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Abstract. We study a class of polynomial optimization problems with a robust polynomial matrix inequality
constraint for which the uncertainty set is defined also by a polynomial matrix inequality (including
robust polynomial semidefinite programs as a special case). Under certain SOS-convexity assump-
tions, we construct a hierarchy of moment-SOS relaxations for this problem to obtain convergent
upper bounds of the optimal value by solving a sequence of semidefinite programs. To this end, we
apply the Positivstellensatz for polynomial matrices and its dual matrix-valued moment theory to a
conic reformulation of the problem. Most of the nice features of the moment-SOS hierarchy for the
scalar polynomial optimization are generalized to the matrix case. In particular, the finite conver-
gence of the hierarchy can be also certified if the flat extension condition holds. To extract global
minimizers in this case, we develop a linear algebra approach to recover the representing matrix-
valued measure for the corresponding truncated matrix-valued moment problem. As an application,
we use this hierarchy to solve the problem of minimizing the smallest eigenvalue of a polynomial
matrix subject to a polynomial matrix inequality. Finally, if SOS-convexity is replaced by convexity,
we can still approximate the optimal value as closely as desired by solving a sequence of semidefinite
programs, and certify global optimality in case that certain flat extension conditions hold true.
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1. Introduction. Polynomial optimization problems with polynomial matrix inequality
(PMI) constraints have a wide range of applications in many fields. In particular, as special
cases of PMIs, linear or bilinear matrix inequality constrained problems appear frequently in
most synthesis problems for linear systems in optimal control. Due to estimation errors or lack
of information, the data of real-world optimization problems often involve uncertainty. Hence,
robust optimization is an appropriate modeling paradigm for some safety-critical applications
with little tolerance for failure [6].

In this paper, we study the following robust PMI optimization problem under data uncer-
tainty in the PMI constraint:

(RPMIO)

f
? := inf

y∈Y
f(y)

s.t. Y ⊆ R`, P (y,x) � 0, ∀x ∈ X ⊂ Rn,
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where y = (y1, . . . , y`) is the decision variables constrained in a basic semialgebraic set

(1.1) Y = {y ∈ R` | θ1(y) ≥ 0, . . . , θs(y) ≥ 0},

x = (x1, . . . , xn) is the uncertain parameters belonging to some uncertainty set

(1.2) X := {x ∈ Rn | G(x) � 0},

defined by a q × q symmetric polynomial matrix G(x), f ∈ R[y] is a polynomial function
in y, and P (y,x) is an m ×m symmetric polynomial matrix in y and x. That is, the PMI
constraint in (RPMIO) depends polynomially on the decision variable y and the uncertain
parameter x. We make the following assumptions on (RPMIO).

Assumption 1. (i) f(y),−θ1(y), . . . ,−θs(y) are SOS-convex (Definition 2.4); (ii) −P (y,x)
is PSD-SOS-convex (Definition 2.6) in y for all x ∈ X ; (iii) X is compact.

To highlight the modeling power of (RPMIO) under Assumption 1, let us name a few
problems from different fields which can be modelled as an instance of (RPMIO). First, note
that robust polynomial semidefinite programs (SDP) are linear (RPMIO). A basic problem
in interval computations is to estimate intervals of confidence for the components of a given
vector-valued function when its variables range in a product of intervals. Assume that the
function is given by polynomials and we seek an ellipsoid of confidence for its components.
Then this problem can be modelled as a linear instance of (RPMIO). In the context of
risk management, the robust correlation stress testing where data uncertainty arises due to
untimely recording of portfolio holdings can be formulated as a robust least square SDP
which is a special case of (RPMIO) [35]. In optimal control, many problems for systems
of ordinary differential equations can be posed as convex optimization problems with matrix
inequality constraints which should hold on a prescribed portion of the state space [10, 24, 45].
If the involved functions in the differential equations are polynomials, these problems often
take the form of linear (RPMIO). Moreover, the deterministic PMI optimization problem of
minimizing a polynomial function h(x) over the set X studied in [23] can be formulated as a
linear instance of (RPMIO), which also implies that (RPMIO) is in general NP-hard, even in
the linear case.

For deterministic PMI optimization problems, Kojima [30] proposed SOS relaxations by
utilizing a penalty function and a generalized Lagrangian dual, and Henrion and Lasserre [23]
gave a hierarchy of moment relaxations allowing to detect finite convergence and to extract
global minimizers. Recently, there has been increasing interest in studying robust polynomial
optimization problems; see e.g. [34, 26, 25, 11]. However, robust PMI constraints are not
considered in these work. Since (RPMIO) under Assumption 1 is computationally intractable,
there is very little work on how to solve or even approximate it, though some asymptotically
exact approaches are available for linear (RPMIO) treated as a special case of the robust SDP
problem [5]. In particular, Ohara and Sasaki [42], Bliman [7, 8] proposed approaches for the
robust SDP problem based on the Kalman–Yakubovich–Popov lemma. Scherer and Hol [45]
established a Positivstellensatz for polynomial matrices and derived matrix SOS relaxations
for the linear case of (RPMIO). Oishi [43] gave an approach for the robust SDP problem
based on a division of the parameter region. A computationally tractable hierarchy of inner
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and outer approximations for the robust SDP problem was proposed by Louca and Bitar [37].
Li etc. [35] gave a simple variant of the spectral projected gradient method to solve robust
least square SDP problems.

Before introducing our main contributions, we would like to point out that the matrix
SOS relaxations [45] for the linear case of (RPMIO) cannot be straightforwardly extended to
(RPMIO) with SOS-convexity. Moreover, the dual moment facet of the matrix SOS relaxations
was not investigated in [45]. This motivates us to establish a moment-SOS hierarchy for
(RPMIO) with SOS-convexity in full generality and extend its nice features from the scalar
case to the matrix case.

Let us denote by S[x]m the cone of m×m symmetric real polynomial matrices in x and by
Pm(X ) its subcone consisting of polynomial matrices which are positive semidefinite (PSD)
on X . By Haviland’s theorem for polynomial matrices (Theorem 2.14), the dual cone of
Pm(X ) consists of tracial X -moment functionals on S[x]m (Definition 2.13), while justifying
the membership of a linear funcitonal on S[x]m to the dual cone of Pm(X ) amounts to the
matrix-valued X -moment problem (Definition 2.16). Therefore, to explore the dual aspect
of the matrix sums-of-squares (SOS) relaxations for (RPMIO), we need to invoke the results
on the matrix-valued moment problem. For a given multi-indexed sequence of real m × m
symmetric matrices S = (Sα)α∈Nn , the matrix-valued X -moment problem asks if there exists a
PSD matrix-valued representing measure Φ supported on X such that Sα =

∫
X xαdΦ(x) for all

α ∈ Nn. We refer the reader to [29] for a thorough introduction on the history and background
about the matrix-valued moment problem. For the scalar moment problem (m = 1), due to
Haviland’s theorem and Putinar’s Positivstellensatz, the representing measure is guaranteed
by the PSDness of the associated moment matrices and localizing matrices. Based on this,
Lasserre [31] proposed the moment-SOS hierarchy for the scalar polynomial optimization and
established its asymptotic convergence. For the truncated scalar moment problem, Curto and
Fialkow [14] gave the celebrated flat extension condition on the moment matrix as a sufficient
condition for the existence of a representing measure, which allows to detect finite convergence
of Lasserre’s hierarchy and extract global minimizers [22]. Recently, Kimsey and Trachana
[29] obtained a flat extension theorem for the truncated matrix-valued moment problem.
Unlike the scalar case, to the best of our knowledge, there is very little work in the literature
to link the theory of matrix-valued moments to PMI optimization. As the first attempt to
connect these two subjects, we aim to construct a moment-SOS hierarchy for (RPMIO) with
SOS-convexity by combining Scherer-Hol’s Positivstellensatz with the matrix-valued moment
theory.

Contributions. Our main contributions are summarized as follows:
1. As a first contribution, we provide a solution to the truncated matrix-valued X -

moment problem using the flat extension condition. Furthermore, we develop a linear
algebra procedure to retrieve a finitely atomic representing measure whenever the flat
extension condition holds, which extends Henrion-Lasserre’s algorithm to the matrix
case.

2. We establish a moment-SOS hierarchy for (RPMIO) with SOS-convexity. To achieve
this, we first reformulate (RPMIO) to a conic optimization problem via the Lagrange
dual theory, and then replace the conic constraints with more tractable matrix qua-
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dratic module constraints or matrix-valued pseudo-moment cone constraints. This
yields a convergent sequence of upper bounds on the optimum of (RPMIO). More im-
portantly, we show that if the flat extension condition holds, then finite convergence
occurs and we can extract a globally optimal solution y? of (RPMIO) as well as the
points x ∈ ∆(y?) and the corresponding vectors v, where

(1.3) ∆(y?) := {x ∈ X | ∃v ∈ Rm s.t. P (y?,x)v = 0}

is the index set of constraints active at y?.
3. For the linear case of (RPMIO), we show that the dual problem is exactly the gen-

eralized matrix-valued moment problem and our SOS relaxations recover the matrix
SOS relaxations proposed by Scherer and Hol [45]. As an application, we provide a
solution to the problem of minimizing the smallest eigenvalue of a polynomial matrix
over a set defined by a PMI.

4. In case that the SOS-convexity assumption of (RPMIO) is weakened to convexity, we
also provide a sequence of SDPs that can approximate the optimal value of (RPMIO)
as closely as desired. Moreover, finite convergence can be detected via certain flat
extension conditions.

The rest of the paper is organized as follows. We first recall some preliminaries in Section 2.
Then, we consider the truncated matrix-valued X -moment problem in Section 3 and propose
a linear algebra procedure for the representing measure retrieve. In Section 4, we construct
a moment-SOS hierarchy for (RPMIO) with SOS-convexity, and treat particularly the linear
case. An extension of the proposed approach to the general convex case is discussed in Section
5. Conclusions are given in Section 6.

2. Preliminaries. We collect some notation and basic concepts which will be used in this
paper. We denote by x (resp., y) the n-tuple (resp., `-tuple) of variables (x1, . . . , xn) (resp.,
(y1, . . . , y`)). The symbol N (resp., R, R+) denotes the set of nonnegative integers (resp., real
numbers, nonnegative real numbers). Denote by Rm (resp. Rl×q, Sm) the m-dimensional real
vector (resp. l × q real matrix, m × m symmetric real matrix) space. For v ∈ Rm (resp.,
N ∈ Rl×q), the symbol vᵀ (resp., Nᵀ) denotes the transpose of v (resp., N). For a matrix
N ∈ Rm×m, tr (N) denotes its trace. For two matrices N1 and N2, N1 ⊗ N2 denotes the
Kronecker product of N1 and N2. The notation Im denotes the m ×m identity matrix. For
any t ∈ R, dte denotes the smallest integer that is not smaller than t. For u ∈ Rm, ‖u‖ denotes
the standard Euclidean norm of u. For a vector α = (α1, . . . , αn) ∈ Nn, let |α| = α1 +· · ·+αn.
For a set A, we use |A| to denote its cardinality. For k ∈ N, let Nnk = {α ∈ Nn | |α| ≤ k} and

|Nnk | =
(
n+k
k

)
be its cardinality. For variables x ∈ Rn and α ∈ Nn, xα denotes the monomial

xα1
1 · · ·xαn

n . Let R[x] (resp. S[x]m) denote the set of real polynomials (resp. m×m symmetric
real polynomial matrices) in x. For h ∈ R[x], we denote by ∇x(h) its gradient vector and by
∇xx(h) its Hessian matrix. For h ∈ R[x], we denote by deg(h) its (total) degree. For k ∈ N,
denote by R[x]k the set of polynomials in R[x] of degree up to k. For a R-vector space A,
denote by A∗ the dual space of linear functionals from A to R. Given a cone B ⊂ A, its dual
cone is B∗ = {L ∈ A∗ | L(b) ≥ 0, ∀b ∈ B}.
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2.1. A positivstellensatz for polynomial matrices. We recall the Positivstellensatz for
polynomial matrices obtained in [45]. For an l1 × l2 polynomial matrix T (x) = [Tij(x)],
denote

deg(T ) := max {deg(Tij) | i = 1, . . . , l1, j = 1, . . . , l2}.

