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Abstract. In this paper, we prove several theorems on systems of polynomials

with at least one positive real zero based on the theory of conceive polynomi-
als. These theorems provide sufficient conditions for systems of multivariate

polynomials admitting at least one positive real zero in terms of their Newton

polytopes and combinatorial structure. Moreover, a class of polynomials at-
taining their global minimums in the first quadrant are given, which is useful

in polynomial optimization.

1. Introduction

An important problem in real algebraic geometry is bounding the numbers of
positive real zeros for polynomials or systems of polynomials. In the univariate case,
the well-known Descartes’ rule of signs gives a nice upper bound for the number of
positive real zeros of a polynomial.

Descartes’ rule of signs Given a univariate real polynomial f(x) such that
the terms of f(x) are ordered by descending variable exponents, the number of
positive real zeros of f(x) (counted with multiplicity) is bounded from above by the
number of sign variations between consecutive nonzero coefficients. Additionally,
the difference between these two numbers (the number of positive real zeros and
the number of sign variations) is even.

However, no complete multivariate generalization of Descartes’ rule of signs for
upper bounds of numbers of positive real zeros is known, except for a conjecture
proposed by Itenberg and Roy in 1996 ([6]) and subsequently disproven by T.Y. Li
in 1998 ([10]). In [8], a special case for systems of polynomials with at most one
positive real zero was considered through the theory of oriented matroids. Based
on this method, a partially multivariate generalization of Descartes’ rule of signs
for systems of polynomials supported on circuits can be found in [2, 3].

While lower bounds guarantee the existence of positive real zeros which has
applications in fields such as polynomial optimization (the existence of global min-
imizers, [1, 11, 13]), chemical reaction networks (the existence of positive steady
states, [7, 8]) and so on, there are few results on lower bounds of numbers of posi-
tive real zeros for polynomials or systems of polynomials in the literature. In [14],
a lower bound of numbers of real zeros for systems of Wronski polynomials was
derived.
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In this paper, we concentrate on the case of lower bound one for the number
of positive real zeros. More specifically, we prove several theorems on systems
of polynomials with at least one positive real zero (Theorem 4.6, Theorem 4.8
and Theorem 4.10), based on the theory of conceive polynomials developed in [1].
These theorems provide sufficient conditions for systems of polynomials admitting
at least one positive real zero in terms of their Newton polytopes and combinatorial
structure and can be also seen as a first step to the broader problem of bounding
the number of positive real zeros from the below for systems of polynomials.

In polynomial optimization problems, the existence of global minimizers of ob-
jective polynomials is often formulated as an assumption for some of the algorithmic
approaches ([1, 11, 13]). However, this assumption is very non-trivial. To verify
that a given polynomial has this property is a difficult problem. As another con-
tribution of this paper, we give a class of polynomials which attain their global
minimums in the first quadrant (Theorem 3.4).

2. Preliminaries

2.1. Nonnegative polynomials. Let R[x] = R[x1, . . . , xn] be the ring of real n-
variate polynomial, and N∗ = N\{0}. Let R+ be the set of positive real numbers.
For a finite set A ⊆ Nn, we denote by conv(A ) the convex hull of A , and by V (A )
the vertices of the convex hull of A . We also denote by V (P ) the vertex set of
a polytope P . For a polynomial f ∈ R[x] of the form f(x) =

∑
α∈A cαxα with

cα ∈ R,xα = xα1
1 · · ·xαn

n , the support of f is supp(f) := {α ∈ A | cα 6= 0} and
the Newton polytope of f is defined as New(f) := conv(supp(f)). For a polytope
P , we use P ◦ to denote the interior of P .

We say that a polynomial f ∈ R[x] is nonnegative over A for A ⊆ Rn, if for
all x ∈ A, f(x) ≥ 0. Particularly, a polynomial f ∈ R[x] is nonnegative over
Rn is called a nonnegative polynomial. A nonnegative polynomial must satisfy the
following necessary conditions.

Proposition 2.1. ([12, Theorem 3.6]) Let A ⊂ Nn and f =
∑

α∈A cαxα ∈ R[x]
with supp(f) = A . Then f is a nonnegative polynomial only if the followings hold:

(1) V (A ) ⊆ (2N)n;
(2) If α ∈ V (A ), then the corresponding coefficient cα is positive.

