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Abstract—Control systems can show robustness to many events,
like disturbances and model inaccuracies. It is natural to specu-
late that they are also robust to alterations of the control signal
pattern, due to sporadic late completions (called deadline misses)
when implemented as a digital task on an embedded platform.
Recent research analysed stability when imposing constraints
on the maximum number of consecutive deadlines that can be
missed. This is only one type of characterization, and results
in a pessimistic analysis when applied to more general cases.
To overcome this limitation, this paper proposes a comprehen-
sive stability analysis for control systems subject to a set of
generic constraints, describing the possible sequences of correct
completions and deadline misses. The proposed analysis brings
the assessment of control systems robustness to computational
problems one step closer to the controller implementation.

I. INTRODUCTION

Robustness is an essential concern in the design of control
systems [54]]. Robust control design techniques ensure that
controlled systems are able to reliably handle nonlinear effects,
unmodeled dynamics, and external noise. However, existing
methods rarely consider robustness to computational issues.
This latter aspect is relevant for a vast number of control
applications, which rely on the usage of digital controllers
implemented as periodic fasks in cheap embedded platforms.
Such tasks are expected to execute with real-time guarantees,
meaning that their execution must be scheduled to complete
before a well-defined deadline, usually corresponding to the
activation of the next periodic instance of the task.

In the case of a digital controller, its execution consists
in performing the control signal calculation and dealing with
sensing and actuation. In practice, control systems are often
designed introducing one step delay, i.e., the control signal
computed during one control period is applied to the plant
at the beginning of the next period. This helps masking the
timing variability experienced using embedded platforms, that
often have to dynamically share their limited computational
resources among many concurrent functions. It is still possible
— and it happens quite often in practice [1] — that tasks do not
complete within their execution period, causing what is called a
deadline miss. The reasons behind those misses can vary, from
delays or non-delivered sensor messages, to transient overload
conditions in the platform, to bugs in the controller code.

Generally speaking, extensive studies have been made about
real-time systems that allow deadline misses, and two main
frameworks arose: soft real-time tasks [5] and weakly-hard

tasks [3]]. The first model is often used for those tasks where
completing the execution before the deadline is beneficial, but
not strictly required all the time. It is in general associated with
a probabilistic description of deadline misses, and with the defi-
nition of a performance loss function for late completions. Due
to its probabilistic nature, this approach has mostly been used
to describe multimedia applications, like video encoding and
decoding, in which a small delay is not perceived by the end
user, as long as it does not happen too frequently. Nonetheless,
the soft deadline model has been applied in the past also for the
case of control tasks design with some success, e.g., in [6], [8],
[13[], [14]. The second model — weakly-hard tasks — applies
to those cases where it is important to identify worst-case
conditions. Weakly-hard tasks are characterized by a maximum
number of deadlines that can be missed in a given number of
consecutive periods. This can be defined, e.g., by a constraint of
the form (m, k) to describe a task that cannot miss more than
m deadlines in every k consecutive activations. This second
framework has gained a lot of traction recently, especially in
the real-time community. Its properties have also been studied
for control tasks that occasionally miss deadlines [15], [32],
[38], [41]], and will also be the focus of this work.

Assessing properties of control systems that miss deadlines
is not only important for the embedded systems architects, but
it is also an important research area in the control domain [7],
[16], [30], [36]. When considering a control task, to properly
analyse the effect a miss has on the controlled plant, it is
necessary to specify also what happens when the miss is
experienced, both in terms of changes to the control signal
and in terms of actions taken to deal with the failed task [37].
In the case of embedded controllers, different approaches are
used. For example, a computation instance that experiences a
deadline miss can be let continue executing until completion
(and possibly used later), while in other applications it is
stopped and discarded instead.

There is however quite a mismatch between the guarantees
that can be obtained for real-time tasks and platforms [9],
[19], [20], [39], and the analysis that is available for control
tasks [32], [38]. In particular, few works deal with the stability
analysis of real-time control tasks subject to deadline misses,
and they often lack generality. The analysis presented in [32]]
(which can be considered the closest work to this paper) is
limited to constraints that specify a maximum number of
consecutive deadline misses. The majority of other state-of-
the-art approaches deal with constraints of the form (m, k).



In particular, the works in [30] and [31]] study the stability of
networked control systems where packet dropouts (or system
faults) are bounded using the (m, k) constraint model. This
model is equivalent to the case where deadline misses represent
discarded computations, but its results can not be generalized
for the other common case of late completions. In other
works [23]], [28]], [29], the authors have studied how to enforce
safety guarantees of weakly-hard real-time controllers, with
focus also on stability properties. However, such works consider
only the case where a deadline miss corresponds to a discarded
computation and, in [28]], [29]], with the additional hypothesis
of a known periodic pattern of deadline hits and misses.
This paper aims at filling this gap, by providing a stability
analysis that can be applied to a general class of weakly-hard
models and strategies at the deadline miss event. To the best
of our knowledge, the analysis proposed in this paper is also
the first being able to guarantee the stability of systems subject
to multiple constraints belonging to any of the weakly-hard
types available in the state-of-the-art. More precisely, the paper
advances the state of the art in the following directions:

(1) It formally extends the weakly-hard model to explicitly
consider the strategy used to handle miss events. This was
intuitively introduced in some prior work, but this paper
offers a formal extension, that considers time intervals
instead of periodic jobs and sheds some light on the
required notation.

It builds a representation of the control task execution,

subject to a set of weakly-hard constraints as a finite

state machine. We use the resulting finite state machine
to construct a transition matrix that determines the valid
state transitions.

It uses Kronecker lifted switching systems and the joint

spectral radius as tools to properly express stability

conditions for systems that satisfy a set of weakly-hard
constraints.

It uses the concept of constraint dominance (in which a

constraint dominates another if satisfying the first implies

always satisfying the second too) to prove analytic bounds
on the stability of a weakly-hard constrained system with
respect to less dominant weakly-hard constraints.

(v) It analyses the stability of the resulting closed-loop
systems using SparseJSR, an algorithm that exploits the
structure (i.e., the sparsity patterns) that naturally arises
in the Kronecker lifted representation of the closed-loop
systems.

(ii)

(iii)

@v)

Notably, the analysis presented in this paper calls for
modularity and separation of concern, defining the interface
between the control engineer and the embedded system
designer. It decouples the constraint specification and the
control verification. With the proposed method, the embedded
system designer can extract a set of constraints that belong to
the hardware and software design phase (e.g., the control task
is not going to miss more than two consecutive deadlines and
not more than three for every subsequent seven activations) and
the control engineer can verify that the proposed constraints
satisfy all control requirements. This decoupling is one of the
main advantages of the proposed solution.

II. BACKGROUND AND NOTATION

In this section we introduce the necessary background for the
paper and introduce the notation used in the following. We also
provide a thorough analysis of related research contributions.