A polynomial matrix Σ(x) ∈ S[x]q is said to be a sum-of-squares (SOS) if there exists an l× q
polynomial matrix T (x) for some l ∈ N such that Σ(x) = T (x)ᵀT (x). For d ∈ N, denote by
ud(x) the canonical basis of R[x]d, i.e.,

(2.1) ud(x) := [1, x1, x2, · · · , xn, x2
1, x1x2, · · · , xdn]ᵀ,

whose cardinality is |Nnd | =
(
n+d
d

)
. With d = deg(T ), we can write T (x) as

T (x) = Q(ud(x)⊗ Iq) with Q = [Q1, . . . , Q|Nn
d |], Qi ∈ Rl×q,

where Q is the vector of coefficient matrices of T (x) with respect to ud(x). Hence, Σ(x) is an
SOS with respect to ud(x) if there exists some Q ∈ Rl×q|Nn

d | satisfying

Σ(x) = T (x)ᵀT (x) = (ud(x)⊗ Iq)ᵀ(QᵀQ)(ud(x)⊗ Iq).

We thus have the following result.

Proposition 2.1. [45, Lemma 1] A polynomial matrix Σ(x) ∈ S[x]q is an SOS with respect

to the monomial basis ud(x) if and only if there exists Z ∈ Sq|N
n
d |

+ such that

Σ(x) = (ud(x)⊗ Iq)ᵀZ(ud(x)⊗ Iq).

Define the bilinear mapping

(·, ·)m : Rmq×mq × Rq×q → Rm×m, (A,B)m = trm (Aᵀ(Im ⊗B)) ,

with

trm (C) :=

 tr (C11) · · · tr (C1m)
...

. . .
...

tr (Cm1) · · · tr (Cmm)

 for C ∈ Rmq×mq, Cjk ∈ Rq×q.

Remark 2.2. Note that (A,B)1 is just the standard inner product 〈A,B〉 = tr (AᵀB).
Moreover, we have (A,B)m � 0 if A � 0 and B � 0 ([45]).

Assumption 2. For the defining matrix G(x) of X in (1.2), there exists r ∈ R and an SOS
polynomial matrix Σ(x) ∈ S[x]q such that

r2 − ‖x‖2 − 〈Σ(x), G(x)〉 is an SOS.

Theorem 2.3. [45, Corollary 1] Let Assumption 2 hold and F (x) ∈ S[x]m be positive on X .
Then there exist SOS polynomial matrices Σ0(x) ∈ S[x]m and Σ(x) ∈ S[x]mq such that

F (x) = Σ0(x) + (Σ(x), G(x))m.
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For each k ∈ N, we define the k-th truncated matrix quadratic module Qmk (G) associated
with G(x) by

Qmk (G) :=

Σ0(x) + (Σ(x), G(x))m

∣∣∣∣∣∣∣
Σ0 ∈ S[x]m,Σ ∈ S[x]mq,

Σ0,Σ1 are SOS,

deg(Σ0),deg((Σ, G)m) ≤ 2k

 ,

and define the matrix quadratic module by

Qm(G) =
⋃
k∈N
Qmk (G).

By Proposition 2.1, checking membership in Qmk (G) can be written as an SDP.

2.2. Convexity and SOS-convexity. To derive a moment-SOS hierarchy for (RPMIO),
we need to impose the following SOS-convexity on (RPMIO).

Definition 2.4. [21] A polynomial h ∈ R[y] is SOS-convex if its Hessian

∇yyh(y) = H(y)ᵀH(y),

for some polynomial matrix H(y).

While checking the convexity of a polynomial is generally NP-hard [1], the SOS-convexity can
be justified numerically by solving a SDP problem [21]. Ahmadi and Parrilo [2] proved that
the set of convex polynomials and the set of SOS-convex polynomials in R[y] up to degree k
coincide if and only if ` = 1 or k = 2 or (`, k) = (2, 4).

Recall the definition of the PSD-convexity of a polynomial matrix.

Definition 2.5. We say that a polynomial matrix Q(y) ∈ S[y]m is PSD-convex if

tQ(y(1)) + (1− t)Q(y(2)) � Q(ty(1) + (1− t)y(2))

holds for any y(1),y(2) ∈ R` and t ∈ (0, 1).

Nie [41] gave an extension of SOS-convexity to polynomial matrices.

Definition 2.6. [41] We say that a polynomial matrix Q(y) ∈ S[y]m is PSD-SOS-convex if
for every v ∈ Rm, there exists a polynomial matrix Fv(y) in y such that

∇yy(vᵀQ(y)v) = Fv(y)ᵀFv(y).

In other words, Q(y) is PSD-SOS-convex if and only if vᵀQ(y)v is an SOS-convex polynomial
for each v ∈ Rm. Clearly, if Q(y) is PSD-SOS-convex, then it is PSD-convex, but not vice
versa.

The PSD-SOS-convexity condition of a polynomial matrix Q(y) ∈ S[y]m requires checking
the Hessian ∇yy(vᵀQ(y)v) for every v ∈ Rm, which is very hard in practice. A stronger
condition is given in [41].

Definition 2.7. [41] We say that a polynomial matrix Q(y) ∈ S[y]m is uniformly PSD-SOS-
convex if there exists a polynomial matrix F (v,y) in (v,y) such that

(2.2) ∇yy(vᵀQ(y)v) = F (v,y)ᵀF (v,y).
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Clearly, if Q(y) ∈ S[y]m is uniformly PSD-SOS-convex, then it is PSD-SOS-convex. Checking
the existence of F (v,y) in (2.2) can be converted to an SDP feasibility problem. Moreover,
we have the following proposition.

Proposition 2.8. A polynomial matrix Q(y) =
∑

α∈supp(Q)Qαy
α ∈ S[y]m is uniformly

PSD-SOS-convex if
∑

α∈supp(Q)Qα ⊗∇yyy
α is an SOS polynomial matrix.

Proof. Observe that

∇yy(vᵀQ(y)v) =
m∑

i,j=1

 ∑
α∈supp(Q)

[Qα]ij∇yyy
α

 vivj

= (v ⊗ I`)ᵀ
 ∑

α∈supp(Q)

Qα ⊗∇yyy
α

 (v ⊗ I`).

If there exists a polynomial matrix T (y) such that ∑
α∈supp(Q)

Qα ⊗∇yyy
α

 = T (y)ᵀT (y),

we have (2.2) by letting F (v,y) = T (y)(v ⊗ I`).
Corollary 2.9. A quadratic polynomial matrix

Q(y) = C +
∑̀
i=1

Liyi +
∑̀
i,j=1

Qijyiyj ∈ S[y]m,

where C,Li, Qij ∈ Sm and Qij = Qji, is uniformly PSD-SOS-convex if the m` ×m` matrix
[Qij ]1≤i,j≤` is PSD.

Proof. It is clear that
∑

α∈supp(Q)∇yyy
α ⊗ Qα = 2[Qij ]1≤i,j≤` which implies that the

matrix
∑

α∈supp(Q)Qα⊗∇yyy
α ∈ S`m×`m is PSD. Hence, Q(y) is uniformly PSD-SOS-convex

by Proposition 2.8.

2.3. Matrix-valued measures. Now we recall some background on the theory of matrix-
valued measures, which is crucial for our subsequent development. For more details, the reader
is referred to [19, 20, 17, 16]. Denote by B(X ) the smallest σ-algebra generated from the open
subsets of X and by m(X ) the set of all finite Borel measures on X . A measure φ ∈ m(X ) is
positive if φ(A) ≥ 0 for all A ∈ B(X ). Denote by m+(X ) the set of all finite positive Borel
measures on X . The support supp(φ) of a Borel measure φ ∈ m(X ) is the (unique) smallest
closed set A ∈ B(X ) such that φ(X \ A) = 0.

Definition 2.10. Let φij ∈ m(X ), i, j = 1, . . . ,m. The m×m matrix-valued measure Φ on
X is defined as the matrix-valued function Φ: B(X )→ Rm×m with

Φ(A) := [φij(A)] ∈ Rm×m, ∀A ∈ B(X ).
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If φij = φji for all i, j = 1, . . . ,m, we call Φ a symmetric matrix-valued measure. If
vᵀΦ(A)v ≥ 0 holds for all A ∈ B(X ) and for all column vectors v ∈ Rm, we call Φ a
PSD matrix-valued measure. The set

supp(Φ) :=
m⋃

i,j=1

supp(φij)

is called the support of the matrix-valued measure Φ.

We denote by Mm(X ) (resp. Mm
+ (X )) the set of all m ×m (resp. PSD) symmetric matrix-

valued measures on X .

Definition 2.11. Let Φ = [φij ] ∈ Mm(X ). A function h : X → R is called Φ-measurable if
h is φij-measurable for every i, j = 1, . . . ,m. The matrix-valued integral of h with respect to
the measure Φ is defined by∫

X
h(x)dΦ(x) :=

[∫
X
h(x)dφij(x)

]
i,j=1,...,m

∈ Rm×m.

Definition 2.12. A finitely atomic matrix-valued measure Φ ∈ Mm
+ (X ) is a matrix-valued

measure of form

(2.3) Φ =
r∑
i=1

Wiδx(i) ,

where Wi ∈ Sm+ , i = 1, . . . , r, x(i)’s are distinct points in X and δx(i) denotes the Dirac measure
centered at x(i).

Clearly, for a finitely atomic matrix-valued measure Φ ∈ Mm
+ (X ) and a Φ-measurable

function h : X → R, it holds that∫
X
h(x)dΦ(x) =

r∑
i=1

Wih(x(i)).

Definition 2.13. We call a linear functional L : S[x]m → R a tracial X -moment functional
if there exists a matrix-valued measure Φ ∈Mm

+ (X ) such that

(2.4) supp(Φ) ⊆ X and L (F ) =

∫
X

tr (F (x)dΦ(x)) , ∀F (x) ∈ S[x]m.

The matrix-valued measure Φ ∈Mm
+ (X ) is called a representing measure of L .

For any Φ ∈ Mm
+ (X ), denote LΦ : S[x]m → R the associated tracial X -moment functional.

For F (x) ∈ S[x]m, we write F (x) =
∑

α∈supp(F ) Fαx
α, where Fα is the coefficient matrix of

xα in F (x) and

supp(F ) := {α ∈ Nn | xα appears in some Fij(x)}.
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We have, if LΦ : S[x]m → R a tracial X -moment functional, then

(2.5) LΦ(F ) =

m∑
i=1

m∑
j=1

∫
X
Fij(x)dφij(x) =

∑
α∈supp(F )

tr

(
Fα

∫
X
xαdΦ(x)

)
.

We define the convex cones

Lm(X ) := {L : S[x]m → R | L is a tracial X -moment functional},

and

(2.6) Pm(X ) := {F (x) ∈ S[x]m | F (x) � 0, ∀x ∈ X} .

Theorem 2.14 (Haviland’s theorem for polynomial matrices). [12, Theorem 3] For a linear
functional L : S[x]m → R, L ∈ Lm(X ) if and only if L (F ) ≥ 0 for all F (x) ∈ Pm(X ).

Proposition 2.15. The cones Lm(X ) and Pm(X ) are dual to each other, i.e., Lm(X ) =
Pm(X )∗ and Pm(X ) = Lm(X )∗.

Proof. Due to (2.5), it is clear that Lm(X ) ⊆ Pm(X )∗ and Pm(X ) ⊆ Lm(X )∗. Theorem
2.14 implies that Lm(X ) ⊇ Pm(X )∗. So we only need prove Pm(X ) ⊇ Lm(X )∗. Suppose that
there exists a polynomial matrix F (x) ∈ S[x]m such that F (x) ∈ Lm(X )∗ but F (x) 6∈ Pm(X ).
Then there exists a point x̄ ∈ X and a vector v ∈ Rm such that vᵀF (x̄)v < 0. Now define a
linear functional LΦ̄ ∈ Lm(X ) with Φ̄ := vvᵀδx̄ ∈Mm

+ (X ). It holds

LΦ̄(F ) = tr (F (x̄)vvᵀ) = vᵀF (x̄)v < 0,

a contradiction.

2.4. The matrix-valued X -moment problem. Let S = (Sα)α∈Nn be a multi-indexed
sequence of symmetric matrices in Sm.

Definition 2.16. [28] For a non-empty closed set X ⊆ Rn, the sequence S = (Sα)α∈Nn ⊂ Sm
is called a matrix-valued X -moment sequence if there exists a matrix-valued measure Φ ∈
Mm

+ (X ) such that

(2.7) supp(Φ) ⊆ X and Sα =

∫
X
xαdΦ(x), ∀α ∈ Nn.