2.2. Circuit polynomials.

Definition 2.2. Let A ⊆ (2N)n and f ∈ R[x]. Then f is called a circuit polyno-
mial if it is of the form

f(x) =
∑
α∈A

cαxα − dxβ,

and satisfies:

(1) A comprises the vertices of a simplex;
(2) cα > 0 for α ∈ A ;
(3) β ∈ conv(A )◦.

For a circuit polynomial f =
∑

α∈A cαxα − dxβ, assume

β =
∑
α∈A

λαα with λα > 0 and
∑
α∈A

λα = 1,

and define the corresponding circuit number as Θf :=
∏

α∈A (cα/λα)λα . The
nonnegativity of a circuit polynomial f is decided by its circuit number alone.
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Theorem 2.3. ([5, Theorem 3.8]) Let f =
∑

α∈A cαxα − dxβ ∈ R[x] be a circuit
polynomial and Θf its circuit number. Then f is a nonnegative polynomial if and
only if β /∈ (2N)n and |d| ≤ Θf , or β ∈ (2N)n and d ≤ Θf .

For more details about circuit polynomials, the reader is referred to [5, 15].

2.3. Coercive polynomials. A polynomial f ∈ R[x] is called a coercive polyno-
mial, if f(x) → +∞ holds whenever ‖x‖ → +∞, where ‖·‖ denotes some norm
on Rn. Obviously the coercivity of f implies the existence of global minimizers of
f over Rn. Necessary conditions ([1, Theorem 2.8]) and sufficient conditions ([1,
Theorem 3.4]) for a polynomial to be coercive were given in [1].

Theorem 2.4. ([1, Theorem 2.8]) Let f =
∑

α∈A cαxα ∈ R[x] with supp(f) = A
be a coercive polynomial and c0 > 0. Then the following three conditions hold:

(1) V (A ) ⊆ (2N)n;
(2) If α ∈ V (A ), then the corresponding coefficient cα is positive;
(3) For every i, 1 ≤ i ≤ n, there exists a vector 2kiei ∈ V (A ) with ki ∈ N∗, where

ei is the standard basis vector of Rn.

For f =
∑

α∈A cαxα ∈ R[x] with supp(f) = A , let F be the set of faces of
New(f) which do not contain the origin point 0 and let

(2.1) D :=
⋃
F∈F

(A \V (A )) ∩ F.

For the later use, we restate Theorem 3.4 in [1] for our purpose as follows.

Theorem 2.5. ([1, Theorem 3.4]) Let f =
∑

α∈A cαxα ∈ R[x] with supp(f) = A
and c0 > 0. Assume that the necessary conditions in Theorem 2.4 are satisfied and
D is as (2.1). If for every α ∈ D, cα > 0, then f is a coercive polynomial.

For more details about coercive polynomials, the reader is referred to [1].

Before proving the main results of this paper, we outline the key ideas as follows.
For a polynomial satisfying certain conditions, we first apply an invertible linear
transformation to its exponent vectors to obtain a coercive polynomial (Lemma 3.1).
Then we prove that there is a one-to-one correspondence between the minimizers
of the original polynomial over the first quadrant and those of the transformed
polynomial (Lemma 3.2). Hence the coercivity of the transformed polynomial and
the existence of global minimizers for coercive polynomials imply the existence of
minimizers for the original polynomial (Lemma 3.3 and Theorem 3.4). Finally, we
prove three theorems on systems of polynomials with at least one positive real zero
by virtue of Lemma 3.1, Lemma 3.2 and Lemma 3.3 (Theorem 4.6, Theorem 4.8
and Theorem 4.10).

3. Polynomials attaining their global minimums

In this section, we prove some lemmas and a theorem on the existence of global
minimizers in Rn+ for a class of polynomials.

Let R[x±] denote the Laurent polynomial ring and g(x) =
∑

α cαxα ∈ R[x±].
For an invertible matrix T ∈ GLn(Q), the polynomial obtained by applying T to
the exponent vectors of g is denoted by gT =

∑
α cαxTα.
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Let ∆ be a polytope of dimension d. For a vertex α of ∆, if α is the intersection
of precisely d edges, then we say ∆ is simple at α. Obviously, a polygon is simple
at any vertex.