A. Control Systems

In this paper, we consider an arbitrary discrete-time sampled
linear time invariant (LTI) system, expressed as follows:

P {$t+1
Yt
Here ¢ is a positive integer value, i.e., t € N~. The system
is sampled with sampling period p,. The vector z; € R"
contains the plant’s internal states, u; € R" contains the signals
controlling the plant, and y; € RY is the vector of measurement
values acquired from the plant at time ¢-p,. Finally A,, B,, C,
and D,, are real-valued matrices of appropriate size defining
the dynamics of the plant. In line with standard assumptions,
we assume the system in to be controllable and the state
to be fully observable.
The plant is controlled by a stabilising, LTI, one-step delayE]
discrete-time controller producing u; and defined as:
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Here, z; € R® is the controller’s internal state and e; € RY,
er = ry—1, is the tracking error of the controller. For simplicity,
and without loss of generality, we will be treating the regulator
problem; ergo, no reference tracking (r; = 0).

B. Real-time tasks that may miss deadlines

The controller in @) is implemented as a real-time task 7,
and designed to be executed periodically with period p, in a
real-time embedded platform. Under nominal conditions the
task releases an instance (called job) in each period, that should
be completed before the release of the next instance. We denote
the sequence of activation instants for 7 with (a;);cn>. such
that, in nominal conditions, a;+1 = a; + p,, the sequence
of completion instants (f;);cn>, and the sequence of job
deadlines with (d;);cn=, such that d; = a; + p, (also called
implicit deadline). This requirement can be either satisfied or
not, leading respectively to deadline hits and misses.

Definition 1 (Deadline hit). The ¢-th job of a periodic task 7
with period p, (and implicit deadline) hits its deadline when
Ji < di.

Definition 2 (Deadline miss). The i-th job of a periodic task
7 with period p, (and implicit deadline) misses its deadline
when f; > d;.

'One-step delay controllers are controllers in which a control signal
computed in the k-th interval is actuated at the beginning of the k+ 1-th period.
In the real-time systems jargon, this is enforced by adopting the so-called the
Logical Execution Time paradigm [12], [25]]. From a real-time perspective, it
improves the timing predictability, and from a control perspective, it reduces
input-output jitter and allows to neglect time-varying computational delays.



We refer to both deadline hits and misses using the term
outcome of a job. In order to provide some guarantees on how
the computation is distributed in the application and therefore
how misses and hits are interleaved, weakly-hard task models
have been introduced in the past [3]]. Weakly-hard models
impose constraints on the number of deadline hits and misses
that can be experienced in a window of £ > 1 consecutive
activations. In particular, the following four models have been
proposed in literature [3].

Definition 3 (Weakly-hard task models). A task 7 may satisfy
any combination of these four basic weakly hard constraints:

G 7F (7:) at most m deadlines are missed, in any window
of k consecutive jobs;

@) 7+ (Z) at least h deadlines are hit, in any window of k
consecutive jobs;

(i) 7+ <7§> at most m consecutive deadlines are missed, in
any window of k consecutive jobs; and

iv) T <Z> at least h consecutive deadlines are hit, in any
window of k£ consecutive jobs,

with m, h,k € N, m <k, h <k and k > 1.

The model expressed in was first introduced in [[18]],
but its complementary version [(1)| has gained most research
traction recently, and is often referred to as the (m, k) model. In
particular, schedulability analyses have been developed for the
(m, k) model [20], [39]. Furthermore, a weakly-hard sensitivity
analysis is implemented in a toolchain that allows to derive
the strongest satisfied (m, k) constraint from C code [33]. The
model in constrains the maximum number of consecutive
deadline misses. As proven in [3]], the window size becomes
irrelevant in this modelE] hence it is commonly referred to as
(m) (a notation also adopted in this paper).

These models convey different information about the dead-
line miss properties of the task, and can also be used jointly,
stating that a task 7 satisfies a set of constraints (possibly
of different types). In particular, the possibility of defining
sets of constraints, for example by obtaining the worst-case
number of deadline misses over different time windows, opens
the door to a more detailed (and possibly less pessimistic)
timing description of the tasks. This latter aspect has been
however generally overlooked by the research literature, which
often considers timing models defined by a single weakly-hard
constraint. Due to the relative importance and prevalence of
(m, k) and (m) models in the recent literature, we will use
such models in our examples. Nonetheless, we remark that the
analysis presented in the remainder of the paper is invariant to
the choice of weakly-hard model. To simplify the notation, in
the following we will refer to a generic weakly-hard constraint
using the symbol A, while a set of L weakly hard constraints
will be referred as A = {A1, Aa, ..., AL}

Stating that 7 = A means that all the possible sequences
of outcomes (hits and misses) that 7 can experience satisfy
the corresponding constraint A. To this end, we define a string
a ={aj,as,...,ay} of length N. Each element «; in the
string is a symbol that belongs to the alphabet of job outcomes

2A useful result presented in [32] is that (m) = (m, m + 1).

>.. The most common choices are to use M and H (or 0 and 1)
to indicate respectively a miss and a hit.

Definition 4 (Alphabet 3 of job outcomes for real-time tasks).
The alphabet ¥ includes all the possible outcomes of a real-
time job. Commonly, > = {M, H} where M indicates a deadline
miss and H indicates a deadline hit.

We use a F A to denote that the string « satisfies the
constraint A. The set of all possible sequences that satisfy a
given constraint A naturally results from the definition of A,
and is formally defined as follows [3].

Definition 5 (Satisfaction set Sy (\) of a weakly-hard con-
straint \). We denote with Sy (\) the set of sequences

of length N > 1 that satisfy a constraint A. Formally,
SvA) ={aeXN|ak A}

Taking the limit to infinity, the set So (A) contains all the
sequences of infinite length that satisfy the constraint A. We
will henceforth denote S (A) = S (A).

By leveraging the definition of satisfaction sets, it is possible
to determine how two constraints A; and \; relate to one
another [3], [51]]. In particular, we can define a domination
notion between constraints [3].

Definition 6 (Constraint domination). Given two constraints \;
and ), we say that \; is harder to satisfy than (or dominates)
A; (denoted by A; < A;) if all sequences that satisfy A; also
satisfy \;, i.e., when S ()\;) C S (;). Similarly, we say that
A=A IES(A) €S (Ay):

The notion of constraint domination introduces a partial
ordering between constraints [3]. Despite constraint ordering
being an active research area (with new relations found recently,
e.g., in [51]]), the abstraction of properties of the represented
physical process by leveraging constraint dominance relation-
ships is still unexplored. In Section we relate the real-
time concept of constraint dominance to the control theoretical
notion of stability.

C. Control tasks that may miss deadlines

This paper considers the special case of control tasks subject
to weakly-hard constraints, meaning that the task 7 implements
a control algorithm (e.g., a Proportional Integral and Derivative
controller, a Linear Quadratic Regulator, etc).

Since the fundamental properties of stability and performance
of a controller depend on the actual pattern of control com-
mands, it is necessary to precisely define what happens when
a control deadline is missed. This led to several suggestions
in literature for deadline miss handling strategies and actuator
modes. The handling strategies manages the fate of the job that
missed the deadline (and possibly the next ones), while the
actuator mode deals with the loss of control signal and decides
whether it should be held constant, or zeroed [44]E] A few
handling strategies have been proposed in the past [7], [32],

3The most common strategy applied by control engineers is hold. However,
zero is sometimes the only viable option, e.g., when holding the previous
control signal requires additional computation (like the translation to a different
coordinate system) and there is no time to perform such computation.