The matrix-valued measure Φ ∈ Mm
+ (X ) satisfying (2.7) is called a representing measure of

S.

For a given sequence S = (Sα)α∈Nn ⊂ Sm, we can define a linear functional LS : S[x]m → R
in the following way:

LS(F ) :=
∑

α∈supp(F )

tr (FαSα) , ∀F (x) ∈ S[x]m.

We call LS the Riesz functional associated to the sequence S. Clearly, S is a matrix-valued
X -moment sequence if and only if LS is a tracial X -moment functional.
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Definition 2.17. Given a sequence S = (Sα)α∈Nn ⊂ Sm, the associated moment matrix
M(S) is the block matrix whose block rows and block columns are indexed by Nn and the
(α,β)-th block entry is Sα+β for all α,β ∈ Nn. For G ∈ S[x]q, the localizing matrix M(GS)
associated to S and G is the block matrix whose block rows and block columns are indexed by
Nn and the (α,β)-th block entry is

∑
γ∈supp(G) Sα+β+γ ⊗Gγ for all α,β ∈ Nn. Let d ∈ N.

The d-th order moment matrix Md(S) (resp. localizing matrix Md(GS)) is the submatrix of
M(S) (resp. M(GS)) whose block row and block column are both indexed by Nnd .

The following proposition can be easily verified from the definitions.

Proposition 2.18. Let Σ0(x) ∈ S[x]m and Σ(x) ∈ S[x]mq be SOS polynomial matrices such
that

Σ0(x) = (ud(x)⊗ Im)ᵀZ0(ud(x)⊗ Im) and Σ(x) = (ud(x)⊗ Imq)ᵀZ(ud(x)⊗ Imq),

with Z0 ∈ Sm|N
n
d |

+ and Z ∈ Smq|N
n
d |

+ . Then for a sequence S = (Sα)α∈Nn ⊂ Sm, it holds that

LS(Σ0) = tr (Z0Md(S)) and LS((Σ, G)m) = tr (ZMd(GS)) .

Let dG := ddeg(G)/2e. For each integer k ≥ dG, we define the sets

Mm
k (G) := {S = (Sα)α∈Nn

2k
⊂ Sm |Mk(S) � 0, Mk−dG(GS) � 0},

and let
Mm(G) :=

⋂
k≥dG

Mm
k (G),

which are all convex cones. Checking membership in Mm
k (G) can be written as an SDP.

Moreover, by Proposition 2.18, Mm
k (G) is the dual cone of Qmk (G).

For a given S = (Sα)α∈Nn ⊂ Sm, the matrix-valued X -moment problem asks when there
exists a matrix-valued measure Φ ∈ Mm

+ (X ) satisfying the conditions in (2.7), which is ad-
dressed in the following theorem.

Theorem 2.19. [12, Theorems 5 and 6] Let Assumption 2 hold. Given a sequence S =
(Sα)α∈Nn ⊂ Sm, S is a matrix-valued X -moment sequence if and only if S ∈Mm(G).

Proof. Suppose that S = (Sα)α∈Nn ⊂ Sm is a matrix-valued X -moment sequence. By
Definition 2.13 and Remark 2.2, LS(Σ0) ≥ 0 and LS((Σ, G)m) ≥ 0 for all SOS polynomial
matrices Σ0(x) ∈ S[x]m and Σ(x) ∈ S[x]mq. Then by Proposition 2.18, S ∈ Mm(G). The
converse part can be obtained by combining Remark 2.2, Theorems 2.3, 2.14 and Proposition
2.18.

Remark 2.20. If m = 1, we use the notation Q(G) (resp., Qk(G),M(G),Mk(G)) instead
of Q1(G) (resp., Q1

k(G), M1(G), M1
k(G)) for simplicity. For a set of polynomials H(x) =

{h1(x), . . . , hs(x)} ⊂ R[x], by slightly abusing notation, we use Qm(H), Qmk (H), Mm(H),
Mm

k (H) to denote the related sets associated with the diagonal matrix diag h1(x), . . . , hs(x).
Then, when m = 1, Theorems 2.3 and 2.19 recover Putinar’s Positivstellensatz [44] and its
dual aspect for the basic semi-algebraic set

{x ∈ Rn | h1(x) ≥ 0, . . . , hs(x) ≥ 0}.
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3. The flat extension condition and matrix-valued measure recovery.

3.1. The truncated matrix-valued X -moment problem. Recently, Kimsey and Trachana
[29] obtained a flat extension theorem which provides a solution to the truncated matrix-valued
moment problem.

Theorem 3.1. [29, Theorem 6.2] (flat extension) For a truncated sequence S = (Sα)α∈Nn
2k
⊂

Sm, the following statements are equivalent:
(i) S admits an atomic representing measure Φ =

∑r
i=1Wiδx(i) with Wi ∈ Sm+ , x(i) ∈ Rn

and
∑r

i=1 rank(Wi) = rank(Mk(S));
(ii) Mk(S) � 0 and S admits an extension S̃ = (S̃α)α∈Nn

2k+2
such that Mk+1(S̃) � 0 and

rank(Mk(S)) = rank(Mk+1(S̃)).

When m = 1, Theorem 3.1 recovers the celebrated flat extension theorem of Curto and Fialkow
[14]. There is also a constrained version of the result of Curto and Fialkow [15]. As a matrix
version of their result, we next extend Theorem 3.1 to matrix-valued measures supported on
X , which provides a solution to the truncated matrix-valued X -moment problem.

Theorem 3.2. Given a truncated sequence S = (Sα)α∈Nn
2k
⊂ Sm, the following statements

are equivalent:
(i) S admits an atomic representing measure Φ =

∑r
i=1Wiδx(i) with Wi ∈ Sm+ , x(i) ∈ X

and
∑r

i=1 rank(Wi) = rank(Mk(S));
(ii) Mk(S) � 0 and S admits an extension S̃ = (S̃α)α∈Nn

2(k+dG)
such that Mk+dG(S̃) � 0,

Mk(GS̃) � 0 and rank(Mk(S)) = rank(Mk+dG(S̃)).

Proof. (i)⇒(ii). It is implied by Theorems 2.19 and 3.1.
(ii)⇒(i). By Theorem 3.1, S admits a finitely atomic representing measure Φ =

∑r
i=1Wiδx(i)

with Wi ∈ Sm+ , x(i) ∈ Rn and
∑r

i=1 rank(Wi) = rank(Mk(S)). We need to prove x(i) ∈ X for
i = 1, . . . , r.

By Theorem 3.1, we can extend S̃ to an infinite sequence Ŝ = (Ŝα)α∈Nn such that M(Ŝ) �
0 and rank(M(Ŝ)) = rank(Mk(S)). For simplicity, in the following we will still use the symbol
S to denote Ŝ.

For a column vector of polynomials H(x) ∈ R[x]m, we write H(x) =
∑

γ∈supp(H)Hγx
γ

with Hγ ∈ Rm. We define a subspace IS of R[x]m associated with S by

IS :=

H(x) ∈ R[x]m

∣∣∣∣∣∣
∑

γ∈supp(H)

Sα+γHγ = 0, ∀α ∈ Nn
 .

For any H(x) ∈ IS, we have H(x(i))ᵀWiH(x(i)) = 0 for all i = 1, . . . , r. In fact, as H(x) ∈ IS,
it holds that

0 =
∑

α∈supp(H)

∑
β∈supp(H)

Hᵀ
αSα+βHβ =

r∑
i=1

H(x(i))ᵀWiH(x(i)).

As Wi’s are PSD, it implies that

(3.1) H(x(i))ᵀWiH(x(i)) = 0 and WiH(x(i)) = 0.
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Consider the quotient space over R

R[x]m/IS := {H + IS | H ∈ R[x]m}

consisting of equivalence classes modulo IS. Let t := rank(M(S)) = rank(Mk(S)). Let
β(1), . . . ,β(t) ∈ Nnk (not necessarily distinct) and standard basis (column) vectors e(1), . . . , e(t)

(not necessarily distinct) of Rm be such that

(3.2)
{

col
(

(Sα+β(1))α∈Nn

)
e(1), . . . , col

(
(Sα+β(t))α∈Nn

)
e(t)
}

is a set of t linearly independent column vectors of M(S) and hence forms a basis of the

column space of M(S). Here, col
(

(Sα+β(i))α∈Nn

)
denotes the column vector with entries

(Sα+β(i))α∈Nn . We claim that the set

(3.3)
{
xβ(1)

e(1) + IS, . . . , xβ(t)

e(t) + IS
}

forms a basis of R[x]m/IS. To see this, first note that the elements in (3.3) are linearly
independent as the elements in (3.2) are linearly independent. Then, it is sufficient to prove
that for arbitrary γ ∈ Nn and j ∈ N with 1 ≤ j ≤ t, the element xγe(j) + IS can be written
as a linear combination of elements in (3.3). This is indeed true since the column vector
col
(
(Sα+γ)α∈Nn

)
e(j) can be written as a linear combination of elements in (3.2). For any

H(x) ∈ R[x]m, we write H(x) = H(0)(x) +H(1)(x) where H(0) is the residue of H modulo IS
w.r.t. the basis (3.3) and H(1) ∈ IS. Since β(1), . . . ,β(t) ∈ Nnk , we see that deg(H(0)) ≤ k.

Let {p(i)(x)}ri=1 be the Lagrange interpolation polynomials at {x(i)}ri=1 such that p(i)(x(i)) =
1 and p(i)(x(j)) = 0 for all j 6= i. Now we fix an i and prove x(i) ∈ X . As Wi � 0, there
exists a vector v(i) ∈ Rm such that (v(i))ᵀWiv

(i) > 0. Let Hi(x) = p(i)(x)v(i) ∈ R[x]m. Let

us write Hi = H
(0)
i + H

(1)
i and H

(0)
i (x) =

∑
α∈supp(H

(0)
i )

H
(0)
i,αx

α with supp(H
(0)
i ) ⊆ Nnk . As

Mk(GS) � 0, we have

∑
α∈supp(H

(0)
i )

∑
β∈supp(H

(0)
i )

(
(H

(0)
i,α)ᵀ ⊗ Iq

)
[Mk(GS)]αβ

(
H

(0)
i,β ⊗ Iq

)
� 0.
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By the definition of Mk(GS), we have∑
α∈supp(H

(0)
i )

∑
β∈supp(H

(0)
i )

(
(H

(0)
i,α)ᵀ ⊗ Iq

)
Mk(GS)αβ

(
H

(0)
i,β ⊗ Iq

)

=
∑

α∈supp(H
(0)
i )

∑
β∈supp(H

(0)
i )

(
(H

(0)
i,α)ᵀ ⊗ Iq

) ∑
γ∈supp(G)

Sα+β+γ ⊗Gγ

(H(0)
i,β ⊗ Iq

)

=
∑

γ∈supp(G)

 ∑
α∈supp(H

(0)
i )

∑
β∈supp(H

(0)
i )

(H
(0)
i,α)ᵀSα+β+γH

(0)
i,β

Gγ

=

 r∑
j=1

H
(0)
i (x(j))TWjH

(0)
i (x(j))

G(x(j))

=(v(i) −H(1)
i (x(i)))TWi(v

(i) −H(1)
i (x(i)))G(x(i))

+
∑
j 6=i

H
(1)
i (x(j)))TWjH

(1)
i (x(j))G(x(j))

=((v(i))ᵀWiv
(i))G(x(i)),

where the last equality is due to (3.1) and H
(1)
i ∈ I. As (v(i))ᵀWiv

(i) > 0, we have G(x(i)) � 0,
which implies x(i) ∈ X .

3.2. Matrix-valued measure recovery. For a truncated sequence S = (Sα)α∈Nn
2k
⊂ Sm

with k ≥ dG, suppose that Mk(S) � 0, Mk−dG(GS) � 0 and rank(Mk(S)) = rank(Mk−dG(S)).
By Theorem 3.2, S admits a finitely atomic representing measure Φ =

∑r
i=1Wiδx(i) with

Wi ∈ Sm+ , x(i) ∈ X and
∑r

i=1 rank(Wi) = rank(Mk(S)). In theory, it was shown in [29] that
the points {x(i)}i can be computed via the intersecting zeros of the determinants of matrix-
valued polynomials describing the flat extension, which, however, is not easy to compute in
practice. In this subsection, we provide a linear algebra procedure to extract x(i) ∈ X and
Wi ∈ Sm, which is an extension of the approach proposed in [22] for the scalar case.

