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Abstract. In this paper we present term sparsity sum-of-squares (TSSOS)

methods applied to several problems from dynamical systems, such as region of
attraction, maximum positively invariant sets and global attractors. We com-

bine the TSSOS algorithm of Wang, Magron and Lasserre [SIAM J. Optim.,
31(1):30-58, 2021] with existing infinite dimensional linear program represen-

tations of those sets. This leads to iterative schemes in the moment-sum-

of-squares hierarchy which allows less expensive computations while keeping
convergence guarantees. Finally this procedure is closely related to sign sym-

metries of the dynamical system as was already revealed for polynomial opti-

mization. Numerical examples demonstrate the efficiency of the approach in
the presence of appropriate sparsity.

1. Introduction

The idea of translating problems from dynamical systems to infinite dimensional
linear programming problems dates back to at least the work of Rubio [10] and
Lewis and Vinter [7, 14] concerned with optimal control problems. More recently
this idea was extended to other problems: maximum positively invariant (MPI) set
[4], region of attraction (ROA) [3], reachable set [8], global attractors (GA) [12]
and invariant measures [5] among others. These problems then can be solved in the
spirit of [6] using a convergent sequence of finite dimensional convex optimization
problems was proposed. This procedure results in a hierarchy of moment-sum-of-
squares (moment-SOS) relaxations leading to a sequence of semidefinite programs
(SDPs).

However, the size of these SDPs scales rapidly with the degree of the polynomials
involved and the state-space dimension. As a consequence, despite being convex,
these SDP relaxations may be challenging to solve even for problems of modest
size. To this end, different speed-up techniques have been proposed to reduce the
size of SDPs via exploiting structure of the dynamical system. Among these are
symmetries (see [9] for symmetry exploitation of polynomial optimization, as well
as [2] exploiting symmetries in the context of dynamical systems) or correlative
sparsity as in [15] for polynomial optimization, or in [11] where a specific sparsity
structure was used to decompose the SDP while preserving convergence guarantees.
In this paper we present the use of a recent term sparsity approach [19, 20] which has
been already proven useful for a wide range of polynomial optimization problems,
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involving complex [17] or noncommutative [18] variables, and fast approximation
of joint spectral radius of sparse matrices [16]. For all above problems, one is
able to formulate computationally cheaper hierarchies with still good convergence
properties.

Whereas the approach of [11] is concerned with the sparsity among the state
variables themselves, the approach proposed here exploits sparsity in the algebraic
description of the dynamics, in particular among the monomial terms appearing
in the components of the polynomial vector field. The method proceeds by search-
ing non-negativity certificates comprised of polynomials with specific sets of terms
only which in turn are enlarged in an iterative scheme. From an operator-theoretic
perspective, the proposed term sparsity approach exploits term sparsity of the data
and dynamics by algebraic (or graph theoretic) properties of the Liouville-operator
associated to the dynamics. Interestingly, the proposed approach intrinsically com-
prises the sign symmetry reduction.

We demonstrate the approach on a number of examples (including randomly
generated instances and a 16-state fluid mechanics example) and observe a very
promising trade-off between speed-up and the solution accuracy. The results also
confirm our theoretical analysis that this iterative procedure automatically retrieves
the sign symmetry reduction. A Julia implementation of our approach is freely
available online1.

The rest of this paper is organized as follows. In Section 2, we introduce the
notation and give some preliminaries. In Section 3, we show how to exploit term
sparsity in the moment-SOS hierarchy by taking the computation of MPI sets as
an example and reveal its relation with the sign symmetry reduction. Section 4
illustrates the approach by numerical examples. Conclusions are given in Section 5.

2. Notation and preliminaries

Let x = (x1, . . . , xn) be a tuple of variables and R[x] = R[x1, . . . , xn] be the ring
of real n-variate polynomials. For d ∈ N, the subset of polynomials in R[x] of degree
no more than 2d is denoted by R2d[x]. A polynomial f ∈ R[x] can be written as
f(x) =

∑
α∈A fαxα with A ⊆ Nn, fα ∈ R and xα = xα1

1 · · ·xαn
n . The support

of f is then defined by supp(f) := {α ∈ A | fα 6= 0}. For A ⊆ Nn, let R[A ] be
the set of polynomials whose supports are contained in A . The notation Q � 0 for
a matrix Q indicates that Q is positive semidefinite (PSD). For a positive integer
r, the set of r × r symmetric matrices is denoted by Sr and the set of r × r PSD
matrices is denoted by Sr+. For d ∈ N, let Nnd := {α = (αi)

n
i=1 ∈ Nn |

∑n
i=1 αi ≤ d}.