[37]-[39], the most important being kill, skip-next, and queue
(also denoted as continue). In particular, the results of [7],
[32], [37] suggest that the Queue strategy (i.e., letting each job
executing until completion, queuing newly released jobs) may
create chain effects of missed deadlines, negatively affecting
stability and performance. Thus, Kill and Skip-Next will be
the focus of this paper. The following definitions of deadline
miss handling strategies hold for a task 7, with period p-.

Definition 7 (Kill strategy). The Kill strategy imposes the
immediate termination of the job that misses the deadline. A
killed job will never complete its execution, meaning that, for
an arbitrary ¢-th job of 7 either f; < d; or f; = oc. If the i-th
job is killed, the (¢ 4+ 1)-th job is immediately released, i.e.,
Qi+1 = Qi + Pr.

Definition 8 (Skip-Next strategy). The Skip-Next strategy
imposes that a job that misses its deadline is allowed to
continue during the following period. When an arbitrary ¢-th
job of 7, released at a; misses its deadline d;, a new deadline
d7 = d; + p, is set for the job. The i-th job then becomes
a job with activation time a; and deadline d; . At the same
time, the (i + 1)-th job activation is set to a;y1 = d; . The
process can be repeated, extending the deadline until the job
completion.

D. Existing stability analysis techniques

A control task that may experience deadline misses requires
a proper analysis to check its asymptotic stability in all possible
timing conditions. In this paragraph we introduce the existing
analytic techniques from the control literature, which can be
adapted to deal with this problem.

The closest work to this paper is the one in [32]], which
presents a stability analysis for the 7 - (m) weakly hard
constraint. However, its application for a more general weakly-
hard constraint may result in overly pessimistic bounds. More
specifically, in [32], the authors identify a set of subsequences
of hit and missed deadlines, which can be arbitrarily combined
to obtain all possible sequences in S ({m)). After assigning
to each subsequence its corresponding dynamic matrix, the
stability analysis of the resulting arbitrary switching system
can then be obtained by leveraging the Joint Spectral Radius
(JSR) [24]], which is briefly presented here. Given ¢/ € N~
and a set of matrices A = {A;,..., As} C R™*™, under the
hypothesis of arbitrary switching, the JSR of A is defined by:

1

p(A) = lim ae{rnl"f?ff}kllflak Ay Ao IFL ()
The number p (A) characterizes the maximal asymptotic growth
rate of products of matrices from A (thus p(A) < 1 means
that the system is asymptotically stable), and is independent
of the norm ||-|| used in (3). When A is a singleton, the joint
spectral radius is equal to the spectral radius, which justifies
that the JSR generalizes the spectral radius for the case of
multiple matrices.

The JSR was introduced in [43]] and is applied in several
important contexts, including switched dynamical systems
stability and combinatorics. We refer to [[24] for more details
about theory and applications related to JSR. Existing practical

tools such as the JSR Matlab toolbox [46] allow one to compute
both upper and lower bounds on p (A), leveraging multiple
algorithms.

The JSR approach can be generalized for the case of
switching sequences constrained by a given graph G, with
the so called constrained joint spectral radius (CISR) [[10].
Consider again a set of matrices A and define (with a slight
abuse of notation) Si(G) as the set of all possible switching
sequences of length £ that satisfy the constraints of graph G.
Then, the CJISR of A is defined by

p(AG):= lim max )HA% e Ay Ay |IF

k—o00 €Sy (G

“4)

In general, computing or approximating the CJSR is not an
easy task, and noticeably fewer works exist for CJSR with
respect to JSR. In [40], the authors propose a multinorm-
based method to approximate with arbitrary accuracy the CJSR.
An ad-hoc branch-and-bound algorithm is proposed in [11].
Another approach [26], [49], [52] is based on the creation of
an arbitrary switching system such that its JSR is equal to
the CJSR of the original system, based on a Kronecker lifting
method. This will be also our approach, as detailed in later
sections of the paper.

In [35]], the authors propose a hierarchy of relaxations to
provide a sequence of upper bounds for the JSR, based on
positive polynomials which be can decomposed as sum of
squares (SOS) of polynomials. This approximation method
is particularly interesting in terms of performance and has
been chosen as primary approach in our tests. Therefore,
to make the paper self-contained, we introduce the basic
notation and recall some preliminary material about SOS
polynomials. Given n € N, let © = (x1,...,2,) be a tuple
of variables. For d € N>, let us note R [z] the ring of real
n-variate polynomials and let R [z],, be the restriction of
R [z] to the set of homogeneous polynomials of degree 2d. A
polynomial f € R [z],, can be written as f(z) = ) ., fur”
with f, € Ryz” = - 2% and & C N". If there
exist homogeneous polynomials f1,..., f: € R[z], such that
f= 25:1 f?, then we say that f is an SOS polynomial. Let
SOS2q4 be the subset of SOS polynomials in R [z],, The core
ingredient of the hierarchy of [35] is based on the following
result (Theorem 2.2 of [35]]).

Theorem 1 (JSR upper bound with homogeneous polynomials).
Given a set of matrices A = {Aq,..., Ag} CR"™™, et p be
a strictly positive homogeneous polynomial of degree 2d that
satisfies

7p (x) — p(Aix) > 0,
Then, p(A) <.

Ve eR™, i=1,...,0

By replacing v%4p (z) —p (A;x) > 0 with the more tractable
condition that v2%p (z) —p (A;x) is SOS, we obtain a hierarchy
of relaxations indexed by d € N~, which in turn yields a
sequence of upper bounds for p (A):

inf
peR[x]de"Y
ot p (:,C) S SOSQd,
T 92%p (x) — p(Asw) € SOSgy, 1 <i < L.

psos,2d (A) = o)



The optimal value of this optimization problem can be
computed by combining a bisection procedure on v together
with semidefinite programming (SDP) [50]. SDP solvers mini-
mize a linear objective function with linear matrix inequality
constraints. The value of an SDP problem can be approximated
up to a given precision in polynomial time with respect
to its input size, while relying on interior-point algorithms,
implemented in modern solvers such as Mosek [2]]. Finding the
coefficients of a polynomial being SOS boils down to solving
an SDP [27], [34], [42]. The upper bound psos 24 (A) satisfies
the following inequalities (Theorem 4.3 of [35]).

Theorem 2 (SOS relaxation). Ler A = {Ay,..., A} C
R™*™. For any integer d > 1, é’Tldpsomd (A) < p(A) <
psos,2d (A).

Theorem [2] implies the convergence of {psos 2q(A)}a>1 to
p (A) when d goes to infinity. To reduce the computational
burden associated with this procedure, a sparse variant, called
SparsedJSR, has been proposed in [47]] to exploit the sparsity
of the input matrices from .4, based on the ferm sparsity
SOS (TSSOS) framework [[48]]. This allows the authors to
provide SOS decompositions of polynomials with arbitrary
sparse support. By contrast, the procedure defined in (5) will
be denoted hereafter as dense.