From the definition of Mk(S), it holds

Mk(S) =
r∑
i=1

(uk(x
(i))⊗ Im)Wi(uk(x

(i))⊗ Im)ᵀ = V V ᵀ,

where uk(x
(i)) is defined in (2.1) and

V =
[
(uk(x

(1))⊗ Im)
√
W1, . . . , (uk(x

(r))⊗ Im)
√
Wr

]
.

Let Mk(S) = Ṽ Ṽ ᵀ be a Cholesky decomposition of Mk(S) with Ṽ ∈ Rm|Nn
k |×t and t =

rank(Mk(S)). Notice that V and Ṽ span the same column space. We will recover x(i) by
suitable column operations on Ṽ .
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Let us write
√
Wi = [w(i,1), . . . ,w(i,mi)] with w(i,j) ∈ Rm and

∑r
i=1mi = t. Then each

column of V is of form uk(x
(i))⊗w(i,j) and can be generated by the columns of Ṽ . Now we

treat the entries in the vectors w(i,j) as variables and denote it by w = (w1, . . . , wm). Then,
the rows in V correspond to the monomials

vk(x,w) = [w, x1w, x2w, · · · , xnw, x2
1w, x1x2w, · · · , xknw]ᵀ.

Reduce the matrix Ṽ to the column echelon form U :

U =



1
?
0 1
0 0 1
? ? ?

...
. . .

0 0 0 · · · 1
? ? ? · · · ?

...
...

? ? ? · · · ?


.

From the rows of U where the pivot elements locate, we obtain a (column) monomial basis
bk(x,w) which consists of t monomials in vk(x,w) such that

(3.4) vk(x,w) = Ubk(x,w)

holds at each pair of (x(i),w(i,j)), j = 1, . . . ,mi, i = 1, . . . , r. Note that each monomial xαwj
in bk(x,w) satisfies |α| ≤ k − dG since rank(Mk(S)) = rank(Mk−dG(S)).

Proposition 3.3. The vectors bk(x
(i),w(i,j)), j = 1, . . . ,mi, i = 1, . . . , r, are linearly inde-

pendent.

Proof. Case 1: r − 1 ≤ k. Suppose on the contrary that bk(x
(i),w(i,j)), j = 1, . . . ,mi,

i = 1, . . . , r are linearly dependent. Then there exist constants ci,j ’s, not all zeros, such that

r∑
i=1

mi∑
j=1

ci,jbk(x
(i),w(i,j)) = 0.

Because x(i)’s are distinct, we can construct the Lagrange interpolation polynomials p(i)(x)’s
at x(i)’s such that p(i)(x(i)) = 1 and p(i)(x(j)) = 0 for all i 6= j. Now we fix an i′ with 1 ≤ i′ ≤ r,
and consider the column vector of polynomials wp(i′)(x) ∈ R[x,w]. As deg(p(i)) = r − 1 ≤ k,
due to (3.4), there exists a coefficient matrix Ξ ∈ Rm×t such that wp(i′)(x) = Ξbk(x,w) holds
at each pair of (x(i),w(i,j)), j = 1, . . . ,mi, i = 1, . . . , r. Then, we have

0 = Ξ

 r∑
i=1

mi∑
j=1

ci,jbk(x
(i),w(i,j))

 =

r∑
i=1

mi∑
j=1

ci,jw
(i,j)p(i′)(x(i)) =

mi′∑
j=1

ci′,jw
(i′,j).
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As w(i′,j)’s are linearly independent, we have ci′,j = 0 for all j = 1, . . . ,mi. This leads to a
contradiction since i′ is arbitrary.

Case 2: r − 1 > k. According to Theorem 3.1, S admits a flat extension S̃ = (S̃α)α∈Nn
2r−2

such that Mr−1(S̃) � 0 and rank(Mk(S)) = rank(Mr−1(S̃)). By repeating the previous argu-
ments on Mr−1(S̃), we still obtain a column echelon form Ũ and a monomial basis br−1(x,w)
such that vr−1(x,w) = Ũbr−1(x,w) holds at all pairs of (x(i),w(i,j))’s. Note that as Mr−1(S̃)
is a flat extension of Mk(S), it is easy to see that the basis br−1(x,w) is identical with bk(x,w).
Now as in Case 1, we can show that br−1(x(i),w(i,j)) and hence bk(x

(i),w(i,j)), j = 1, . . . ,mi,
i = 1, . . . , r, are linearly independent.

Recall that each monomial xαwj in bk(x,w) satisfies |α| ≤ k − dG < k. Hence, for each
q = 1, . . . , n, we can extract from U the t× t multiplication matrix Nq such that Nqbk(x,w) =
xqbk(x,w) holds at each pair of (x(i),w(i,j)), j = 1, . . . ,mi, i = 1, . . . , r.

Following [13], we build a random combination of multiplication matrices N =
∑n

q=1 cqNq,
where cq ≥ 0 and

∑n
q=1 cq = 1. Let N = ATAᵀ be the ordered Schur decomposition of N ,

where A = [a1, . . . , at] is an orthogonal matrix with AᵀA = It and T is upper-triangular with
eigenvalues of N being sorted increasingly along the diagonal.

Proposition 3.4. Suppose that the constants cq’s are chosen such that h(x) =
∑n

q=1 cqxq

takes distinct values on x(i), i = 1, . . . , r. Then the set of points

(3.5) {(aᵀ1N1a1, . . . , a
ᵀ
1Nna1), . . . , (aᵀtN1at, . . . , a

ᵀ
tNnat)}

is exactly {x(1), . . . ,x(r)} and each x(i) appears mi = rank(Wi) times.

Proof. Since Nqbk(x,w) = xqbk(x,w) holds at each pair of (x(i),w(i,j)), j = 1, . . . ,mi,
i = 1, . . . , r. It is easy to see that

h(x(i))bk(x
(i),w(i,j)) =

n∑
q=1

cqx
(i)
q bk(x

(i),w(i,j)) = Nbk(x
(i),w(i,j)),

for each j = 1, . . . ,mi, i = 1, . . . , r. In other words, for each i = 1, . . . , r, h(x(i)) is
an eigenvalue of N and bk(x

(i),w(i,j)), j = 1, . . . ,mi are the associated eigenvectors. By
Proposition 3.3, the t vectors bk(x

(i),w(i,j)), j = 1, . . . ,mi, i = 1, . . . , r are linearly in-
dependent. Therefore, {h(x(1)), . . . , h(x(r))} is exactly the set of eigenvalues of N , and
{bk(x(i),w(i,j)), j = 1, . . . ,mi} spans the eigenspace of N associated with h(x(i)). So, we
can divide the set {a1, . . . , at} into r groups A1, . . . ,Ar with |Ai| = mi, such that Ai spans
the eigenspace of N associated with h(x(i)). Now fix an i and a vector a ∈ Ai. There exist
weights λ1, . . . , λmi ∈ R such that

a =

mi∑
j=1

λjbk(x
(i),w(i,j)).
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Then, for each q = 1, . . . , n, it holds

aᵀNqa =

 mi∑
j=1

λjbk(x
(i),w(i,j))

ᵀ

Nq

 mi∑
j=1

λjbk(x
(i),w(i,j))


=

 mi∑
j=1

λjbk(x
(i),w(i,j))

ᵀ mi∑
j=1

λjx
(i)
q bk(x

(i),w(i,j))


= x(i)

q a
ᵀa = x(i)

q .

Hence, (aᵀN1a, . . . , a
ᵀNna) = x(i). The conclusion then follows.

Once the points x(1), . . . ,x(r) are obtained, let

Λ := [uk(x
(1)), . . . , uk(x

(r))]⊗ Im ∈ Rm|N
n
k |×mr,

and we have

(3.6) Mk(S) = Λ diagW1, . . . ,Wr Λᵀ.

Notice that the first m columns of diagW1, . . . ,WrΛ
ᵀ is exactly [W1, . . . ,Wr]

ᵀ. By comparing
the first m columns of both sides of (3.6), we get

(3.7) col({Sα}α∈Nn
k
) = Λ[W1, . . . ,Wr]

ᵀ.

Assume that Λ has mr independent rows (see Remark 3.5) and let R be the index set of
these rows. Denote by ΛR (resp. MR(S)) the mr×mr (resp. mr×m) submatrix of Λ (resp.
col({Sα}α∈Nn

k
)) whose rows are indexed by R. Then by extracting the rows indexed R from

both sides of (3.7), we have
MR(S) = ΛR[W1, . . . ,Wr]

ᵀ.

Hence, the matrices Wi’s can be retrieved by

[W1, . . . ,Wr]
ᵀ = Λ−1

R MR(S).

We provide an example illustrating the above procedure in Appendix A.

Remark 3.5. It is clear that if

(3.8) rank([uk(x
(1)), . . . , uk(x

(r))]) = r,

then Λ must have mr independent rows. As x(i)’s are distinct, by considering the Lagrange
interpolation polynomials at x(i)’s, we know that (3.8) always holds if k ≥ r− 1. If k < r− 1,
then it is possible that (3.8) fails and we may need to consider flat extensions of Mk(S) to
recover the weights Wi’s.

4. A moment-SOS hierarchy for (RPMIO) with SOS-convexity. In this section, we first
reformulate (RPMIO) as a conic optimization problem, based on which we can then derive a
moment-SOS hierarchy whose optima monotonically converge to the optimum of (RPMIO).
Furthermore, the results in Section 3 enable us to detect finite convergence of the moment-SOS
hierarchy and to extract optimal solutions.
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4.1. A conic reformulation. For simplicity, we write

P (y,x) =
∑
α∈Nn

Pα(y)xα =
∑
β∈N`

Pβ(x)yβ,

where Pα(y) ∈ S[y]m (resp. Pβ(x) ∈ S[x]m) is the coefficient matrix of xα (resp. yβ) with
P (x,y) being regarded as a polynomial matrix in S[x]m (resp. S[y]m). For a linear functional
L : S[x]m → R, we denote

L (P (y,x)) :=
∑
β∈N`

L (Pβ(x))yβ ∈ R[y],

and for a linear functional H : R[y]→ R, we denote

H (P (y,x)) :=
∑
β∈N`

Pβ(x)H (yβ) ∈ S[x]m.

To obtain a conic reformulation of (RPMIO), we need to assume the Slater condition to
hold.

Assumption 3. The Slater condition holds for (RPMIO), i.e., there exists ȳ ∈ Y such that
θi(ȳ) > 0 for all i = 1, . . . , s, and P (ȳ,x) � 0 for all x ∈ X .

Proposition 4.1. Under Assumptions 1 and 3, there exists a finitely atomic matrix-valued
measure Φ? ∈Mm

+ (X ) such that

f? = inf
y∈Y

f(y)−LΦ?(P (y,x)).

If y? is an optimal solution to (RPMIO), then LΦ?(P (y?,x)) = 0.

Proof. For any v ∈ V := {v ∈ Rm |
∑m

i=1 v
2
i = 1} and x ∈ X , it is easy to see that the

function −vᵀP (·,x)v is convex in y. Then, (RPMIO) can be equivalently reformulated as the
convex semi-infinite program:

(4.1) f? = inf
y∈Y

f(y) s.t. vᵀP (y,x)v ≥ 0, ∀(x,v) ∈ X ×V.

Let (x(0),v(0)), (x(1),v(1)), . . . , (x(`),v(`)) be ` + 1 arbitrary points in X × V. By Assump-
tion 3, there exists ȳ ∈ Y such that P (ȳ,x(i)) � 0 for all i = 0, 1, . . . , `. Hence, it holds
(v(i))ᵀP (ȳ,x(i))v(i) > 0 for all i = 0, 1, . . . , `. Notice that X ×V is compact in Rn ×Rm. By
applying [9, Theorem 4.1] to (4.1), we can find ` points (x̃(1), ṽ(1)), . . . , (x̃(`), ṽ(`)) ∈ X ×V,
and λ1, . . . , λ` > 0 such that

f? = inf
y∈Y

f(y)−
∑̀
i=1

λi(ṽ
(i))ᵀP (y, x̃(i))ṽ(i).