For α ∈ Nn,A ,B ⊆ Nn, let α + B := {α + β | β ∈ B} and A + B := {α + β |
α ∈ A ,β ∈ B}. We use | · | to denote the cardinality of a set. For two vectors
a = (ai)

n
i=1 and b = (bi)

n
i=1, let a · b :=

∑n
i=1 aibi and a ◦ b := (a1b1, . . . , anbn).

Given a polynomial f(x) ∈ R[x], if there exist polynomials f1(x), . . . , ft(x) such

that f(x) =
∑t
i=1 fi(x)2, then we call f(x) a sum of squares (SOS) polynomial. The

set of SOS polynomials is denoted by Σ[x]. Assume that f ∈ Σ2d[x] := Σ[x]∩R2d[x]

and xNn
d is the

(
n+d
d

)
-dimensional column vector consisting of elements xα,α ∈ Nnd

(fix any ordering on Nn). Then f is an SOS polynomial if and only if there exists a
PSD matrix Q (called a Gram matrix) such that f = (xNn

d )TQxNn
d . For convenience,

we abuse notation in the sequel and denote by Nnd instead of xNn
d the standard

monomial basis and use the exponent α to represent a monomial xα.

1https://github.com/wangjie212/SparseDynamicSystem.

https://github.com/wangjie212/SparseDynamicSystem
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An (undirected) graph G(V,E) or simply G consists of a set of nodes V and a
set of edges E ⊆ {{u, v} | u 6= v, (u, v) ∈ V × V }. For a graph G, we use V (G)
and E(G) to indicate the node set of G and the edge set of G, respectively. For
two graphs G,H, we say that G is a subgraph of H, denoted by G ⊆ H, if both
V (G) ⊆ V (H) and E(G) ⊆ E(H) hold. A graph is called a chordal graph if all
its cycles of length at least four have a chord2. The notion of chordal graphs plays
an important role in sparse matrix theory. Any non-chordal graph G(V,E) can be
always extended to a chordal graph G′(V,E′) by adding appropriate edges to E,
which is called a chordal extension of G(V,E). As an example, in Figure 1 the
two dashed edges are added to obtain a chordal extension. The chordal extension
of G is usually not unique and the symbol G′ is used to represent any specific
chordal extension of G throughout the paper. For a graph G, there is a particular
chordal extension which makes every connected component of G to be a complete
subgraph, which is called the maximal chordal extension. Typically, we consider
only chordal extensions that are subgraphs of the maximal chordal extension. For
graphs G ⊆ H, we assume that G′ ⊆ H ′ holds throughout the paper.

Figure 1. An example of chordal extensions

1 2 3

4 5 6

Given a graph G(V,E), a symmetric matrix Q with rows and columns indexed
by V is said to have sparsity pattern G if Quv = Qvu = 0 whenever u 6= v and
{u, v} /∈ E. Let SG be the set of symmetric matrices with sparsity pattern G.

The PSD matrices with sparsity pattern G form a convex cone S
|V |
+ ∩ SG = {Q ∈

SG | Q � 0}. When the sparsity pattern graph G(V,E) is a chordal graph, the

cone S
|V |
+ ∩ SG can be decomposed as a sum of simple convex cones by virtue of

the following theorem and hence the related optimization problem can be solved
more efficiently. Recall that a clique of a graph is a subset of nodes that induces a
complete subgraph. A maximal clique is a clique that is not contained in any other
clique.

Theorem 2.1 ([1], Theorem 2.3). Let G(V,E) be a chordal graph and assume that

C1, . . . , Cl are the list of maximal cliques of G(V,E). Then a matrix Q ∈ S
|V |
+ ∩SG

if and only if Q can be written as Q =
∑l
i=1Qi, where Qi ∈ S

|V |
+ has nonzero

entries only with row and column indices coming from Ci for i = 1, . . . , l.