Lemma 3.1. Suppose f = c0 +
∑

α∈A cαxα −
∑

β∈B dβxβ ∈ R[x±] such that

dim(New(f)) = n, B ⊆ New(f)◦ ∩Zn, 0 ∈ V (New(f)) and New(f) is simple at 0.
Then there exists A0 = {α1, . . . ,αn} ⊆ V (New(f)) and T ∈ GLn(Q) such that

fT = c0 +

n∑
i=1

cαi
x2kii +

∑
α∈A \A0

cαxTα −
∑
β∈B

dβxTβ,

where ki ∈ N∗, Tα ∈ (2N)n for each α ∈ A \A0 and Tβ ∈ New(fT )◦∩Nn for each
β ∈ B.

Proof. Since New(f) is simple at 0, 0 is the intersection of precisely n edges. Let
A0 = {α1, . . . ,αn} ⊆ V (New(f)) be the other extreme points of these n edges.
Let T ′ ∈ GLn(Q) such that T ′(α1, . . . ,αn) = diag(k′1, . . . , k

′
n), where k′i ∈ N∗.

Suppose µ ∈ N∗ is the least common multiple of the denominators appearing in the
coordinates of T ′α and T ′β for α ∈ A \A0 and β ∈ B. Let T = 2µT ′. Then Tα ∈
(2Z)n for each α ∈ A \A0 and Tβ ∈ Zn for each β ∈ B. Moreover, since affine
transformations keep convexity, we have Tα ∈ (2N)n and Tβ ∈ New(fT )◦ ∩ Nn.
Thus T meets the requirement with ki = µk′i, i = 1, . . . , n. �

Consider the bijective componentwise exponential map

(3.1) exp : Rn → Rn+, x = (x1, . . . , xn) 7→ ex = (ex1 , . . . , exn).

The image of a polynomial g(x) =
∑

α cαxα under the map exp is g(ex) =∑
α cαe

〈α,x〉, where 〈α,x〉 = αTx is the inner product of α and x. Clearly, the
range of g(x) over Rn+ is same as the range of g(ex) over Rn.

Lemma 3.2. Let g(x) =
∑

α cαxα ∈ R[x±] and T ∈ GLn(Q) such that gT (x) ∈
R[x±]. Then the infimums of g(x) and gT (x) over Rn+ are the same. Furthermore,

the minimizers (and the zeros) of g(x) and gT (x) over Rn+ are in a one-to-one
correspondence.

Proof. We only need to show that the same conclusions hold for g(ex) and gT (ex)
over Rn, which easily follow from the equalities

g(ex) =
∑
α

cαe
〈α,x〉 =

∑
α

cαe
〈Tα,T∗x〉 = gT (eT

∗x)

and

gT (ex) =
∑
α

cαe
〈Tα,x〉 =

∑
α

cαe
〈α,TTx〉 = g(eT

Tx),

where T ∗ = (T−1)T = (TT)−1 and T represents the transpose. �

Lemma 3.3. Suppose f = c0+
∑

α∈A cαxα−
∑

β∈B dβxβ ∈ R[x±], c0, cα, dβ > 0

such that A ⊆ Zn, B ⊆ New(f)◦ ∩ Zn, dim(New(f)) = n, 0 ∈ V (New(f)) and
New(f) is simple at 0. Assume that

∑
α∈A cαxα−

∑
β∈B dβxβ is not nonnegative

over Rn+. Then f has a minimizer over Rn+.
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Proof. By Lemma 3.1, there exists A0 = {α1, . . . ,αn} ⊆ V (New(f)) and T ∈
GLn(Q) such that fT = c0 +

∑n
i=1 cαi

x2kii +
∑

α∈A \A0
cαxTα −

∑
β∈B dβxTβ ∈

R[x], where Tα ∈ (2N)n for each α ∈ A \A0 and Tβ ∈ New(fT )◦ ∩ Nn for each
β ∈ B. By Theorem 2.5, fT is a coercive polynomial, and hence has a global
minimizer over Rn. Note that fT (|x|) = c0+