Next, we briefly recall some preliminary material from [47]]
to explain how the SparseJSR algorithm works. The support
of f is defined by supp(f) := {v € & | f, # 0}. Let
R [«/] C R [z],, be the set of polynomials whose supports are
contained in 7, and SOS [«/] C SOSa,4 be the set of SOS
polynomials whose supports are contained in 7. The authors
in [47] restrict the support of the unknown polynomial p from
Equation (3) to obtain a sparse SOS program, choosing po(z) =
229 4 239 4 .+ 229 to be the power sum of coordinates with
a fixed degree 2d, < = supp (po), and

¢
o = oy U U supp (po (A;x)) .

i=1

Let @7 = o/ Usupp (p (A;x)) for i = 1,...,£. To take into
account the sparsity of the matrices from A, SOS5, is replaced
by either by SOS., or SOS,, in (3)), obtaining:

(6)

inf
pER[],y

" {p (z) € SOS.y,

prssos,2d (A) = (7

72dp (x) — p(Aiw) € SOSy,, 1< < L.

As for psos,2q (A), the optimal value prssos,2q (A) of
can be obtained from a bisection procedure. From Theorem
4.1 of [47], this gives p (A) < Ps0s,2d (A) < PT1SS08,2d (.A),
yielding a hierarchy of upper bounds for the JSR p (A). By
contrast with the dense case, the sparse upper bound can
be obtained significantly faster if the matrices from A4 are
sparse. This is relevant for the specific application we are
considering, as the matrices that we have to analyse (introduced
in Section are sparse and it is possible to exploit their
structure to reduce computation times. We remark that it is
also possible to substitute SOS with other algorithms such as

branch and bound or ellipsoid [46] to compute bounds on the
value of the JSR.

III. EXTENDED WEAKLY-HARD TASK MODEL

An important point raised in previous works [32], [37],
[38], is that the original weakly-hard model is not sufficiently
descriptive to model the dynamics of a control task executing
on an embedded platform. The missing piece of the puzzle is
represented by the actual strategy used to handle the control
task’s deadline misses. In fact, different strategies may have
dramatically different effects on the physical equations and
properties of the control system. For instance, under Kill
strategy, a missed deadline represents a job that will never
be completed. However, in the case of Skip-Next strategy, a
missed deadline represents a job that will complete later. As
a consequence, the chosen strategy directly affects the actual
pattern of the control signal when jobs miss their deadlines.

A model that only counts the number of missed deadlines
is leaving out pieces of information about how those deadline
misses affect the controlled system. Indeed, what we are really
interested in is if and when a job is completed. This Section
presents our proposal to giving practical shape of such intuition,
by extending the concepts related to weakly-hard constraints
(Section to also include the deadline handling strategy.

To provide a comprehensive analysis framework, we need
to examine what occurs in each time interval (7;);cn>, With
m; = lag + 1 pr,a0+ (i + 1) - p;). In fact, depending on the
strategy that is used to handle deadline misses, the activation
rate of jobs may be decoupled by the nominal periodic pattern.
In this context, the alphabet ¥ introduced in Definition [] and
the weakly-hard model need to be extended to account for the
specific deadline handling procedure — denoted hereafter with
the symbol H. This is done by directly including the deadline
miss handling strategy H in the model, and defining a richer
characterization of what happens at each time interval 7; of
the control task 7, as follows.

Definition 9 (Extended Weakly Hard Task 7 F Ay). An
extended weakly-hard task 7 satisfies any combination of these
four constraints:

(i) 7+ (), at most m intervals lack a job completion, in

any window of k consecutive jobs;

(i) 7+ (Z)H: at least h intervals contain a job completion,
in any window of k consecutive jobs;

(iii) 7 = ('}),,: at most m consecutive intervals lack a job
completion, in any window of k consecutive jobs; and

@v) 7+ <Z>H: at least h consecutive intervals contain a job
completion, in any window of k consecutive jobs,

with m,h,k € N2, m < k, h < k and k > 1, while using

strategy ‘H to handle potential deadline misses.

The definition above differs from Definition [3] in two points:
firstly, it focuses on the presence of a new control command
at the end of each time interval 7;, instead of checking the
outcome (deadline hit or miss) of a job; secondly, it explicitly
introduces the handling strategy by adding the symbol H. The
dependency of the new extended weakly-hard model on the
strategy 7 is thus required by the necessity of introducing a



more expressive alphabet 3 (#) to characterize the behaviour
of task 7 in each possible time interval. In the case under
analysis in this paper, for both the strategies Kill and Skip-
Next, in each interval 7r; at most one job is activated and at most
one job is completed. This restricts the possible behaviours to
three cases, defined by the following symbols:

(1) a time interval in which the same job is both released and
completed is denoted by H (hi?);

(i1) atime interval in which either one or zero jobs are released,
but no job is completed is denoted by M (miss);

(iii) a time interval in which no job is released, but a job
(released in a previous interval) is completed, is denoted
by R (recovery).

Therefore, we can build an alphabet for each possible strategy,

namely 3 (). In the case of Kill and Skip-Next we obtain:

(i) X (Kill) = {M, H}, and

(i) X (Skip-Next) = {M, H,R}.

Trivially, ¥ (Kill) uses the basic alphabet from Definition

In fact, exactly one job is activated at the beginning of each

time interval when Kill is used — and that job has a binary

termination outcome. The additional recovery character R is
used in the Skip-Next alphabet to identify the late completion
of a job that was not activated at the beginning of the current
time interval. As a consequence, recalling Definition [9] R is
treated equivalently to H when checking the extended weakly
hard constraint. Similarly, an alphabet can be created for any
arbitrary handling strategy, by checking all unique combinations
of job activations and completions in each interval. Notably, the
definition of such an alphabet does not require any additional
information about the actuator modes introduced in Section[[I-=Cl

However, the actuator mode will be fundamental later in

Section [V-Alin order to properly express the resulting dynamic

matrices.

We can now extend the algebra presented in Section to
the new alphabet. We assign a character of the alphabet X (7-][\,)
to each interval m;. A string o = {a1, @2,...,an} € X (H)
is used to represent a sequence of outcomes (hits, misses
and recoveries) for task 7, spanning any N consecutive time
intervals, with o, representing the outcome associated to the
interval ;. Without loss of generality, we always consider
ideal startup conditions, i.e., oz = H, V¢ < 0.

In principle, the ordered sequence o could be any combina-
tion of characters in ¥ (#). However, we are only interested
in analysing the set of feasible sequences of the task 7. To this
end, we introduce an order constraint for the R character.
Rule 1. For any arbitrary string o € X3 (Skip—Next)N, R may
only directly follow a miss 14, or be the initial element of the
string.

The rule is trivial when noticing that a recovery R at period
m; corresponds to the completion of a job that was activated in
an interval 7; with j < 4, that is not completed yet. Hereafter,
we will consider each arbitrary sequence o € (Skip-Next)N
to always satisfy Rule [T}

The extended weakly hard model presented so far also
inherits all the properties of the original weakly hard model. In
particular, the satisfaction set of Ay can be defined for N > 1

as Sy (Ay) = {@ € S(H)" | a F Ay}, and the constraint
domination still holds as /\H,i = )"HJ if S </\H,i) cS ()\’H,j)~
As a consequences, when the context is clear, to avoid heavy
notation, we will hereafter inherit the same symbol A to identify
a constraint in the extended form, i.e., A = Ay, with implicit
dependency on H.