Given a graph G with V = Nnd , let Σ[G] be the set of SOS polynomials that

admit a PSD Gram matrix with sparsity pattern G, i.e., Σ[G] := {(xNn
d )TQxNn

d |
Q ∈ S

|V |
+ ∩ SG}.

2A chord is an edge that joins two nonconsecutive nodes in a cycle.
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3. Exploiting term sparsity

In this section, we propose an iterative procedure to exploit term sparsity for
the moment-SOS hierarchy of certain computational problems related to dynamical
systems. The intuition behind this procedure is the following: starting with a
minimal initial support set, we expand the support set that is taken into account
in the SOS relaxation by iteratively performing chordal extension to the related
sparsity pattern graphs inspired by Theorem 2.1. For the ease of understanding,
we illustrate the approach by considering the computation of MPI sets. But there
is no difficulty to extend the approach to other situations, e.g., the computations
of ROA [3] and GA [12], bounding extreme events [2].

Suppose that the dynamical system we are considering is given by

(3.1)


ẋ1 = f1(x),

ẋ2 = f2(x),
...

ẋn = fn(x),

where f := {f1, . . . , fn} ⊆ R[x]. Moreover, let the constraint set

(3.2) X := {x ∈ Rn | pj(x) ≥ 0 for j = 1, . . . ,m}

with p1, . . . , pm ∈ R[x]. For the sake of convenience, we set p0 := 1. Let df :=
max{deg(fi) : i = 1, . . . , n} and dj := deg(pj) for j = 0, 1, . . . ,m, dp := max{dj :
j = 1, . . . ,m}.

Definition 3.1. For a dynamical system the maximum positively invariant (MPI)
set is the set of initial conditions x0 such that the solutions ϕt(x0) stay in X for
all t ∈ R+.

As proposed in [4], given a positive integer d, the d-th order SOS relaxation for
approximating the MPI set is defined by:

(3.3) θd :=



inf
∫
X
w(x) dx

s.t. v ∈ R[x]2d+1−df , w ∈ R[x]2d,

βv −∇v · f = a0 +
∑m
j=1 ajpj ,

w = b0 +
∑m
j=1 bjpj ,

w − v − 1 = c0 +
∑m
j=1 cjpj ,

where β > 0 is a preassigned discount factor (say, β = 1), ∇ is the gradient with
respect to x, and aj , bj , cj ∈ Σ2d−dj [x] for j = 0, 1, . . . ,m. The dynamics enter
through the discounted Liouville operator v 7→ βv−∇v · f . By [4], the sequence of
optima of (3.3) converges monotonically from above to the volume of the MPI set
provided the polynomials (pj)

m
j=1 satisfy the Archimedianity condition (e.g., one of

the pj ’s is a, possibly redundant, ball constraint). Furthermore, the set

Sd := w−1([1,+∞]) = {x ∈ X : w(x) ≥ 1}

provides an outer approximation for the MPI set.
For a graph G(V,E) with V ⊆ Nn, define supp(G) := {β+γ | {β,γ} ∈ E}. Now

we give the iterative procedure to exploit term sparsity. Fix a relaxation order d.



TERM SPARSITY IN MOMENT-SOS HIERARCHY FOR DYNAMICAL SYSTEMS 5

Let A =
⋃m
j=1 supp(pj) and v be a polynomial with generic coefficients supported

on A . Let

(3.4) A 1
d := A ∪ supp(∇v · f) ∪ 2Nnd

with 2Nnd := {2α | α ∈ Nnd}. Intuitively, the set A 1
d is the minimal support that

has to be involved in the SOS relaxation (3.3)3. Next, we expand the support set
by iteratively performing chordal extension on some related graphs. More formally,
for every integer s ≥ 1, we iteratively define the graph Gsd,j which will be imposed

as the sparsity pattern graph for a Gram matrix of aj with V (Gsd,j) := Nnd−dj and