∑n
i=1 cαi |xi|2ki +

∑
α∈A \A0

cα|x|Tα−∑
β∈B dβ|x|Tβ ≤ fT (x), where |x| = (|x1|, . . . , |xn|). So fT has a global minimizer

x∗ in Rn≥0, where R≥0 is the set of nonnegative real numbers. Since f − c0 is

not nonnegative over Rn+, by Lemma 3.2, fT − c0 is not nonnegative over Rn+. It

follows that the global minimum of fT is lower than c0, and since for x ∈ Rn≥0\Rn+,

fT (x) ≥ c0, we have x∗ ∈ Rn+. Thus fT has a minimizer over Rn+ and so does f by
Lemma 3.2. �

Theorem 3.4. Suppose f =
∑

α∈A cαxα −
∑

β∈B dβxβ ∈ R[x], cα, dβ > 0 such

that A ⊆ (2N)n, B ⊆ New(f)◦ ∩ Nn, dim(New(f)) = n. Assume that conv(A ∪
{0}) is simple at 0. If 0 is not a global minimizer of f , then f has a global minimizer
in Rn+.

Proof. Since f(|x|) =
∑

α∈A cα|x|α−
∑

β∈B dβ|x|β ≤ f(x), we only need to search

the global minimizers of f in Rn≥0, or equivalently in {0} ∪ Rn+ (since for x ∈
Rn≥0\Rn+, f(x) ≥ f(0)). If 0 ∈ A and f − c0 is nonnegative over Rn+, then 0 is a
global minimizer of f . If 0 ∈ A and f − c0 is not nonnegative over Rn+, then by
Lemma 3.3, f has a minimizer over Rn+, which is also a global minimizer. If 0 /∈ A
and f is nonnegative over Rn+, then 0 is a global minimizer of f . If 0 /∈ A and f
is not nonnegative over Rn+, consider the polynomial f + c, c > 0. By Lemma 3.3,
f + c has a minimizer over Rn+. It follows that f has a minimizer over Rn+, which
is also a global minimizer. �

4. Systems of polynomials with at least one positive real zero

A positive real zero of a polynomial or a system of polynomials is a real zero
with positive coordinates. Note that the positive real zeros of the polynomials
f(x1, . . . , xn) and f(x21, . . . , x

2
n) are in a one-to-one correspondence. Since we only

consider positive real zeros in this paper, we can apply the map xi 7→ x2i (1 ≤ i ≤
n) and assume that the supports of polynomials in the following are in (2N)n if
necessary.

Proposition 4.1. Let F be the following system of polynomial equations

(4.1)
∑
α∈A

cα(α− γ)xα −
∑
β∈B

dβ(β − γ)xβ = 0,

where A ⊆ Nn, cα, dβ > 0 and γ ∈ V (∆), B ⊆ ∆◦ ∩Nn with ∆ = conv(A ∪{γ}).
Assume that dim(∆) = n, ∆ is simple at γ and

∑
α∈A cαxα −

∑
β∈B dβxβ is not

nonnegative over Rn+. Then F has at least one positive real zero.

Proof. Consider the polynomial f = dxγ +
∑

α∈A cαxα −
∑

β∈B dβxβ. Let f ′ =

f/xγ = d +
∑

α∈A cαxα−γ −
∑

β∈B dβxβ−γ . Then by Lemma 3.3, f ′ has a

minimizer over Rn+. Assume the minimum of f ′ over Rn+ is ξ. Then f ′(x) − ξ
is nonnegative over Rn+ and has a positive real zero. It follows that f − ξxγ =

(d− ξ)xγ +
∑

α∈A cαxα −
∑

β∈B dβxβ is nonnegative over Rn+ and has a positive
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real zero, which implies that the system of f − ξxγ = 0 and ∇(f − ξxγ) = 0 (∇
means the gradient) has a positive real zero. Multiplying f − ξxγ = 0 by γ yields

(4.2) (d− ξ)γxγ +
∑
α∈A

cαγxα −
∑
β∈B

dβγxβ = 0.

Multiplying the i-th equation of ∇(f − ξxγ) = 0 by xi yields

(4.3) (d− ξ)γxγ +
∑
α∈A

cααxα −
∑
β∈B

dββxβ = 0.

