⋆

l
)∕2 where 

hl ∈ ℝ⟨X10l−9,… ,X10l+5⟩ is a random quartic nc polynomials with 15 terms and 
coefficients taken from [−1, 1] , and let S = {gl}

p

l=1
 where 

gl = 1 − X2
10l−9

−⋯ − X2
10l+5

 . We consider the eigenvalue minimization problem for 
f over the multi-ball � defined by S. Let p = 50, 100,… , 400 so that we obtain 8 
such instances2. We compute the NCTSSOS hierarchy (𝜆cs-ts

d̂,k
(f , S))k≥1 with d̂ = 2 and 

report the results of the first three steps (where we use the maximal chordal 

Table 9   The eigenvalue 
minimization for randomly 
generated examples over multi-
balls with d̂ = 2

 “CS + TS” indicates the results for the approach that exploits com-
bined term-correlative sparsity; “CS” indicates the results for the 
approach that exploits only correlative sparsity

n CS+TS CS dense

k mb opt time mb opt time mb opt time

505 1 21 −15.91 3.26 241 – – – – –
2 21 −15.42 7.49
3 21 −15.31 10.6

1005 1 25 −32.58 9.71 241 – – – – –
2 25 −31.91 24.5
3 25 −31.71 40.9

1505 1 26 −48.57 18.9 241 – – – – –
2 26 −47.00 47.0
3 26 −46.71 90.0

2005 1 25 −63.58 33.7 241 – – – – –
2 25 −62.05 85.8
3 25 −61.76 149

2505 1 23 −81.07 52.9 241 – – – – –
2 23 −78.75 134
3 23 −78.21 263

3005 1 23 −95.73 74.8 241 – – – – –
2 23 −93.13 212
3 23 −92.71 396

3505 1 24 −111.2 93.4 241 – – – – –
2 24 −108.3 258
3 24 −107.8 531

4005 1 25 −131.1 122 241 – – – – –
2 25 −127.5 375
3 25 −126.8 687

2  The polynomials are available at https://​wangj​ie212.​github.​io/​jiewa​ng/​code.​html.

https://wangjie212.github.io/jiewang/code.html
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extension for the first step and use approximate smallest chordal extensions for the 
second and third steps, respectively) in Table  9. As one may expect, neither the 
dense approach nor the approach that exploits only correlative sparsity can handle 
problems with so large sizes. On the other hand, our sparse approach easily scales 
up to 4005 variables.

6.3 � Trace optimization examples

Let us consider the unconstrained trace minimization for the nc Broyden banded 
function and the nc Broyden tridiagonal function. We compute �cs-ts

1
(f ) (the opti-

mum of (EQcs-ts
1

) ) using approximately smallest chordal extensions. The results are 

Table 10   The trace 
minimization for the nc 
Broyden banded function with 
d̂ = 3, k = 1

n Sparse Dense

mb opt time mb opt time

10 29 0 1.91 – – –
20 29 0 9.72 – – –
30 29 0 18.2 – – –
40 29 0 34.3 – – –
50 29 0 46.2 – – –
60 29 0 65.4 – – –
70 29 0 79.5 – – –
80 29 0 99.1 – – –
90 29 0 118 – – –
100 29 0 150 – – –

Table 11   The trace 
minimization for the nc Broyden 
tridiagonal function with 
d̂ = 2, k = 1

n Sparse Dense

mb opt Time mb opt Time

20 6 0 0.16 – – –
40 6 0 0.27 – – –
60 6 0 0.36 – – –
80 6 0 0.44 – – -
100 6 0 0.57 – – –
200 6 0 1.36 – – –
400 6 0 3.48 – – –
600 6 0 7.28 – – –
800 6 0 10.9 – – –
1000 6 0 15.4 – - –
2000 6 0 55.9 – – –
3000 6 0 122 – – –
4000 6 0 220 – – –
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reported in Table  10–11, respectively. As for eigenvalue minimization, the sparse 
approach is much more scalable than the dense approach, which actually can never 
be executed for these examples due to the memory limit.

We next consider the trace minimization for the nc Broyden banded function over 
the semialgebraic set D defined in Sect. 6.1. We compute 𝜇cs-ts

d̂,1
(f , S) (the optimum of 

(TQcs-ts

d̂,1
) ) using approximately smallest chordal extensions and compare with the 

results for the approach that exploits only correlative sparsity and the results for the 
dense approach. The minimum relaxation order d̂ = 3 is used. The results are 
reported in Table 12, which again demonstrate the scalability of our sparse approach.

Finally, we consider the trace minimization for the randomly generated quartic nc 
polynomials used in Sect.  6.1 over the multi-ball � . We compute the NCTSSOS 
hierarchy (𝜇cs-ts

d̂,k
(f , S))k≥1 with the relaxation order d̂ = 2 . We report the results of the 

first three steps (where we always use approximate smallest chordal extensions) in 
Table  13. As one could expect, neither the dense approach nor the approach that 
exploits only correlative sparsity can handle these problems. On the other hand, our 
sparse approach is easily scalable up to 4005 variables.

7 � Conclusions and outlook

We have presented the sparsity (term sparsity and combined correlative-term spar-
sity) adapted moment-SOHS hierarchies for both eigenvalue optimization and trace 
optimization involving noncommutative polynomials. Numerical experiments dem-
onstrate that these sparse hierarchies are very efficient and scale well with the prob-
lem size when appropriate sparsity patterns are accessible. One question left for 

Table 12   The trace 
minimization for the nc Broyden 
banded function over D with 
d̂ = 3, k = 1

 “CS+TS” indicates the results for the approach that exploits com-
bined term-correlative sparsity; “CS” indicates the results for the 
approach that exploits only correlative sparsity

n CS + TS CS Dense

mb opt Time mb opt Time mb opt Time

5 19 3.113 0.66 156 3.113 7.24 156 3.113 7.10
10 29 3.011 5.88 400 – – – – –
20 29 9.833 32.9 400 – – – – –
30 29 16.47 49.5 400 – – – – –
40 29 23.11 73.4 400 – – – – –
50 29 29.75 111 400 – – – – –
60 29 36.39 151 400 – – – – –
70 29 43.03 198 400 – – – – –
80 29 49.67 238 400 – – – – –
90 29 56.31 298 400 – – – – –
100 29 62.95 338 400 – – – – –
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future investigation is to develop a Gelfand-Naimark-Segal’s style construction for 
extracting a minimizer adapted to our sparse settings.

Recently a moment-SOHS hierarchy for optimization problems involving trace 
polynomials was proposed in [22]. It would be worth extending further our sparsity-
exploiting framework to handle trace polynomials.

We also plan to use the sparsity adapted moment-SOHS hierarchies developed 
in this paper to tackle large-scale NCPOPs arising from quantum information and 
condensed matter physics.
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