IV. STATE MACHINE REALISATION

In this section we propose a way to model a set of extended
weakly-hard constraints as a finite state machine, by utilising
the extended alphabet ¥ () and the concept of dominant
set. The presented approach is invariant to the actual control
system dynamics. For this reason, the resulting model can be
used as an interface that separates the software design phase
from the stability analysis (Section [V), allowing the complete
architecture analysis to be decoupled.

A. Constraint graph

An extended weakly-hard constraint, as presented in Defi-
nition [9] can be systematically represented using a minimal
Finite State Machine (FSM) and the corresponding directed
graph. We denote the corresponding graph of a task 7 - A
(recall A = \y) with the symbol G\ = (Vi, E)). Here, V)
represents the set of nodes in the graph and F\ represents the
set of transitions.

Each node in V) corresponds to a word w; € S (\). A
slice w; (a..b) of a word is a new word obtained from w; by
extracting only the characters starting at position a and ending
at position b (both included). We assume the initial position in
the string to be position 1. Furthermore, we use w; (a..end) to
indicate the slice from position « till the end of the word. A
transition ¢; ; € Iy takes us from node w; to node w;. The
transition is labelled by a character ¢ € ¥ (#). Node w; is
said to be a direct successor of w; if concatenating character
c to the end of w; (2..end) gives w;.

Intuitively, a graph G has at most a number of nodes equal
to the cardinality of the set of feasible words Sy, (A), or formally
[VA| < |Sk (N)]. Building the graph G, with a number of states
[VA| = |Sk(A)] is always possible, but it would unnecessarily
worsen the computational complexity of the problem.

A minimal state machine realisation G5 = (Vy', EY)y is
easily obtained from G, using standard techniques [21]]. For
each node w;, we observe its successors {wy}. Given two
nodes w; and wyj, if they have the same successors with the
same transition events c they are considered equivalent and
thereby combined. The differing characters in w; and w; are
replaced by an any character token, which we denote with
X. This process is repeated until the state machine can no
longer be reduced. When considering the Skip-Next strategy,
an additional auxiliary token T is introduced to represent all
events where a job is completed (ergo; T = {H, R}). This token
is necessary to describe Gy, since job completions from H and
R events are equivalent for any arbitrary Agiip.Next CONstraint.

Example 1. Given an extended constraint A = (1, 3)xq, the
minimal realisation GY is shown in the left-hand side of
Figure [I| The node XHH is obtained by merging HHH and



(Example 1) (Example 2)
A = (1, 3)kin A = (1, 3)skip-Next
Fig. 1. Minimal graph G} for Examples 1 and 2.

MHH. It can be interpreted as the first character not affecting
the possible transitions.

Example 2. Given an extended constraint X = (1, 3)skip-Next
the minimal realisation G is shown in the right-hand side of

Figure I}

The similarities between Kill and Skip-Next under the
extended notation become apparent as soon as we compare
the minimal state machines in Figure |1} The resulting graphs
have identical number of nodes but slightly different transition
events. However, this difference becomes significant when
analysing the corresponding closed-loop systems, as will be
clear in Section [V]

B. Dealing with multiple constraints

The approach presented above for constructing a minimal
FSM can be extended to the case where the task 7 is subject
to a set of multiple extended weakly hard constraints, in any
combination of the forms presented in Definition 9] Such
a set is formally denoted as Ay, but again to simplify the
notation, for the remainder of the paper A = Ay, unless
explicitly stated otherwise. In order to optimise the problem of
building the minimal FSM of the corresponding system, it is
beneficial that the set A contains only constraints that cannot
be further reduced using the hardness relations of Definition [6]
For this reason, we first introduce the new concept of dominant
constraint set (or simply dominant set).

Definition 10 (Dominant set). Given a set of constraints A
under strategy H, the set A* C A is called the dominant set
of A if:

() Aidy €AY = A AN, Vi £,

() N e ANAY = A <A, 3N € A%

Building upon Definition [5] the satisfaction set of A* can
be derived as follows, for N > 1:

Sy (A") = ﬂ Sn (A) . 3
A EA*
We can then obtain a minimal graph Gi. = (V}., E}.)

following a procedure similar to the one presented for a single
constraint A in Section As a first step, the length of the
words in each node of the corresponding graph must be defined.
Since A* may contain constraints with different window values,
the choice is not straightforward. We propose a safe assumption
about the words length k*, defined as k* = maxy A\, VA € A*

(recall that each weakly-hard constraint is window dependent).
An algorithm can then be built that, recursively, adds nodes
w; € Sk (A*) to the graph, until a minimal realisation is
generated. The obtained graph is finally passed through a post-
processing step (strategy-dependent) that assigns appropriate
transitions ¢; ; in order to obtain a correct minimal FSM
realisation Gx..

Example 3. Given two extended constraints \ = (2)y., and
A2 = (3, B)gyp the minimal realisation graphs Q/’{l and Q;‘Q
are shown as the leftmost and middle graphs of Figure [2}
Generating the graph G . from the dominant set A* = {1, A2}
results in the rightmost graph of Figure [2} satisfying both A\
and X\o. A similar result can be obtained for the Skip-Next
strategy, by using its corresponding alphabet.

Building a minimal FSM by choosing the dominant set A*
is useful to improve the computational performance of the
analysis algorithms. Nonetheless, the analysis presented in the
following sections can be applied to any graph built from a
given set A. To limit complexity in the notation, and for the
sake of generality, all future steps will be defined using a
generic graph Gu.

C. Dynamic model of a graph

An arbitrary walk of N steps in the state machine Gp
corresponds to a distinct sequence o € Sy (A). Extracting
all the transitions ¢; ; € E corresponding to a particular
event c yields what is generally known as a directed adjacency
matrix, denoted here as transition matrix due to its connection
to the transition event c.

Definition 11 (Transition matrix). Given a graph G,, the di-
rected adjacency matrix (or transition matrix), F,, € RIVAIXIVal
with ¢ € ¥ (H), is computed as F, = {f; j(c)} with

1, iijﬂ'EEA
i,j \€) =
s (©) {0,

The walk (i.e., the completion sequence) can then be
expressed in terms of a left-multiplication between the cor-
responding transition matrices. Since there can only exist at
most one successor from each node with the transition event c,
the transition matrix F, will thus have a column sum of either
1 or 0. Finally, we introduce a vector q; € RIVAl called G-state
(for graph state), representing the state of the given graph G,
which is associated to the interval m;. This vector is formally
defined as follows.

otherwise

Definition 12 (G-state ¢;). Given a graph Gy = (Vi, Ex) and
a sequence a € X (H)", for k = |w|, w € Vi, we define
g € RIVAl, where the i-th element, q:(1), is defined as:

ifalt—k.t—1)=w;, € Vp
otherwise.

In other words, the G-state ¢; is the vector representation of
the index corresponding to the node we are leaving at step t.
Particularly, for all feasible sequences o € Sy (A), g; contains
exactly one 1 at index ¢, where w; = a(t — k..t — 1) € V (all



(Constraint 1)
A= <2>Kill

(Constraint 2)
A2 = (3,5)kin

Fig. 2. Minimal graphs Q:l, 9;2, and G}, for Example 3.

other values are 0). However, for an arbitrary sequence a €
by (’H)N, the G-state contains at most one 1. In this definition,
g: = 0 means that the transition «(t — 1) was infeasible for
the graph. The G-state dynamics, given an arbitrary sequence
o, can then easily be defined as ¢;+1 = F, - ¢; with ¢ = o4.
Trivially the following property from [53] holds:

Lemma 1 (Transition matrix of an infeasible sequence). If
a¢ Sy (M), then Fy = F,, -+ Fo,Foy =0

Thus, if ¢; = 0 for any ¢, then g = 0 for ¢’ > .