From (4.3)−(4.2), we obtain

(4.4)
∑
α∈A

cα(α− γ)xα −
∑
β∈B

dβ(β − γ)xβ = 0,

which is exactly F . Thus F has a positive real zero. �

Example 4.2. Consider the following system of polynomial equations with A =
{α1,α2,α3,α4} = {(8, 0), (0, 8), (4, 4), (0, 0)}, B = {β1,β2} = {(1, 4), (3, 2)} and
γ = (8, 8):

(4.5)

{
−8y8 − 4x4y4 − 8 + 21xy4 + 5x3y2 = 0

−8x8 − 4x4y4 − 8 + 12xy4 + 6x3y2 = 0
.

α4 α1

α2 γ

α3β1

β2

The polynomial x8 + y8 + x4y4 + 1− 3xy4 − x3y2 is not nonnegative over Rn+ and
hence by Proposition 4.1, the system (4.5) has at least one positive real zero. In
other words, the lower bound for the number of positive real zero of (4.5) is one.
Actually, a computation by Mathematica yields two positive real zeros of (4.5):

(1.13128, 1.23327) and (0.72571, 0.961524).

Lemma 4.3. Suppose fd =
∑

α∈A cαxα + dxγ −
∑

β∈B dβxβ ∈ R[x], A ∪ {γ} ⊆
Nn, cα, dβ > 0 such that B ⊆ ∆◦∩Nn with ∆ = conv(A ∪{γ}). Assume dim(∆) =
n, ∆ is simple at some vertex α0 ∈ A (α0 6= γ) and

∑
α∈A cαxα −

∑
β∈B dβxβ

is not nonnegative over Rn+. Let d∗ := inf{d | fd is nonnegative over Rn+}. Then
fd∗ has a positive real zero.

Proof. Let |B| = l. For each β ∈ B, since β ∈ ∆◦, then there must exist a subset
Aβ of A such that Aβ ∪ {γ} comprises the vertices of a simplex ∆β containing β
as an interior point. For each α ∈ ∪β∈BAβ, count how many Aβ’s contain α and
evenly distribute cα. Then we can write

(4.6) fd =
∑
β∈B

(
∑

α∈Aβ

cαβxα +
d

l
xγ − dβxβ) +

∑
α/∈∪β∈BAβ

cαxα

as a sum of circuit polynomials. Observe that if d is sufficiently large, then every
circuit polynomial appearing in (4.6) is nonnegative by Theorem 2.3 and hence fd
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is nonnegative over Rn+. So the set in the definition of d∗ is nonempty and obviously
has a lower bound 0. It follows that d∗ exists.

Let f ′d = fd/x
α0 = cα0 +

∑
α∈A \{α0} cαxα−α0 + dxγ−α0 −

∑
β∈B dβxβ−α0 .

By Lemma 3.1, there exists A0 = {α1, . . . ,αn} ⊆ V (A )\{α0} and T ∈ GLn(Q)

such that f ′Td = cα0
+
∑n
i=1 cαi

x2kii +
∑

α∈A \(A0∪{α0}) cα xT (α−α0) +dxT (γ−α0)−∑
β∈B dβxT (β−α0) ∈ R[x], where T (α − α0), T (γ − α0) ∈ (2N)n, T (β − α0) ∈

New(f ′Td )◦∩Nn (we assume γ /∈ A0 without loss of generality). By Lemma 3.2, the
nonnegativity of f ′Td over Rn+ is the same as the nonnegativity of f ′d over Rn+, and
hence is the same as the nonnegativity of fd over Rn+. Let 0 < d0 < d∗. By Theorem

2.5, f ′Td0 is a coercive polynomial. Hence there exists N > 0 such that for ‖x‖∞ > N ,

f ′Td0 (x) > 0. For d0 < d < d∗, since f ′Td (x)−f ′Td0 (x) = (d−d0)xT (γ−α0) > 0 over Rn+,

we have f ′Td (x) > f ′Td0 (x) over Rn+. Thus for ‖x‖∞ > N and x ∈ Rn+, f ′Td (x) > 0.