Define a finitely atomic matrix-valued measure

Φ? :=
∑̀
i=1

λiṽ
(i)(ṽ(i))ᵀδx̃(i) ∈Mm

+ (X ).
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Then, it holds that

f? = inf
y∈Y

f(y)−LΦ?(P (y,x)).

If y? is an optimal solution to (RPMIO), then P (y?,x) � 0 on X and hence

f? ≤ f(y?)−LΦ?(P (y?,x)) ≤ f(y?) = f?,

which implies that LΦ?(P (y?,x)) = 0.

Remark 4.2. From the above proof, one can see that Proposition 4.1 remains true if the
Slater condition is weakened as: For any `+1 points x(0),x(1), . . . ,x(`) ∈ X , there exists ȳ ∈ Y
such that P (ȳ,x(i)) � 0 for all i = 0, 1, . . . , `.

For any measure µ ∈ m+(Y), we define an associated linear functional Hµ : R[y] → R
by Hµ(h) =

∫
Y h(y)dµ(y) for all h ∈ R[y]. Let us consider the following conic optimization

problem:

(4.2)


f̃ := sup

ρ,Φ
ρ

s.t. f(y)− ρ−LΦ(P (y,x)) ∈ P(Y),

ρ ∈ R, Φ ∈Mm
+ (X ),

whose dual reads as

(4.3)


f̂ := inf

µ
Hµ(f)

s.t. µ ∈ m+(Y), Hµ(1) = 1,

Hµ(P (y,x)) ∈ Pm(X ),

with Pm(X ) being defined in (2.6).

Theorem 4.3. Under Assumptions 1 and 3, it holds f̃ = f̂ = f?.

Proof. Let Φ? ∈Mm
+ (X ) be the finitely atomic matrix-valued measure given in Proposition

4.1. Then (f?,Φ?) is feasible to (4.2) due to Proposition 4.1. Thus, f̃ ≥ f?. By the weak
duality, we have f̂ ≥ f̃ and remain to show f̂ ≤ f?.

Let (y(k))k∈N be a minimizing sequence of (RPMIO). Then, for any ε > 0, there exists
kε ∈ N such that y(kε) is feasible to (RPMIO) and f(y(kε)) ≤ f?+ε. The Dirac measure δy(kε)

centered at y(kε) is feasible to (4.3). Therefore, f̂ ≤Hδ
y(kε)

(f) = f(y(kε)) ≤ f? + ε. As ε > 0

is arbitrary, we have f̂ ≤ f? as desired.

Proposition 4.4. Under Assumptions 1 and 3, suppose that (ρ?,Φ?) is an optimal solu-
tion to (4.2) such that Φ? =

∑r
i=1Wiδx(i) ∈ Mm

+ (X ) for some x(1), . . . ,x(r) ∈ X and
W1, . . . ,Wr ∈ Sm+ . If y? is an optimal solution to (RPMIO), then for any decomposition
Wi =

∑mi
k=1 v

(i,k)(v(i,k))ᵀ, v(i,k) ∈ Rm, i = 1, . . . , r, it holds that

P (y?,x(i))v(i,k) = 0, k = 1, . . . ,mi, i = 1, . . . , r.
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Proof. By Theorem 4.3, we have ρ? = f? and hence

f(y)− f? −LΦ?(P (y,x)) = f(y)− f? −
r∑
i=1

tr
(

(P (y,x(i)))Wi

)
∈ P(Y).

Since y? ∈ Y, we have

f(y?)− f? −
r∑
i=1

tr
(

(P (y?,x(i)))Wi

)
= −

r∑
i=1

tr
(

(P (y?,x(i)))Wi

)
≥ 0.

As P (y?,x(i)) and Wi are both PSD, it follows

0 =

r∑
i=1

tr
(

(P (y?,x(i)))Wi

)
=

r∑
i=1

mi∑
k=1

(v(i,k))ᵀP (y?,x(i))v(i,k).

The PSDness of P (y?,x(i)) implies that P (y?,x(i))v(i,k) = 0 for all k = 1, . . . ,mi, i =
1, . . . , r.

Remark 4.5. It is easy to verify that the conic reformulation in this section and the results
in Propositions 4.1, 4.4 and Theorem 4.3 remain true if “SOS-convexity” in Assumption 1 is
weaken to “convexity” (i.e., if Assumption 1 is replaced by Assumption 5 in Section 5).

4.2. A moment-SOS hierarchy. Let Θ := {θ1, . . . , θs} ⊂ R[y] collect the description
polynomials of the semialgebraic set Y. Moreover, let

ky := max {deg(f), deg(θ1), . . . ,deg(θs), degy(Pij), i, j = 1, . . . ,m},
kx := max {degx(Pij), i, j = 1, . . . ,m, deg(G)}.

Proposition 4.6. Under Assumptions 1 and 3, there exists a finitely atomic matrix-valued
measure Φ? ∈Mm

+ (X ) such that

f(y)− f? −LΦ?(P (y,x)) ∈ Qdky/2e(Θ).

Proof. By Proposition 4.1, there exists a finitely atomic matrix-valued measure Φ? ∈
Mm

+ (X ) such that for all y ∈ Y,

f(y)− f? −LΦ?(P (y,x)) ≥ 0.

Suppose that Φ? =
∑r

i=1Wiδx(i) ∈Mm
+ (X ) for some x(1), . . . ,x(r) ∈ X and W1, . . . ,Wr ∈ Sm+ .

For each i = 1, . . . , r, let Wi =
∑mi

k=1 v
(i,k)(v(i,k))ᵀ for some v(i,k) ∈ Rm. Then,

f(y)− f? −LΦ?(P (y,x)) = f(y)− f? −
r∑
i=1

tr
(

(P (y,x(i)))Wi

)
= f(y)− f? −

r∑
i=1

mi∑
k=1

(v(i,k))ᵀP (y,x(i))v(i,k).
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By Assumption 1 and the definition of PSD-SOS-convexity, f(y)−f?−LΦ?(P (y,x)) is SOS-
convex. Let y? be an optimal solution to (RPMIO). By Proposition 4.1, we have

f(y?)− f? −LΦ?(P (y?,x)) = 0.

Then by Assumptions 1, 3 and [33, Theorem 3.3], the conclusion follows.

For each k ≥ dkx/2e, by replacing the cones P(Y) and Mm
+ (X ) in (4.2) with the more

tractable cones Qdky/2e(Θ) and Mm
k (G) respectively, we obtain the following SDP:

(4.4)


fprimal

k := sup
ρ,S

ρ

s.t. f(y)− ρ−LS(P (y,x)) ∈ Qdky/2e(Θ),

ρ ∈ R, S ∈Mm
k (G),

It follows from Proposition 4.6 that for each k ≥ dkx/2e, (4.4) is an SDP relaxation of
(4.2), and hence gives an upper bound on the optimum of (RPMIO). The dual of (4.4) reads
as

(4.5)


fdual
k := inf

s
Hs(f)

s.t. s ∈Mdky/2e(Θ), Hs(1) = 1,

Hs(P (y,x)) ∈ Qmk (G),

where the linear functional Hs : R[y]2dky/2e → R is defined by Hs(h) =
∑

α∈supp(h) hαsα

for h ∈ R[y]2dky/2e. It is clear that both sequences (fprimal

k )k≥dkx/2e and (fdual
k )k≥dkx/2e are

monotonically non-increasing. We call (4.4)–(4.5) the moment-SOS hierarchy for (RPMIO)
and call k the relaxation order.

Before proving zero duality gap and asymptotic convergence of the moment-SOS hierarchy
for (RPMIO), we collect several preliminary results.

We write e = (e1, . . . , e`) for the standard basis of R` and let se = (se1 , . . . , se`) for any
feasible point s of (4.5).

Proposition 4.7. Suppose that Q(y) ∈ S[y]m is PSD-SOS-convex. Let s = (sα)α∈N`
2ddeg(Q)/2e

satisfy s0 = 1 and Mddeg(Q)/2e(s) � 0. Then Hs(Q) � Q(se).

Proof. As vᵀQ(y)v is SOS-convex in y for all v ∈ Rm, by [33, Theorem 2.6], it holds

vᵀHs(Q(y))v = Hs(v
ᵀQ(y)v) ≥ vᵀQ(se)v,

for all v ∈ Rm. Hence we have Hs(Q) � Q(se).

Corollary 4.8. Suppose that −θ1(y), . . . ,−θs(y) are SOS-convex and −P (y,x) is PSD-
SOS-convex in y for all x ∈ X . If s is feasible to (4.5), then se ∈ Y and is feasible to
(RPMIO).

Proof. By the extended Jensen’s inequality for SOS-convex polynomials [33, Theorem 2.6],
it holds θi(se) ≥ Hs(θi) ≥ 0 for i = 1, . . . , s, which implies se ∈ Y. By Proposition 4.7, for
every x ∈ X ,

P (se,x) �Hs(P (y,x)) � 0.

So se is feasible to (RPMIO).
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Lemma 4.9. Suppose that X has non-empty interior. Then for each k ≥ dG, there exists
S◦ ∈Mm

k (G) such that Mk(S
◦) � 0 and Mk−dG(GS◦) � 0.

Proof. We only prove that there exists S◦ ∈Mm
k (G) such that Mk−dG(GS◦) � 0. Similar

arguments apply also to Mk(S
◦). Suppose on the contrary that the conclusion is false. Let

Φ ∈Mm
+ (X ) be such that Φ = diag φ, . . . , φ where φ is the probability measure with uniform

distribution on X , and S◦ = (Sα)α∈Nn
2k

where each Sα =
∫
X xαdΦ(x). Now fix a nonzero

vector v ∈ Rmq|N
n
k−dG

|
such that vᵀMk−dG(GS◦)v = 0. Let

Σ(x) = (uk−dG(x)⊗ Imq)ᵀvvᵀ(uk−dG(x)⊗ Imq).

Then by Proposition 2.18, it holds

LS◦((Σ, G)m) = tr (vvᵀMk−dG(GS◦)) = vᵀMk−dG(GS◦)v = 0.

For each i = 1, . . . ,mq, let v(i) be the subvector of v whose entries are indexed by

i, mq + i, 2mq + i, . . . , (|Nnk−dG | − 1)mq + i,

and Ti(x) = (v(i))ᵀuk−dG(x) ∈ R[x]. Then,

[T1(x), . . . , Tmq(x)] = vᵀ(uk−dG(x)⊗ Imq) and Σ(x) = T (x)ᵀT (x).

For each j = 1, . . . ,m, let

Hj(x) = [T(j−1)q+1(x), . . . , Tjq(x)] ∈ R[x]q.

Then,
(Σ, G)m = [Hi(x)ᵀG(x)Hj(x)]i,j=1,...,m

and

0 = LS◦((Σ, G)m) =

∫
X

m∑
j=1

Hj(x)ᵀG(x)Hj(x)dφ(x).

As Hj(x)ᵀG(x)Hj(x) ≥ 0 for all x ∈ X , we have∫
X
Hj(x)ᵀG(x)Hj(x)dφ(x) = 0, ∀j = 1, . . . ,m.

Let O be an open and bounded subset of X . Then, there exists λ > 0 such that G(x) � λIm
on O, and for each j = 1, . . . ,m,

0 =

∫
X
Hj(x)ᵀG(x)Hj(x)dφ(x)

≥
∫
O
Hj(x)ᵀG(x)Hj(x)dφ(x)

≥ λ
∫
O
Hj(x)ᵀHj(x)dφ(x)

= λ

∫
O

q∑
i=1

T(j−1)q+i(x)2dφ(x).
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Since O is open, we have Ti(x) ≡ 0 for each i = 1, . . . ,mq. We then conclude v = 0, yielding
a contradiction.

Lemma 4.10. [27, Lemma 3] Suppose that there exists a ball constraint
∑`

i=1 y
2
i ≤ b2 in the

description of Y. Let t ≥ max {ddeg(θj)/2e, j = 1, . . . , s} be an integer. Let s = (sα)α∈N`
2t

satisfy s ∈Mt(Θ) and Hs(1) = 1. Then

‖s‖ ≤

√(
`+ t

`

) t∑
i=0

b2i.

Assumption 4. (i) θ1(y) = b2 −
∑`

i=1 y
2
i for some b > 0; (ii) X has non-empty interior.

We are now in a position to establish asymptotic convergence of the moment-SOS hierarchy
(4.4)–(4.5).