V. STABILITY ANALYSIS

In this Section we illustrate the dynamics of the closed-loop
system under weakly-hard constraints, together with an efficient
way to implement a stability analysis and some interesting
properties of the resulting system.

A. Closed-loop system

Using the alphabet X (), defined for a given deadline miss
strategy 7, and the chosen actuator mode (Zero or Hold), we
now compute the closed-loop system behaviour of plant (T)
with controller (Z). In particular, we identify one matrix for
each distinct dynamics corresponding to a character ¢ € X (H),
building the set .43;. Again, we treat the cases of Kill and
Skip-Next, but the same approach can be extended to other
strategies.

Kill: The alphabet for the Kill strategy includes two
characters, ¥ (Kill) = {H,M}. We define 2 = [z{ 2] utT]T
as the state vector for the closed-loop system. We compute the
one-step closed-loop system dynamics AKX, corresponding to

(Result)
(A1 and A2)yyy

the character H (i.e., when the job released in the given period
m; successfully completes within its deadline) as follows.

A, 0 B,
i, =ArzS, Af=|-B.C, A. —-B.D,
-D.C, C. —D.D,

On the other hand, for the case of M (i.e., when the job released
in 7; misses its deadline) the controller terminates its execution
prematurely by killing the job, thus not updating its states
(z¢41 = #). In this case, the controller output is forced to a
default value, determined by the actuator mode and is thus
either zeroed (u¢+; = 0) or held (u;4+1 = u¢). The resulting
closed-loop system in state-space form is denoted with AX
and defined as follows.

A4, 0 B

0
0

0 p
i, =AKES, Af = I 0
0 A

Here, I is the identity matrix of appropriate size, and A assume
values depending on the actuation mode, i.e., A = I if the
control signal is held and A = 0 if it is zeroed. The set of
dynamic matrices that a controlled system under Kill strategy
may experience is Agj = {Aé(, Ablf}

Skip-Next: When considering constraints under the Skip-
Next strategy, characterizing the resulting closed-loop dynamics
requires a different state vector model. In this case, when a con-
trol task released in an arbitrary interval m; misses a deadline,
it is allowed to continue its execution until completion. Once
completed, the control state will then be updated with a control
command computed using old measurement values. Thus, we
introduce two additional states Z; and 4; that store those old
values while the controller awaits an update. The resulting state

- 7 ~71T
vector then becomes 7 = [th 2 ul 2T uﬂ



When 7, is associated to H (i.e., a job is both activated
and completed in m;), the two augmented states mirror the
behaviour of the states of which they are storing data. The
resulting closed-loop system is described using A as follows:

A, 0 B, 0 0
-B.C, A. —-B.D, 0 0
g =Aji}, A= |-D.C, C. —-D.D, 0 0
A, 0 B, 0 0
-n.C, C. —-D.D, 0 0

For the case of M in 7, (i.e., when a job is not completed) the
two augmented states hold their previous values. The resulting
closed-loop system is described by AS:

A, 0 B, 0 0
0 I 0 00
ipa=A337, AS=10 0 A 0 0
0 0 0 I 0
0 0 0 0 I

Finally, for the case of recovery R in 7 (i.e., when no control
job is activated, but an old one is completed) the new control
command is calculated using the old measurement and control
values stored in Z; and ;. The resulting closed-loop system
is described by AS as follows:

A, 0 B, 0 0

0 A. 0 -B.C, —B.D,
ig, =A%}, AS=|0 C. 0 -D.C, —D.D,

A, 0 B, 0 0

o ¢ 0 -D.C, —D.D,

The set of dynamic matrices under Skip-Next strategy can then
be finally defined as Askip-Next = {AS Ag, AR }

B. Kronecker lifted switching system

We have so far derived the possible switching patterns under
a set of constraints A in terms of a graph G, (Section ,
and the closed-loop switching dynamics A4, of the controlled
system (Section [V-A). To analyse the system stability under
any switching pattern constrained by A, we are then required to
combine the set of system dynamics .4, with the FSM describ-
ing the allowed switches G . A straightforward approach would
be configuring a CJSR problem in the form of Equation (@),
obtaining p (A, Ga).

Conversely, building upon the recent work of [52], we
seek to obtain an equivalent model of the system based on
Kronecker lifting. The model obtained with this approach,
characterized by a set of matrices that we denote with Ay,
behaves as an arbitrary switching system, such that the JSR
of the set A, is equal to the CJSR of the constrained system
p(Ax,Ga), e, p(Ap) = p(Az, Ga). In this way, we can use
powerful algorithms applicable to arbitrary switching system
— such as the ones implemented in [46] and the SparseJSR
algorithm [47]] — to find tight stability bounds of our target
controlled system. For the sake of brevity, we will give only an
intuitive explanation here about the Kronecker lifting approach
presented in [52]]. The interested reader is referred to [52] for
a more detailed analysis.

The Kronecker product is formally defined as follows [22].

Definition 13 (Kronecker product). The Kronecker product
between two real-valued matrices A and B of any size is
defined as:

a1+ B app-B
AQB:= |a21-B a-B

Differently from the common matrix product, the Kronecker
product does not require the equivalence between the number
of rows of A and columns of B.

The Kronecker product is used here to build a set of lifted
matrices (P,) that includes the information of both the system
dynamics (closed-loop matrix A’') and the possible transitions
(transition matrix F) of a given outcome ¢ € X (H). To avoid
heavy notation, we will consider A’f = A_ henceforth, with
implicit dependency on H.

We introduce the lifted discrete-time state & € R™MVAl
defined as

§t = qt D x4,

By construction, &; is a vector composed of |Vj| blocks of
size n, where at most one block is equal to z; and all the
other blocks are equal to the 0 vector. All the possible lifted
closed-loop system dynamic matrix associated to & are defined
as

P.=F.® A, ceX(H), 9)

where P, € R™ValxnIVal The lifted dynamics of the closed
loop systems then become
§ir1 = Py,

To better understand how this works, we here apply the theory
to Example 1.

C = (.

Example 4. Consider the graph of Example 1 in Figure [I|
(left). The transition matrices Fy and Fy, computed using
Definition are:

(10)

The lifted matrices corresponding to H and M are then computed
using Equation @) as follows:

Ay 0 Ay 0 0 O
0 Ay O 0 0 O

Let consider an initial G-state q; = [1, 0, O]T and an initial
plant state x1. Given a sequence o« = HM, we obtain:

£3 = Py Py 51
0 0 0] [Ag 0 Ayl |z 0
=|Ax 0 O 0 0 0 0 = |AyAgxy
0 0 O 0 Ay O 0 0

Instead, if the sequence o = MM was given, which is infeasible
Sor this example (o ¢ S ((1,3)xin)), the dynamics will converge
to & =0.