By the definition of d∗, fd is not nonnegative over Rn+ and so is f ′Td . That is to say,

there exists xd ∈ Rn+ such that f ′Td (xd) < 0. It follows ‖xd‖∞ ≤ N . Let d → d∗.

Then we have f ′Td (xd) − f ′Td∗ (xd) = (d − d∗)xT (γ−α0)
d → 0. Since f ′Td∗ (xd) ≥ 0 and

f ′Td (xd) < 0, we must have f ′Td∗ (xd) → 0. Thus the infimum of f ′Td∗ over Rn+ is 0.

It follows that f ′Td∗ − cα0 is not nonnegative over Rn+. So by Lemma 3.3, f ′Td∗ has a

minimizer over Rn+, which is a positive real zero of f ′Td∗ . As a consequence, f ′d∗ also
has a positive real zero by Lemma 3.2 and so does fd∗ . �

Proposition 4.4. Let F be the following system of polynomial equations

(4.7)
∑
α∈A

cα(α− γ)xα −
∑
β∈B

dβ(β − γ)xβ = 0,

where A ∪ {γ} ⊆ Nn, cα, dβ > 0 and B ⊆ ∆◦ ∩ Nn with ∆ = conv(A ∪ {γ}).
Assume that dim(∆) = n, ∆ is simple at some vertex α0 ∈ A (α0 6= γ) and∑

α∈A cαxα −
∑

β∈B dβxβ is not nonnegative over Rn+. Then F has at least one
positive real zero.

Proof. Consider the polynomial fd =
∑

α∈A cαxα + dxγ −
∑

β∈B dβxβ. Define d∗

as in Lemma 4.3. Then by Lemma 4.3, fd∗ has a positive real zero which is also a
minimizer of fd∗ over Rn+. It implies that the system of fd∗ = 0 and ∇(fd∗) = 0
has a positive real zero. Multiplying fd∗ = 0 by γ yields

(4.8)
∑
α∈A

cαγxα + d∗γxγ −
∑
β∈B

dβγxβ = 0.

Multiplying the i-th equation of ∇(fd∗) = 0 by xi yields

(4.9)
∑
α∈A

cααxα + d∗γxγ −
∑
β∈B

dββxβ = 0.

From (4.9)−(4.8), we obtain

(4.10)
∑
α∈A

cα(α− γ)xα −
∑
β∈B

dβ(β − γ)xβ = 0,

which is exactly F . Thus F has a positive real zero. �

Example 4.5. Consider the following system of polynomial equations with A =
{α1,α2,α3,α4} = {(8, 8), (8, 0), (0, 8), (0, 0)}, B = {β1,β2} = {(1, 4), (3, 2)} and
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γ = (4, 4):

(4.11)

{
4x8y8 + 4x8 − 4y8 − 4 + 9xy4 + x3y2 = 0

4x8y8 − 4x8 + 4y8 − 4 + 2x3y2 = 0
.

α4 α2

α3 α1

γβ1

β2

The polynomial x8y8 + x8 + y8 + 1− 3xy4 − x3y2 is not nonnegative over Rn+ and
hence by Proposition 4.4, the system (4.11) has at least one positive real zero. In
other words, the lower bound for the number of positive real zero of (4.11) is one.
Actually, a computation by Mathematica yields exactly one positive real zero of
(4.11):

(0.752174, 0.974982).

Combining Proposition 4.1 with Proposition 4.4, we obtain the following theo-
rem.

Theorem 4.6. Let F be the following system of polynomial equations

(4.12)
∑
α∈A

cα(α− γ)xα −
∑
β∈B

dβ(β − γ)xβ = 0,

where A ∪ {γ} ⊆ Nn, cα, dβ > 0 and B ⊆ ∆◦ ∩Nn with ∆ = conv(A ∪ {γ}). As-
sume that dim(∆) = n, ∆ is simple at some vertex and

∑
α∈A cαxα−

∑
β∈B dβxβ

is not nonnegative over Rn+. Then F has at least one positive real zero.