Theorem 4.11. Under Assumptions 1–4, the following are true:
(i) For each k ≥ dkx/2e, fprimal

k = fdual
k ;

(ii) fprimal

k ↘ f? and fdual
k ↘ f? as k →∞;

(iii) For any convergent subsequence (s
(ki,?)
e )i (always exists) of (s

(k,?)
e )k where s(k,?) is a

minimizer of (4.5), limi→∞ s
(ki,?)
e is a global minimizer of (RPMIO). Consequently,

if the set of optimal solutions of (RPMIO) is a singleton, then limk→∞ s
(k,?)
e is the

unique global minimizer.

Proof. (i). Fix k ≥ dkx/2e. Let S◦ be given in Lemma 4.9. As there is a ball constraint in
defining Y by Assumption 4, by the proof of [38, Corollary 3.6], there exists λ ∈ R such that

f(y)− λ−LS◦(P (y,x)) ∈ Q◦dky/2e(Θ),

where Q◦dky/2e(Θ) denotes the interior of Qdky/2e(Θ). It follows that (λ,S◦) is a strictly feasible

point of (4.4), which implies fprimal

k = fdual
k .

(ii). Let y? be a minimizer of (RPMIO) and ȳ be the Slater point given in Assumption
3. Because f , Y are convex by Assumption 1, we can choose 0 < t < 1 such that y′ :=
ty?+(1− t)ȳ ∈ Y and f(y′) ≤ f?+ε for an arbitrary ε > 0. As −P (y,x) is PSD-SOS-convex
in y for every x ∈ X , it holds

P (y′,x) � tP (y?,x) + (1− t)P (ȳ,x) � 0,

for all x ∈ X . Let s′ = (s′α)α∈N`
2dky/2e

with s′α = (y′)α. By Theorem 2.3, there exists k(ε) ∈ N

such that s′ is feasible to (4.5) for all k ≥ k(ε). Therefore, fdual
k ≤ f? + ε for all k ≥ k(ε). As

ε > 0 is arbitrary, we have fdual
k ↘ f? and fprimal

k ↘ f? as k →∞.

(iii). Let s(k,?) = (s
(k,?)
α )α∈N`

2dky/2e
be a minimizer of (4.5) for each k ≥ dkx/2e. By

Lemma 4.10, there exists a subsequence (s(ki,?))i of (s(k,?))k and s? = (s?α)α∈N`
2dky/2e

such that

limi→∞ s
(ki,?)
α = s?α for all α. As the feasible set of (RPMIO) is closed, by Corollary 4.8, s?e is

feasible to (RPMIO). Moreover, as f(y) is SOS-convex, by (ii) and Proposition 4.7, it holds
that

f? = Hs?(f) ≥ f(s?e),
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which indicates that s?e is a global minimizer of (RPMIO).

The next theorem allows us to detect finite convergence of the moment-SOS hierarchy
(4.4)–(4.5) and to extract an optimal solution whenever the flat extension condition is satisfied.

Theorem 4.12. Suppose that Assumptions 1, 3 and 4 hold. If the following flat extension
condition

(4.6) ∃dkx/2e ≤ t ≤ k s.t. rank(Mt(S
(k,?))) = rank(Mt−dG(S(k,?)))

holds for some k ≥ dkx/2e, where (fprimal

k ,S(k,?)) and s(k,?) are optimal solutions to (4.4) and
(4.5), respectively, then

(i) S(k,?) admits a representing measure Φ? =
∑r

i=1Wiδx(i) ∈ Mm
+ (X ) for some points

x(1), . . . ,x(r) ∈ X and W1, . . . ,Wr ∈ Sm+ ;
(ii) fprimal

k = fdual
k = f?;

(iii) s
(k,?)
e is an optimal solution to (RPMIO);

(iv) For any decomposition Wi =
∑mi

l=1 v
(i,l)(v(i,l))ᵀ, v(i,l) ∈ Rm, i = 1, . . . , r, it holds that

P
(
s

(k,?)
e ,x(i)

)
v(i,l) = 0, l = 1, . . . ,mi, i = 1, . . . , r.

Proof. (i). This follows from Theorem 3.2.
(ii). As (fprimal

k ,S(k,?)) is feasible to (4.4), by (i), it holds

(4.7) f(y)− fprimal

k −LS(k,?)(P (y,x)) = f(y)− fprimal

k −
r∑
i=1

tr
(
WiP (y,x(i))

)
≥ 0,

for all y ∈ Y. Let y? be a global minimizer of (RPMIO). Noting
∑r

i=1 tr
(
WiP (y?,x(i))

)
≥ 0,

then by (4.7), we have

fprimal

k ≤ f(y?)−
r∑
i=1

tr
(
WiP (y?,x(i))

)
≤ f(y?) = f?.

By Theorem 4.11 (i), it follows fprimal

k = fdual
k = f?.

(iii). By Corollary 4.8, s
(k,?)
e is feasible to (RPMIO). Since f(y) is SOS-convex, by (ii)

and Proposition 4.7, it holds

f(s
(k,?)
e ) ≤Hs(k,?)(f) = fdual

k = f?,

which implies that s
(k,?)
e is a global minimizer of (RPMIO).

(iv). By (ii) and Theorem 4.3, (fprimal

k ,S(k,?)) is an optimal solution to (4.2). It follows
from (iii) and Proposition 4.4.

Remark 4.13. From the proof of Theorem 4.12 (ii), we can see that the flat extension
condition (4.6) implies fprimal

k = f? even without Assumption 4. If fdual
k = fprimal

k in this case,
then the statements (iii) and (iv) in Theorem 4.12 are still true.
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For all numerical examples in the rest of this paper, we use the software Yalmip [36] to
build the SDPs and call the SDP solver Mosek [40] to solve them1. To check the flat extension
condition, we use the Matlab command rank with tolerance 10−3.

Example 4.14. Consider the following instance of (RPMIO):

(4.8) f? := inf
y∈R2

f(y) s.t. P (y,x) � 0, ∀x ∈ X := {x ∈ R2 | G(x) � 0},

where

P (y,x) =

(
1− (x1y1 − x2y2)2 2(x2y1 + x1y2)

2(x2y1 + x1y2) 1

)
and

G(x) =


1− x1 x2 0 0
x2 1 + x1 0 0
0 0 x2

1 + x2
2 − 1 0

0 0 0 x1x2

 .

It is clear that

X = {x ∈ R2 | x2
1 + x2

2 = 1, x1x2 ≥ 0}.

Geometrically, the feasible region is constructed by rotating the shape in the y-plane defined
by y2

1 + 4y2
2 ≤ 1 continuously around the origin by 90◦ clockwise and then taking the common

area of these shapes in this process.
By Corollary 2.9, it is easy to check that −P (y,x) is PSD-SOS-convex in y for every

x ∈ X . Consider the following objective functions f1(y) = (y1 − 1)2 + (y2 − 1)2 and f2(y) =
(1 + y1)2 + (1− y2)2, respectively. Clearly, both f1 and f2 are SOS-convex.

For f1, the optimal solution is (
√

2/4,
√

2/4) ≈ (0.3536, 0.3536) and the optimal value is
2(
√

2/4 − 1)2 ≈ 0.8358. We solve the SDP relaxations (4.4) and (4.5) with k = 3, obtaining
fprimal

3 = fdual
3 = 0.8358, and the rank condition (4.6) is satisfied with t = 2. Then by Theorem

4.12 and Remark 4.13, global optimality is reached and a minimizer s
(3,?)
e = (0.3536, 0.3536)

can be extracted.
For f2, the optimal solution is (−

√
5/5,
√

5/5) ≈ (−0.4472, 0.4472) and the optimal value
is 2(
√

5/5− 1)2 ≈ 0.6111. Solving (4.4) and (4.5) with k = 3, we get fprimal

3 = fdual
3 = 0.6111

and the rank condition (4.6) is satisfied with t = 2. So global optimality is reached and a

minimizer s
(3,?)
e = (−0.4472, 0.4472) can be extracted.

4.3. The linear case and the generalized matrix-valued moment problem. If Y = R`,
f(y) and P (x,y) are affine in y, then (RPMIO) becomes the robust polynomial semidefinite
program (RPSDP) which was studied in [45]. In this case, we will see that the dual problem
(4.5) of the moment-SOS hierarchy recovers the matrix SOS relaxation for (RPSDP) proposed
in [45]. Meanwhile, the primal problem (4.4) allows to detect finite convergence and extract
optimal solutions.

1The script is available at https://github.com/wangjie212/PMOptimization.

https://github.com/wangjie212/PMOptimization
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4.3.1. Robust polynomial semidefinite programming. Consider the robust polynomial
semidefinite programming problem which is a special case of (RPMIO):

(RPSDP) τ? := inf
y∈R`

cᵀy s.t.
∑̀
i=1

Pi(x)yi − P0(x) � 0, ∀x ∈ X ⊂ Rn,

where c = (c1, . . . , c`) ∈ R` and Pi(x) ∈ S[x]m, i = 0, 1, . . . , `.
Applying the conic reformulation (4.2) to (RPSDP) with Y = R`, we obtain

(4.9)



sup
ρ,Φ

ρ

s.t. cᵀy − ρ−
∑̀
i=1

LΦ(Pi(x))yi + LΦ(P0(x)) ∈ P(R`),

ρ ∈ R, Φ ∈Mm
+ (X ).

For any ρ ∈ R and Φ ∈Mm
+ (X ), it holds

cᵀy − ρ−
∑̀
i=1

LΦ(Pi(x))yi + LΦ(P0(x))

=
∑̀
i=1

(
ci −

∫
X
Pi(x)dΦ(x)

)
yi − ρ+

∫
X
P0(x)dΦ(x).

Thus, if (ρ,Φ) is feasible to (4.9), then we necessarily have

ci =

∫
X
Pi(x)dΦ(x), i = 1, . . . , `, and ρ ≤

∫
X
P0(x)dΦ(x),

and (4.9) can be rewritten as

(4.10) sup
Φ∈Mm

+ (X )

∫
X
P0(x)dΦ(x) s.t.

∫
X
Pi(x)dΦ(x) = ci, i = 1, . . . , `.

Remark 4.15. Note that the generalized moment problem extensively studied by Lasserre
in [32] is a special case of (4.10) with m = 1 and G(x) being a diagonal matrix.

The dual of (4.9) reads as

(4.11)



inf
µ

cᵀHµ(y)

s.t. µ ∈ m+(R`), Hµ(1) = 1,∑̀
i=1

Pi(x)Hµ(yi)− P0(x) ∈ Pm(X ).

By identifying Hµ(y) with y, we see that (4.11) is actually equivalent to (RPSDP).
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For each k ≥ dkx/2e, replacing the cone Mm
+ (X ) in (4.10) by Mm

k (G), we obtain an SDP
relaxation:

(4.12)


τ primal

k := sup
S∈Mm

k (G)
LS(P0(x))

s.t. LS(Pi(x)) = ci, i = 1, . . . , `,

whose dual is

(4.13)


τ dual
k := inf

y∈R`
cᵀy

s.t.
∑̀
i=1

Pi(x)yi − P0(x) ∈ Qmk (G).

Note that when X is compact, Assumption 1 is satisfied for (RPSDP). Moreover, if X has non-
empty interior, then (4.12) is strictly feasible by Lemma 4.9 and hence there is no duality gap
between (4.12) and (4.13). Then, by Theorems 4.11 and 4.12, we get the following theorems.

Theorem 4.16. Under Assumptions 2–3, suppose that X is compact and has non-empty
interior. Then, the following are true:

(i) τ primal

k = τ dual
k for all k ≥ dkx/2e;

(ii) τ primal

k ↘ τ? and τ dual
k ↘ τ? as k →∞;

(iii) For any convergent subsequence (y(ki,?))i of (y(k,?))k where y(k,?) is an optimal solution
to (4.13), limi→∞ y(ki,?) is an optimal solution to (RPSDP).