0 0 O 0 0 0] [z 0
§&3=PyPy&=|Ay 0 0| [A4y O O 0Of=10
0 0 O 0 0 O 0 0



Formally, we obtain a system composed of a set of switching
dynamic matrices, A, which is defined as follows.

Definition 14 (Lifted switching set .4,). Given a set of
dynamic matrices Ay, and a graph Ga, the switching set A
is defined as the set of all lifted matrices corresponding to Ay.
Formally,

Av={F.® A | c€D(H), Ac € Ay} .

Proving then that p (AA) = p (Ax, Ga) requires first finding
a proper norm for the lifted system. For an arbitrary sequence
a € X (H), the mixed-product property [22]] of ® guarantees
the following relationship:

P, =P,y Py, P,
= (F&N e FoézFDtl) ® (ADtN o 'AQQAOtl)
Then, we introduce a submultiplicative norm |||-||| such that,

for an arbitrary matrix M, it holds that
J124]) = max 3 s
i

Finally, recalling from Section that there may be at most
one entry 1 in each column of F,, and from Lemma E] that
F, =0if a ¢ S(A), we obtain that:

T |Aall when o € S (A)
« 0 whena ¢ S(A)

As a consequence, it follows that p (Ax) = p (A, Ga), which
proves the viability of our approach.

12)

C. Extended weakly hard and JSR properties
In Section we recalled existing stability results on the

(m) model obtained with the JSR [32]. We now provide a
general relation between all extended weakly-hard constraints
in terms of the joint spectral radii, by leveraging the model

presented earlier in the paper.

Theorem 3 (JSR dominance). Given two arbitrary weakly-hard
constraints A1 and Xo, if Ao < A1 then

p(A)\z) < p<A>\1) :
Proof. From Equation (3)), for a generic A,

p(Ax) = lim pg(Ay), pe(Ax) = max [|[A.]V% (13)
£—00 a€Sy(N)

Deﬁnition@gave us that Ay < A if and only if S(A3) C S(Aq).
Thus, if an arbitrary sequence is in the satisfaction set of Ao,
ie., B € S¢(A2), this means 3 also belongs to the satisfaction
set of A1, i.e., B € S¢(A1). The set of all possible Ag is thus
included in the set of all possible A,, @ € S;(A1). As a
consequence it holds that

max || Ag||Yf < max [|A.|Y¢ WleN>.
,@ES@(}\Q) OéESg()\l)

The theorem follows immediately when ¢ — oo. O

The intuition that a sequence of control activations con-
taining a large number of deadline misses is less robust
than one including fewer errors, is well-established. However,
Theorem [3] is the first result that provides a clear, analytic,

correlation between the control theoretical analysis and real-
time implementation. Primarily, it implies that the constraint
dominance from Definition [6] also carries on to the JSR, giving
us a notion of JSR dominance. One of the most important
consequences arising from the JSR dominance is the relation
between the implementation and analysis of a weakly-hard
constrained system. If stability under a specific constraint is
shown, Theorem [3| guarantees stability for all constraints which
are harder to satisfy. This result also applies to the stability
analysis presented in [32]], giving the user options for which
methodology to use. Additionally, we wish to emphasise that
the results of Theorem [3|are strategy independent (as long as A\;
and Ao use the same strategy 7{), further reducing the coupling
between the control analysis and implementation approach.

Although Theorem 3| holds for any weakly-hard constraint A\
and Ao, we here present a valuable special case of the theorem.
Due to the (m),, and (m, k)3, constraints being the two most
used models, we derive some practical relations between them
in terms of the corresponding joint spectral radii.

Corollary 1 ((m, k)3 dominance). Given a constraint A\; =
(m, k1)3 and a constraint Ao = (m, ko), if k1 < ko then

p(Ax,) <p(Ay).

Proof. According to [[51]] it holds that (m, k2)y =< (m, k1)n
if k&1 < ko. The corollary follows directly from [51] and
Theorem [3 O

Corollary 2 ({m),, dominance). Given a constraint \; =
(m),, and a constraint Ay = (m, k)y, k > m, then

p(AAz) < p(AAl) .

Proof. According to [32] it holds that (m),, = (m,m + 1)y.
The corollary follows directly from [32] and Corollary [} I

The conclusions drawn from Theorem [3 are theoretical and
its practical applicability depends on the algorithms used to find
lower and upper bounds for the JSR value p”“? and pV?. Using
these bounds we can determine the stability of the switching
system. However, it is not necessarily true that the upper bounds
found using different algorithms follow the ordering presented
above. Still, we can bound the switching stability as

pPP(Ax,) < p(Ax,) < p(Axy) <p"P (Ay).

Regardless of the algorithm used to find the bounds, we
can generally conclude that if pUB (A)) < 1 we know
that the constrained system is switching stable. Similarly, if
pFP (Ay) > 1 the system is unstable. Thus, if Ay < A1, where
pYB (Ay,) < 1, we know that the system under Ay constraints
is switching stable. A similar relation holds for the lower
bound.

We now extend the results of Theorem [3] by relating the joint
spectral radius of a single constraint to sets of weakly-hard
constraints.



Theorem 4. Given an arbitrary weakly-hard constraint ), it
holds that
p(Ar) < p(Ay), VAS A

Proof. A relationship between the satisfaction set of a con-
straint set and the individual constraints’s satisfaction sets
was presented in Equation (8). Consequently, for an arbitrary
constraint A and constraint set A, where A = {A’, A}, it holds
that

Se(A) =S (N)NSi(A\) S S (V). (14)

Thus, if an arbitrary sequence is in the satisfaction set of A, i.e.,
B € S¢ (A), this means S also belongs to the satisfaction set of
A, Le., B € Sp(X). The set of all possible Ag is thus included
in the set of all possible A,, o € Sy (\). As a consequence it
holds that

max [|Ag]|"* < max [|A.|Y¢ VEe N>,
BESe(A) a€S,(N)
The theorem follows immediately when ¢ — oo. O

Following the same intuition as Theorem [3] the more we
restrict the execution pattern of the task constrained by A, the
lower the JSR will be. In the case of constraint sets, the notion
of JSR dominance is not as evident as it was for a single
constraint. However, the JSR dominance extension to sets of
weakly-hard constraints further improves the relation between
constraint specification and control verification.

One of the most important implications of Theorem [4] is the
practical significance it has on the switching stability of the
system. Specifically, enforcing tighter weakly-hard constraints
to a stable system will never destabilise it. Thus, if a system
has been shown to be stable under a distinct constraint A, the
system implementation may be changed arbitrarily as long
as the control task’s execution still satisfies A. The result is
formally given by the following corollary.

Corollary 3. Given an arbitrary weakly-hard constraint )\, if
p(Ax) <1 then

p(Ar) <1, VA3 A

Proof. The corollary follows immediately from Theorem
when p (Ay) < 1. O

VI. EVALUATION

We here apply the lifted dynamics model presented in
Section |V|to two representative case studies. The corresponding
controllers are designed to stabilise the closed loop in ideal
conditions, i.e., without deadline misses. We perform numerical
experiments to analyse the stability of the two control systems,
when they are subject to different constraints, particularly in
the A = (m, k)3 form (due to its prevalence). We consider
both the Kill and Skip-Next strategy, and we also vary the
actuator mode, being either Zero or Hold.