Lemma 4.7. Suppose fd =
∑

α∈A cαxα −
∑

β∈B dβxβ − dxγ ∈ R[x], A ⊆ Nn,

cα, dβ > 0 such that B ∪ {γ} ⊆ ∆◦ ∩ Nn with ∆ = conv(A ). Assume that
dim(∆) = n, ∆ is simple at some vertex α0 ∈ A and

∑
α∈A cαxα −

∑
β∈B dβxβ

is nonnegative over Rn+. Let d∗ := sup{d | fd is nonnegative over Rn+}. Then fd∗

has a positive real zero.

Proof. It is clear that the set in the definition of d∗ is nonempty and has up-
per bounds. Hence d∗ exists. Let f ′d = fd/x

α0 = cα0 +
∑

α∈A \{α0} cαxα−α0 −∑
β∈B dβxβ−α0 − dxγ−α0 . By Lemma 3.1, there exists A0 = {α1, . . . ,αn} ⊆

V (A )\{α0} and T ∈ GLn(Q) s.t. f ′Td = cα0 +
∑n
i=1 cαix

2ki
i +

∑
α∈A \(A0∪{α0}) cα

xT (α−α0) −
∑

β∈B dβxT (β−α0) − dxT (γ−α0) ∈ R[x], where T (α − α0) ∈ (2N)n,

T (β−α0), T (γ −α0) ∈ New(f ′Td )◦ ∩Nn. By Lemma 3.2, the nonnegativity of f ′Td
over Rn+ is the same as the nonnegativity of f ′d over Rn+, and hence is the same as

the nonnegativity of fd over Rn+. Let d0 > d∗. By Theorem 2.5, f ′Td0 is a coercive

polynomial. Hence there exists N > 0 such that for ‖x‖∞ > N , f ′Td0 (x) > 0. For

d∗ < d < d0, since f ′Td (x) − f ′Td0 (x) = (d0 − d)xT (γ−α0) > 0 over Rn+, we have

f ′Td (x) > f ′Td0 (x) over Rn+. Thus for ‖x‖∞ > N and x ∈ Rn+, f ′Td (x) > 0. By

the definition of d∗, f ′Td is not nonnegative over Rn+. That is to say, there exists

xd ∈ Rn+ such that f ′Td (xd) < 0. It follows ‖xd‖∞ ≤ N . Let d→ d∗. Then we have
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f ′Td (xd) − f ′Td∗ (xd) = (d∗ − d)x
T (γ−α0)
d → 0. Since f ′Td∗ (xd) ≥ 0 and f ′Td (xd) < 0,

we must have f ′Td∗ (xd)→ 0. Thus the infimum of f ′Td∗ over Rn+ is 0. It follows that

f ′Td∗ − cα0
is not nonnegative over Rn+. So by Lemma 3.3, f ′Td∗ has a minimizer over

Rn+, which is a positive real zero of f ′Td∗ . As a consequence, f ′d∗ also has a positive
real zero by Lemma 3.2 and so does fd∗ . �

Theorem 4.8. Let F be the following system of polynomial equations

(4.13)
∑
α∈A

cα(α− γ)xα −
∑
β∈B

dβ(β − γ)xβ = 0,

where A ⊆ Nn, cα, dβ > 0 and B ∪ {γ} ⊆ ∆◦ ∩ Nn with ∆ = conv(A ). Assume
that dim(∆) = n, ∆ is simple at some vertex and

∑
α∈A cαxα −

∑
β∈B dβxβ is

nonnegative over Rn+. Then F has at least one positive real zero.

Proof. Consider the polynomial fd =
∑

α∈A cαxα−
∑

β∈B dβxβ − dxγ . Define d∗

as in Lemma 4.7. Then by Lemma 4.7, fd∗ has a positive real zero which is also a
minimizer of fd∗ over Rn+. It implies that the system of fd∗ = 0 and ∇(fd∗) = 0
has a positive real zero. Multiplying fd∗ = 0 by γ yields

(4.14)
∑
α∈A

cαγxα −
∑
β∈B

dβγxβ − d∗γxγ = 0.

Multiplying the i-th equation of ∇(fd∗) = 0 by xi yields

(4.15)
∑
α∈A

cααxα −
∑
β∈B

dββxβ − d∗γxγ = 0.