Theorem 4.17. Under Assumption 3, suppose that X is compact and has non-empty inte-
rior. If the following flat extension condition

(4.14) ∃dkx/2e ≤ t ≤ k s.t. rank(Mt(S
(k,?))) = rank(Mt−dG(S(k,?))),

holds for some k ≥ dkx/2e, where S(k,?) and y(k,?) are optimal solutions to (4.12) and (4.13)
respectively, then

(i) S(k,?) admits a representing measure Φ? =
∑r

i=1Wiδx(i) ∈ Mm
+ (X ) for some points

x(1), . . . ,x(r) ∈ X and W1, . . . ,Wr ∈ Sm+ ;
(ii) τ primal

k = τ dual
k = τ?;

(iii) y(k,?) is an optimal solution to (RPSDP);
(iv) For any decomposition Wi =

∑mi
l=1 v

(i,l)(v(i,l))ᵀ, v(i,l) ∈ Rm, i = 1, . . . , r, it holds that(∑̀
i=1

Pi(x
(i))y

(k,?)
i − P0(x(i))

)
v(i,l) = 0, l = 1, . . . ,mi, i = 1, . . . , r.

Example 4.18. Consider the following instance of (RPSDP):

(4.15)


τ? := inf

y∈R
y

s.t. P (y,x) =

(
y h(x)

h(x) y

)
� 0, ∀x ∈ X := {x ∈ R2 | G(x) � 0},
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Figure 1. The set X (gray), the lines x2 − x1 = ±2.7535 (blue), the points x(1) and x(2) (red) in Example
4.18.

where h(x) = x2 − x1 and

G(x) =

(
1− 4x1x2 x1

x1 4− x2
1 − x2

2

)
.

The matrix G(x) is borrowed from [23].
Clearly, it holds τ? = supx∈X |h(x)|. Consider the SDP relaxation (4.12) for (4.15). If the

condition (4.14) holds, then according to Theorem 4.17, τ primal

k = τ? and the minimizer S(k,?) of
(4.12) admits a representing measure Φ? =

∑r
i=1Wiδx(i) ∈Mm

+ (X ) for some x(1), . . . ,x(r) ∈ X
and W1, . . . ,Wr ∈ Sm+ . Moreover, by Theorem 4.17, for each i = 1, . . . , r,

det(P (τ?,x(i))) = (τ?)2 − h(x(i))2 = 0.

So each x(i) is a minimizer of supx∈X |h(x)|.
Solving the SDP relaxation (4.12) with k = 2, we get τ primal

2 = 2.7535 and the rank condi-
tion (4.14) is satisfied with

rank(M2(S?2)) = rank(M1(S?2)) = 2.

By Theorem 4.17, global optimality is reached. By the procedure described in Section 3.2, we
recover the representing measure Φ? =

∑2
i=1Wiδx(i) of S?2 with

x(1) = (−1.3038, 1.4496), x(2) = (1.3038,−1.4496),

and

W1 =

[
0.2500 0.2780
0.2780 0.2500

]
, W2 =

[
0.2500 −0.2780
−0.2780 0.2500

]
.

See the illustration of the results in Figure 1.
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4.3.2. An application: minimizing the smallest eigenvalue of a polynomial matrix.
Consider the problem of minimizing the smallest eigenvalue of a polynomial matrix:

(4.16) λ? := inf
x∈Rn

λmin (F (x)) s.t. x ∈ X := {x ∈ Rn | G(x) � 0},

where F (x) ∈ S[x]m, λmin (F (x)) denotes the smallest eigenvalue of F (x) and G(x) ∈ S[x]q.
The motivations for studying this problem come from many different fields. For example, in
the global optimization method, αBB, for general constrained nonconvex problems, a convex
relaxation of the original nonconvex problem is constructed. To underestimate nonconvex
terms of generic structure in the involved nonconvex functions, one needs to compute a pa-
rameter α which amounts to minimizing the smallest eigenvalue of the corresponding Hessian
matrix over a product of intervals. If the involved functions are polynomials, then the problem
can be formulated as (4.16) [4, 39]. For another example from optimal control, the stabilis-
ability radius of a continuous-time system described by a state-space equation is defined as
the norm of the smallest perturbation that makes the system unstabilisable. To compute such
a radius, one needs to minimize the smallest eigenvalue of a bivariate polynomial matrix over
a half disc on a plane, which is a special case of the problem (4.16) [18].

Clearly, the problem (4.16) is equivalent to

(4.17) sup
λ∈R

λ s.t. F (x)− λIm � 0, ∀x ∈ X ,

which is a special case of (RPSDP).
For each k ≥ max {ddeg(F )/2e, ddeg(G)/2e}, the k-th SDP relaxation of (4.16) can be

written as

(4.18) λprimal

k := inf
S∈Mm

k (G)
LS(F (x)) s.t. LS(Im) = 1,

with dual

(4.19) λdual
k := sup

λ∈R
λ s.t. F (x)− λIm ∈ Qmk (G).

The dual problem (4.19) is considered in [46] when X is the n-dimensional boolean hypercube
{0, 1}n. The significance of the primal problem (4.18) is that we can detect finite convergence
and extract optimal solutions if certain flat extension condition holds.

Clearly, the Slater condition holds for (4.17) if X is compact. Then, by Theorems 4.16–
4.17, we deduce the following theorems.

Theorem 4.19. Under Assumption 2, suppose that X is compact and has non-empty inte-
rior, then the following are true:

(i) λdual
k = λprimal

k for all k ≥ max {ddeg(F )/2e, ddeg(G)/2e};
(ii) λprimal

k ↘ λ? and λdual
k ↘ λ? as k →∞.

Theorem 4.20. Suppose that X is compact and has non-empty interior. If the following
flat extension condition

(4.20) ∃dkx/2e ≤ t ≤ k s.t. rank(Mt(S
?
k)) = rank(Mt−dG(S?k))

holds for some k ≥ max {ddeg(F )/2e, ddeg(G)/2e}, where S?k is an optimal solution to (4.18),
then the following are true:
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(i) S?k admits a representing measure Φ? =
∑r

i=1Wiδx(i) ∈ Mm
+ (X ) for some points

x(1), . . . ,x(r) ∈ X and W1, . . . ,Wr ∈ Sm+ with
∑r

i=1 tr (Wi) = 1;
(ii) λdual

k = λprimal

k = λ?;
(iii) For any decomposition Wi =

∑mi
l=1 v

(i,l)(v(i,l))ᵀ, v(i,l) ∈ Rm, i = 1, . . . , r, it holds

F (x(i))v(i,l) = λ?v(i,l), l = 1, . . . ,mi, i = 1, . . . , r.

That is, the smallest eigenvalue λ? of F (x) over X is attained at x(i) with v(i,l) being
the corresponding eigenvectors.

Example 4.21. Consider the following instance of (4.16):

(4.21) λ? := inf
x∈Rn

λmin (F (x)) s.t. x ∈ X := {x ∈ Rn | G(x) � 0},

where F (x) = Qdiag f1, f2, f3Q
ᵀ for some f1, f2, f3 ∈ R[x] and Q ∈ R3×3 with QᵀQ = I3.

Clearly, λ? = infx∈X {f1(x), f2(x), f3(x)}.
We let Q be the orthogonal matrix

Q =


1√
2
− 1√

3
1√
6

0 1√
3

2√
6

1√
2

1√
3
− 1√

6

 ,

G(x) be the polynomial matrix in (4.18), and

f1(x) = −x2
1 − x2

2,

f2(x) = −1

4
(x1 + 1)2 − 1

4
(x2 − 1)2,

f3(x) = −1

4
(x1 − 1)2 − 1

4
(x2 + 1)2.

It is easy to check that λ? = infx∈X {f1(x), f2(x), f3(x)} = −4 which is achieved by f1 at
(0,±2). The eigenvector space of F (0,±2) associated with the eigenvalue −4 consists of all
vectors of the form (c, 0, c)ᵀ, c ∈ R.

Solving the SDP relaxation (4.18) with k = 2, we get λprimal

2 = −4.0000 and the rank
condition (4.20) is satisfied with

rank(M2(S?2)) = rank(M1(S?2)) = 2.

By Theorem 4.20, global optimality is reached. By the procedure described in Section 3.2, we
recover the representing measure Φ? =

∑2
i=1Wiδx(i) of S?2 with

x(1) = (−0.0000,−2.0000), x(2) = (0.0000, 2.0000),

and

W1 =

 0.2511 −0.0006 0.2508
−0.0006 −0.0003 0.0006

0.2508 0.0006 0.2511

 , W2 =

 0.2489 0.0006 0.2492
0.0006 0.0003 −0.0006
0.2492 −0.0006 0.2489

 .



30 F. GUO, AND J. WANG

Up to some numerical errors, both W1 and W2 have the approximate decomposition:

(0.5000, −0.0012, 0.4994)ᵀ(0.5000, −0.0012, 0.4994).

By Theorem 4.20, (0.5000, −0.0012, 0.4994)ᵀ is an eigenvector of F (x(i)), i = 1, 2, associated
with the eigenvalue −4.0000. In fact, it corresponds to the vector (c, 0, c)ᵀ with c = 0.5.

5. Extension to the general convex case. In this section, we provide an extension of
the proposed approach to (RPMIO) with general convexity. The following assumptions are
obtained from Assumption 1 by replacing “SOS-convex” with “convex”.

Assumption 5. (i) f(y),−θ1(y), . . . ,−θs(y) are convex; (ii) −P (y,x) is PSD-convex in y
for all x ∈ X ; (iii) X is compact.

For each k ≥ max {dkx/2e, dky/2e}, by replacing the cones P(Y) and Mm
+ (X ) in (4.2)

with Qk(Θ) and Mm
k (G) respectively, we obtain the following SDP problem

(5.1)


fprimal

k := sup
ρ,S

ρ

s.t. f(y)− ρ−LS(P (y,x)) ∈ Qk(Θ),

ρ ∈ R, S ∈Mm
k (G),

whose dual reads as

(5.2)


fdual
k := inf

s
Hs(f)

s.t. s ∈Mk(Θ), Hs(1) = 1,

Hs(P (y,x)) ∈ Qmk (G).

We have the following theorem; see Appendix B for the proof.

Theorem 5.1. Under Assumptions 2–5, the following are true:
(i) fprimal

k = fdual
k for each k ≥ max {dkx/2e, dky/2e};

(ii) limk→∞ f
primal

k = limk→∞ f
dual
k = f?;

(iii) For any convergent subsequence (s
(ki,?)
e )i (always exists) of (s

(k,?)
e )k where s(k,?) is a

minimizer of (5.2), limi→∞ s
(ki,?)
e is a global minimizer of (RPMIO). Consequently,

if the optimal solution set of (RPMIO) is a singleton, then limk→∞ s
(k,?)
e is the unique

global minimizer.

Remark 5.2. Since Qk(Θ) is an inner approximation for P(Y) while Mm
k (G) is an outer

approximation for Mm
+ (X ), the convergence of fprimal

k and fdual
k to f? is not from one side.

As for the SOS-convex case, finite convergence of (5.1)–(5.2) can be detected via certain
flat extension conditions.

Lemma 5.3 (Jensen’s inequality for PSD-convexity). If a polynomial matrix Q(y) ∈ S[y]m is
PSD-convex in y and a sequence s = (sα)α∈N` ⊂ R admits a representing probability measure,
then Hs(Q(y)) � Q(se).
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Proof. For any v ∈ Rm, vᵀQ(y)v is convex in y. Since s admits a representing probability
measure, by Jensen’s inequality for convex functions, it holds

vᵀQ(se)v ≤Hs(v
ᵀQ(y)v) = vᵀHs(Q(y))v

for any v ∈ Rm. Hence, Hs(Q(y)) � Q(se).

Let dΘ := max {ddeg(θi)/2e, i = 1, . . . , s}.
Theorem 5.4. Suppose that Assumptions 3–5 hold. If the following flat extension conditions

(5.3)
∃dkx/2e ≤ t1 ≤ k s.t. rank(Mt1(S(k,?))) = rank(Mt1−dG(S(k,?))),

∃dky/2e ≤ t2 ≤ k s.t. rank(Mt2(s(k,?))) = rank(Mt2−dΘ
(s(k,?)))

hold for some k ≥ max {dkx/2e, dky/2e}, where (ρ?k,S
(k,?)) and s(k,?) are optimal solutions to

(5.1) and (5.2) respectively, then the following are true:
(i) S(k,?) admits a representing measure Φ? =

∑r1
i=1Wiδx(i) ∈ Mm

+ (X ) for some points
x(1), . . . ,x(r1) ∈ X and W1, . . . ,Wr1 ∈ Sm+ ;

(ii) s(k,?) admits a representing probability measure µ? =
∑r2

j=1 λjδy(j) ∈ m+(Y) for some

y(1), . . . ,y(r2) ∈ Y and positive real numbers λ1, . . . , λr2;
(iii) fprimal

k = fdual
k = f?;

(iv)
∑r2

j=1 λjy
(j) is an optimal solution to (RPMIO);

(v) For any decomposition Wi =
∑mi

q=1 v
(i,q)(v(i,q))ᵀ, v(i,q) ∈ Rm, i = 1, . . . , r1, it holds

that

P

 r2∑
j=1

λjy
(j),x(i)

v(i,q) = 0, q = 1, . . . ,mi, i = 1, . . . , r1.