For each combination of plant and constraint A, a minimal
FSM is built and the resulting closed loop systems are expressed
in the lifted form of Section each yielding a specific set
of matrices Ay. The stability of the system is computed by
approximating the JSR of A, namely p(.A)), using three

different algorithms. First, a lower and upper bound of p (A))
are computed using the JSR toolbox [46] in Matlab. We
compare these bounds with an upper bound of the JSR obtained
via SOS relaxations, as described in Section both with the
dense and sparse algorithm from the SparseJSR toolbox [47].
Concretely, we compute upper bounds on the JSR given by the
optimal value psos 24 (Ax) of the dense SOS relaxation (3) as
well the optimal value prssos,2q (Ax) of the sparse relaxation
implemented in the SparseJSR algorithm. For efficiency,
we run experiments at the first relaxation order d = 1.

The JSR toolbox provides an accurate lower bound and
a coarse upper bound in a few seconds. In contrast, the dense
SOS-based method usually finds a good upper bound but takes
more time. The sparse/dense upper bounds are obtained with the
SparsedJSR Julia package, based on the TSSOS|package used
in [48]] and the SDP solver MOSEK [2]. Since JSR toolbox
and SparseJSR are implemented in different programming
languages (Matlab and Julia) and rely on different SDP solvers
(SDPT3/SeDuMi and MOSEK), it is not meaningful to compare
their respective timings. However, the time it takes to run
the dense and sparse SOS methods in Julia is compared. All
numerical examples have been computed on an Intel Core
15-8265U@1.60GHz CPU with 8GB RAM memory.

A. Process industrial plant

We here analyse a stable discrete-time plant P;, representa-
tive of the process industry [[17]], controlled using a PI-controller
C1 (sampled using the sampling period p, = 0.5 s):

0.606 0.304 0.076 0.014
ziy1 =] 0 0.606 0.304| @ + [0.091 | wuy
1: 0 0 0.606 0.394
Yt =11 0 0] Tt

o {zt+1 = 2 + 0.359y;
w41 = 0.4542z 4+ 0.633y:

Table[l|display the results obtained with the distinct strategies
(Kill and Skip-Next) combined with the actuator modes (either
Zero or Hold), for the initially stable plant. Lower and upper
bounds are denoted with “LB” and “UB”. The symbol “x”
stands for the speedup factor of the time required to obtain the
sparse bound w.r.t. the dense one. The symbol “—” means that
the SDP solver runs out of memory, and the test is interrupted.
Bold values represent stable systems under corresponding
constraint for the given strategy and actuator mode. The starred
values represent stable systems infered from Corollary

All the upper bounds computed by JSR toolbox are
greater than 1, while all lower bounds are below 1, thus we
cannot draw any conclusion about the stability of the considered
system using the JSR toolbox. However, for all constraints
(m,k)y where m =1 and 2 < k < 6 the dense/sparse SOS
upper bounds allow us to infer that the system is stable for
all combinations of strategy and actuator mode, and also for
k = 2 under the Skip-Next strategy. As a consequence of
Corollary [1] the stability will hold also for all (m, k)3 with
m = 1 and k > 6. The computing time and the speedup
ratio are growing when k increases, yielding a particularly
high benefit of exploiting sparsity for the Skip-Next strategy


https://github.com/wangjie212/SparseJSR
https://github.com/wangjie212/TSSOS
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and Zero actuation. For instance, with m = 1 the computing
time of the dense SOS upper bound is between 2.32 seconds
(for k = 2) and 273 seconds (for £ = 6), while obtaining
the sparse SOS upper bound takes from 0.43 to 13.1 seconds.
Additionally, increasing the value of m result in harder analyses.
For the Skip-Next strategy and Zero actuation, it takes more
than 1 hour to compute the dense SOS upper bounds with
m =2 orm =3 and k = 5, and less than 2 minutes to obtain
the corresponding sparse upper bounds. This follows from
the higher number of nodes in the corresponding FSM, thus
increasing the sizes of the matrices in 4. As a consequence,
we managed to complete the tests with the dense SOS only up
to (m,k)y = (2,6) with the Kill strategy and Hold actuation
and up to (m, k) = (2,5) with the Skip-Next strategy and
Zero actuation.

To further distinguish this work from the state-of-the-art [32]],
we performed additional tests on P; and (', comparing
the lower and upper bounds of the JSR for the (m),,
constraint model. Both methodologies were tested using the
JSR toolbox for all combinations of strategy and actuator
mode, with 5 < m < 10. The results show that our lifted
model yields an average improvement of bound accuracy of
10% as well as an average speedup factor equal to 6.

B. Ballistic missile

Our second case study treats the stability analysis of the
altitude control on a ballistic missile [4], [45]. The dynamics
are given by an unstable discrete-time model P,, which is
stabilised using an LQR-controller C; (sampled using the
sampling period p, = 0.01 s):

0.999 0.012 —5.5e~4 0.020
Py lTtL = 0.020 1 —5.5e 0| x4 + [2.0e*| uy
5.0e~% 0.005 1 3.3e77
Yt = Iz

Ca: upyr = —[3.380 3.417 1.846] z; — 0.322u¢

Table display the results obtained by running the
SparseJSR toolbox on each of the strategies combined
with the actuation modes. Again, applying Corollary [T} the
stability of the case (1,2)3 guarantees that the system is
stable for m = 1 and k > 2, under both the Kill and Skip-
Next strategies. Almost all reported sparse SOS upper bounds
have been obtained with the first relaxation order d = 1,
using the same notation as for Table Il However, we extend
the notation by underlining values computed with the second
relaxation order d = 2. These values correspond to tighter
upper bounds on the joint spectral radii, but come with a
much higher computational cost. For instance, we remark that
(m,k)xin = (1,2)km is stable using either actuation mode
(invisible using d = 1), a result acquired at the cost of a factor
100 increase in computation time.

In Example 3, we presented the FSM corresponding to the
constraint set A = {A;, A2} consisting of A\; = (2),,, and
Ay = (3,5)1{1]]. Since (m)H = (m,m + 1)';.[ and (2»3)Kill is
stable, according to Table |lIL applying Corollary |3| allows us to
deduce that the ballistic missile is stable under the weakly-hard
constraint set A.

C. Discussion

We would like to conlude the experimental evaluation with a
remark. The qualitative and quantitative difference between the
two tables is not suprising, as the two controllers are different
in nature. We controlled the stable plant in Section with
a PI controller, that has a state corresponding to the integral
error, whose update is affected by the deadline misses. On the
contrary, the LQR controller developed for the unstable plant
in Section does not have a state and therefore recovers
immediately. This explains the similarity between the values
of the lower bounds found using the JSR toolbox in Table [}

VII. CONCLUSION

This paper proposes a switching stability analysis framework
for control systems subject to weakly-hard constraints. The
existing weakly-hard models are extended by introducing the
choice of deadline handling strategy as part of the model.
The main contributions of the paper are twofold: (i) an
analytic bound on the switching stability for control systems
subject to a set of constraints, relating the hardness of the
implementation to the stability of the system, and (ii) a
decoupled framework where the real-time implementation
and control stability analysis can be performed separately.
We applied the analysis to multiple examples, with different
dynamics and implementations, to show the wide applicability
of the approach.
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