From (4.15)−(4.14), we obtain

(4.16)
∑
α∈A

cα(α− γ)xα −
∑
β∈B

dβ(β − γ)xβ = 0,

which is exactly F . Thus F has a positive real zero. �

Example 4.9. Consider the following system of polynomial equations with A =
{α1,α2,α3,α4,α5} = {(8, 8), (8, 0), (0, 8), (4, 4), (0, 0)}, B = {β} = {(3, 2)} and
γ = (1, 4):

(4.17)

{
7x8y8 + 7x8 − y8 + 3x4y4 − 1− 2x3y2 = 0

4x8y8 − 4x8 + 4y8 − 4 + 2x3y2 = 0
.

α5 α2

α3 α1

α4γ

β

The polynomial x8y8+x8+y8+x4y4+1−x3y2 is nonnegative over Rn+ and hence by
Theorem 4.8, the system (4.17) has at least one positive real zero. In other words,
the lower bound for the number of positive real zero of (4.17) is one. Actually, a
computation by Mathematica yields exactly one positive real zero of (4.17):

(0.778814, 0.972957).
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Combining Theorem 4.6 with Theorem 4.8, we obtain the following theorem.

Theorem 4.10. Let F be the following system of polynomial equations

(4.18)
∑
α∈A

cα(α− γ)xα −
∑
β∈B

dβ(β − γ)xβ = 0,

where A ⊆ Nn, cα, dβ > 0 and B ∪ {γ} ⊆ ∆◦ ∩ Nn with ∆ = conv(A ). Assume
that dim(∆) = n and ∆ is simple at some vertex. Then F has at least one positive
real zero.

Remark 4.11. A version of Birch’s theorem ([4, 8]) in statistics states that the
following system of polynomial equations

(4.19)
∑
α∈A

cα(α− γ)xα = 0,

where A ⊆ Nn, cα > 0, γ ∈ conv(A )◦ ∩ Nn, dim(conv(A )) = n, has exactly one
positive real zero. Our theorems hence can be viewed as a partial generalization of
Birch’s theorem.

Remark 4.12. In the above theorems, we always assume that the Newton poly-
tope ∆ is simple at some vertex since we need to exploit the property of coercive
polynomials in the proofs. It is not clear whether this condition can be dropped.

As an application, we finally give an example from chemical reaction networks
to illustrate our theorems.

Example 4.13. Consider the following reaction network consisting of species A,B
and reactions:

6A
r1−→ 4A+ 3B

6B
r2−→ 4A+ 3B

3A+ 5B
r3−→ 4A+ 3B

3A+ 4B
r4−→ 2A+ 5B

with reaction rate constants r1, r2, r3, r4 > 0. We denote by xA, xB the concentra-
tions of the species A,B respectively. Under the assumption of mass-action kinetics,
we describe how these concentrations change in time by following system of ODEs:

(4.20)

{
ẋA = 2r1x

6 − 4r2y
6 − r3x3y5 + r4x

3y4

ẋB = −3r1x
6 + 3r2y

6 + 2r3x
3y5 − r4x3y4

.

A positive steady state of (4.20) is a concentration-vector (x∗A, x
∗
B) ∈ R2

+ at which
the right-hand side of the ODEs (4.20) vanishes. One can easily check that the
system of polynomials in (4.20) satisfies the conditions of Theorem 4.10 with A =
{α1,α2,α3} = {(6, 0), (0, 6), (3, 5)}, B = {β} = {(3, 4)} and γ = (4, 3).
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α1

α2 α3

γ

β

Therefore, Theorem 4.10 enables us to give a lower bound, i.e. one, for the number
of positive steady states of (4.20). Actually, a computation by Mathematica yields
exactly one positive steady state of (4.20):

(1.75103, 1.49382).

5. Conclusions

In this paper, sufficient conditions for certain systems of multivariate polyno-
mials admitting at least one positive real zero are given for the first time. These
sufficient conditions are expressed in terms of Newton polytopes and their combina-
torial structure. It is possible to find applications in polynomial optimization and
chemical reaction networks. The further goal is to give upper and lower bounds for
the number of positive real zeros to more general systems of multivariate polyno-
mial equations, i.e., a multivariate version of Descartes’ rule of signs. We hope the
main results of this paper could shed some light on this difficulty problem.
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