Proof. (i)–(ii). They follow from Theorem 3.2.
(iii). By slightly modifying the proof of Theorem 4.11 (i) and Theorem 4.12 (ii), we have

fprimal

k = fdual
k ≤ f?. As s(k,?) is feasible to (5.2), by Lemma 5.3 and (ii),

P

 r2∑
j=1

λjy
(j),x

 � r2∑
j=1

λj(P (y(j),x)) = Hs(k,?)(P (y,x)) � 0,

for all x ∈ X . So,
∑r2

j=1 λjy
(j) is feasible to (RPMIO). Then, as f(y) is convex, by Jensen’s

inequality for convex functions,

(5.4) f? ≤ f

 r2∑
j=1

λjy
(j)

 ≤ r2∑
j=1

λjf(y(j)) = Hs(k,?)(f) = fdual
k .

Hence, it holds fdual
k = fprimal

k = f?.
(iv). It follows from (iii) and (5.4).
(v). By (iii) and Theorem 4.3, (fprimal

k ,S(k,?)) is an optimal solution to (4.2). Then, the
conclusion follows from (iv) and Proposition 4.4.
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Figure 2. The feasible set (the gray area), the contour line f(y) = 0.4504 (the blue line) and the extracted
minimizer y? (the red dot) in Example 5.6.

Remark 5.5. From the proofs of Theorem 5.4 (iii), Theorem 4.11 (i) and Theorem 4.12
(ii), we can see that even without Assumption 5, if fprimal

k = fdual
k , then the conclusions of

Theorem 5.4 still hold under the flat extension conditions (5.3).

Example 5.6. Consider the following instance of (RPMIO):

f? := inf
y∈R2

f(y) s.t. P (y,x) � 0, ∀x ∈ X := {x ∈ R2 | G(x) � 0},

where P (y,x) and G(x) are defined as in Example 4.14. The following polynomial ([3, (5.2)])
is convex but not SOS-convex:

(5.5)

h(y) = 89− 363y4
1y2 +

51531

64
y6

2 −
9005

4
y5

2 +
49171

16
y4

2 + 721y2
1 − 2060y3

2

− 14y3
1 +

3817

4
y2

2 + 363y4
1 − 9y5

1 + 77y6
1 + 316y1y2 + 49y1y

3
2

− 2550y2
1y2 − 968y1y

2
2 + 1710y1y

4
2 + 794y3

1y2 +
7269

2
y2

1y
2
2

− 301

2
y5

1y2 +
2143

4
y4

1y
2
2 +

1671

2
y3

1y
3
2 +

14901

16
y2

1y
4
2 −

1399

2
y1y

5
2

− 3825

2
y3

1y
2
2 −

4041

2
y2

1y
3
2 − 364y2 + 48y1.

Let f(y) = h(y1−1, y2−1)/10000 which is again convex but not SOS-convex. We have ky = 6
and kx = 2.

Solving the SDPs (5.1) and (5.2) with k = 3, we get fprimal

3 = fdual
3 = 0.4504 and the rank

conditions (5.3) are satisfied with t1 = 3 and t2 = 1. By Theorem 5.4 and Remark 5.5, global
optimality is reached and so f? ≈ 0.4504. The extracted minimizer is y? = (0.2711, 0.4201).
We show the feasible set, the contour line f(y) = 0.4504 and the extracted minimizer y? in
Figure 2.
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6. Conclusions. We have proposed a moment-SOS hierarchy for the robust PMI opti-
mization problems with SOS-convexity for which asymptotic convergence is established and
the flat extension condition is used to detect global optimality. This work generalizes most of
the nice features of the moment-SOS hierarchy for the scalar polynomial optimization to the
robust PMI optimization, and we would expect to stimulate more applications of robust PMI
optimization in different fields (e.g., robust optimization, control theory). For the scalar poly-
nomial optimization, various algebraic structures (e.g., symmetry, sparsity [47, 48, 49]) can be
exploited to derive a structured moment-SOS hierarchy with lower computational complexity.
A recent work on exploiting sparsity for PMIs could be found in [50]. As a line of further
research, we intend to extend such techniques to the robust PMI optimization in future work.

Appendix A. An example for matrix-valued measure recovery. We construct a finitely
atomic matrix-valued measure and then recover it from its moment matrix. Let m = n = k =
2, r = 3,

x(1) = (0.3855,−0.2746), x(2) = (−0.5863, 0.9648) x(3) = (0.1130,−0.8247),

and

W1 =

[
0.6731 −0.7569
−0.7569 0.8512

]
, W2 =

[
0.6399 0.5259
0.5259 0.8048

]
, W3 =

[
0.0661 −0.2294
−0.2294 0.7968

]
.

Note that rank(W1) = rank(W3) = 1 and rank(W3) = 2. We let Φ =
∑3

i=1Wiδx(i) . Denote
by S = (Sα)α∈N2

4
and M2(S) the associated truncated moment sequence and moment matrix,

respectively. Next, we recover x(i)’s and Wi’s from M2(S) by the procedure described in
Section 3.2.

We have t = rank(M2(S)) = rank(M1(S)) = 4. Compute the Cholesky decomposition
M2(S) = Ṽ Ṽ ᵀ with Ṽ ∈ R12×4 and reduce matrix Ṽ to the column echelon form

U =



1.0000 0 0 0
0 1.0000 0 0
0 0 1.0000 0
0 0 0 1.0000

0.5775 0.3205 −0.6606 0.5467
−1.2518 −0.8961 −2.1350 −3.1739

0.3025 0.0680 −0.0703 0.1160
−0.2657 −0.0103 −0.4532 −0.6038
−0.3451 −0.0506 0.3762 −0.0862

0.1975 −0.1126 0.3368 0.7727
0.2682 −0.1303 −1.1301 −0.2222
0.5088 0.8672 0.8678 −0.1086



.

The rows of U correspond to the monomials

v2(x,w) = [w1, w2, x1w1, x1w2, x2w1, x2w2, x
2
1w1, x

2
1w2, x1x2w1x1x2w2, x

2
2w1, x

2
2w2]ᵀ.
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From U , we can read the generating basis b2(x,w) = [w1, w2, x1w1, x1w2] which satisfies that
v2(v,w) = Ub2(x,w) holds at each pair of x(i) and w(i,j). Moreover, we can get from U the
multiplication matricex of x1 and x2 with respect to b2(x,w):

N1 =


0 0 1.0000 0
0 0 0 1.0000

0.3025 0.0680 −0.0703 0.1160
−0.2657 −0.0103 −0.4532 −0.6038

 ,
and

N2 =


0.5775 0.3205 −0.6606 0.5467
−1.2518 −0.8961 −2.1350 −3.1739
−0.3451 −0.0506 0.3762 −0.0862

0.1975 −0.1126 0.3368 0.7727

 .
Build a random combination of multiplication matrices N = 0.3687N1 + 0.6313N2, and com-
pute the ordered Schur decomposition N = ATAᵀ with

A =


0.2749 −0.7785 −0.3800 0.4171
−0.9549 −0.2787 −0.1012 0.0171

0.0311 −0.4340 0.9003 −0.0103
−0.1079 0.3577 0.1866 0.9086

 .
Compute the 4 points in (3.5):[

aᵀ1N1a1

aᵀ1N2a1

]
=

[
0.1130
−0.8247

]
,

[
aᵀ2N1a2

aᵀ2N2a2

]
=

[
0.3855
−0.2746

]
,[

aᵀ3N1a3

aᵀ3N2a3

]
=

[
−0.5863

0.9648

]
,

[
aᵀ4N1a4

aᵀ4N2a4

]
=

[
−0.5863

0.9648

]
.

As we can see, all points x(1), x(2) and x(3) have been recovered. Among the above 4 points,
x(1), x(3) appear one time and x(3) appears two times, which corresponds to the ranks of W1,
W2 and W3. We compute the matrix Λ and find R = {1, 2, 3, 4, 5, 6} indexing the mr = 6
independent rows in Λ. We have

ΛR =



1.0000 0 1.0000 0 1.0000 0
0 1.0000 0 1.0000 0 1.0000

0.3855 0 −0.5863 0 0.1130 0
0 0.3855 0 −0.5863 0 0.1130

−0.2746 0 0.9648 0 −0.8247 0
0 −0.2746 0 0.9648 0 −0.8247

 ,

and

MR(S) =



1.3791 −0.4605
−0.4605 2.4528
−0.1082 −0.6261
−0.6261 −0.0537

0.3781 0.9044
0.9044 −0.1145

 .
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Now we compute

Λ−1
R MR(S) =



0.6731 −0.7569
−0.7569 0.8512

0.6399 0.5259
0.5259 0.8048
0.0661 −0.2294
−0.2294 0.7968

 ,

which corresponds exactly to [W1,W2,W3]ᵀ.

Appendix B. Proof of Theorem 5.1.

Proof. (i). It can be justified by replacing Qdky/2e(Θ) with Qk(Θ) in the proof of Theorem
4.11 (i).

(ii). Fix an arbitrary ε > 0. By slightly modifying the proof of Theorem 4.11 (ii), we can

see that there exists k
(ε)
1 ∈ N such that fdual

k ≤ f? + ε for all k ≥ k(ε)
1 .

Let Φ? ∈Mm
+ (X ) be the finitely atomic matrix-valued measure in Proposition 4.1 and let

S? = (S?α)α∈Nn
2k

with S?α =
∫
X xαdΦ?(x). Then S? ∈ Mm

k (G). Due to Proposition 4.1 and
Remark 4.5, it holds

(B.1) f(y)− (f? − ε)−LS?(P (y,x)) > 0,

for all y ∈ Y. By Putinar’s Positivstellensatz [44] (see also Theorem 2.3), there exists k
(ε)
2 ∈ N,

such that for all k ≥ k(ε)
2 , (f? − ε,S?) is feasible to (5.1) and hence fprimal

k ≥ f? − ε.
As ε > 0 is arbitrary, by the weak duality, we have limk→∞ f

primal

k = limk→∞ f
dual
k = f?.

(iii). Fix a sequence (s(k,?))k such that s(k,?) = (s
(k,?)
α )α∈N`

2k
is a minimizer of (5.2) for

each k. For each α ∈ N`, define

N(α) :=

√√√√(`+
⌈
|α|
2

⌉
`

) ⌈
|α|
2

⌉∑
i=1

b2i.

By Lemma 4.10, |s(k,?)
α | ≤ N(α) for all k and α ∈ N`2k. Complete each s(k,?) with zeros to

make it an infinite vector. Then,{
(s

(k,?)
α )α∈N`

}
k
⊂
∏
α∈N`

[−N(α), N(α)] .

By Tychonoff’s theorem, the product space
∏

α∈N` [−N(α), N(α)] is compact in the product

topology. Therefore, there exists a subsequence (s(ki,?))i of (s(k,?))k and s? = (s?α)α∈N` such

that limi→∞ s
(ki,?)
α = s?α for all α ∈ N`. By the pointwise convergence, we have (a) s? ∈Mk(Θ)

for all k; (b) Hs?(1) = 1; (c) Hs?(P (y,x)) � 0 for all x ∈ X . By (a), (b), Putinar’s Posi-
tivstellensatz and Haviland’s theorem, s? has a representing probability measure µ supported
on Y, i.e., s?α =

∫
Y y

αdµ(y) for all α ∈ N`. By Lemma 5.3, P (s?e,x) �Hs?(P (y,x)) � 0 and
θi(s

?
e) ≥ Hs?(θi) ≥ 0, i = 1, . . . , s. Hence s?e is feasible to (RPMIO). Moreover, as f(y) is

convex in y, by (ii) and the pointwise convergence,

f? = Hs?(f) ≥ f(s?e),



36 F. GUO, AND J. WANG

which indicates that s?e is a minimizer of (RPMIO).
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