E(Gsd,j) := {{β,γ} | β + γ + supp(pj) ∩ (A s
d ∪ supp(∇vsd · f)) 6= ∅},

where vsd is a polynomial with generic coefficients supported on A s
d ∩Nn2d+1−df for

j = 0, 1, . . . ,m, and further let A s+1
d = supp((Gsd,0)′). In doing so, we get a finite

ascending chain of support sets

A 1
d ⊆ · · · ⊆ A s̃

d = A s̃+1
d = · · ·

and a finite ascending chain of graphs

(G1
d,j)
′ ⊆ · · · ⊆ (Gs̃d,j)

′ = (Gs̃+1
d,j )′ = · · ·

for each j = 0, 1, . . . ,m.
For a given s ≥ 1, with Bs,1

d := A s
d for every l ≥ 1 we also iteratively define the

graph Hs,l
d,j which will be imposed as the sparsity pattern graph for a Gram matrix

of bj or cj with V (Hs,l
d,j) := Nnd−dj and

E(Hs,l
d,j) := {{β,γ} | β + γ + supp(pj) ∩Bs,l

d 6= ∅}

for j = 0, 1, . . . ,m, and further let

(3.5) Bs,l+1
d =

m⋃
j=0

(supp(pj) + supp((Hs,l
d,j)
′)).

In doing so, we get a finite ascending chain of support sets

Bs,1
d ⊆ · · · ⊆ Bs,l̃

d = Bs,l̃+1
d = · · ·

and a finite ascending chain of graphs

(Hs,1
d,j )′ ⊆ · · · ⊆ (Hs,l̃

d,j)
′ = (Hs,l̃+1

d,j )′ = · · ·

for each j = 0, 1, . . . ,m.
The two indices s and l are used to control the size of support sets of v respec-

tively w. For a pair s, l ≥ 1, we may thereby consider the following sparse SOS
relaxation for approximating the MPI set:

(3.6) θs,ld :=



inf
∫
X
w(x) dx

s.t. v ∈ R[A s
d ∩ Nn2d+1−df ], w ∈ R[Bs,l

d ],

βv −∇v · f = a0 +
∑m
j=1 ajpj ,

w = b0 +
∑m
j=1 bjpj ,

w − v − 1 = c0 +
∑m
j=1 cjpj ,

3Here the subset 2Nn
d is included in the definition of A 1

d to guarantee convergence; see [20].
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where aj ∈ Σ[(Gsd,j)
′], bj , cj ∈ Σ[(Hs,l

d,j)
′] for j = 0, 1, . . . ,m. Notice that the

Gram matrix of any SOS involved in (3.6) admits a block decomposition because
of Theorem 2.1. Hence the corresponding SDP could be easier to solve.

Proposition 3.2. With the above notations, θs,ld+1 ≤ θs,ld , θs,ld ≤ θs+1,l
d , θs,ld ≤

θs,l+1
d , and θs,ld ≥ θd hold true for d ≥ max{ddf/2e, ddp/2e}, s ≥ 1, l ≥ 1.

Proof. The first three inequalities follow the fact that we always take more supports
into account in the corresponding sparse SOS relaxation when increasing d, s or

l. The last inequality θs,ld ≥ θd holds because the feasible set of the sparse SOS
relaxation is a subset of the corresponding dense SOS relaxation. �

Sign symmetry. The sign symmetries of the system (3.1) with the constraint set
X (3.2) consist of all vectors r = (ri) ∈ Zn2 := {0, 1}n that satisfy

fi((−1)r ◦ x) = (−1)rifi(x) for i = 1, . . . , n,

and

pj((−1)r ◦ x) = pj(x1, . . . , xn) for j = 1, . . . ,m,

where (−1)r := ((−1)r1 , . . . , (−1)rn). Given a set of sign symmetries R ⊆ Zn2 , we
define R⊥ := {α ∈ Nn | r · α ≡ 0 (mod 2), ∀ r ∈ R}. Then a polynomial g is
invariant under the sign symmetries R4 if and only if supp(g) ⊆ R⊥. The following
theorem5 tells us that the SOS relaxation (3.3) inherits the sign symmetries of the
dynamical system (3.1).

Theorem 3.3. Let R be the set of sign symmetries of the system (3.1) with the con-
straint set X (3.2). If we additionally impose the constraints that supp(v), supp(w) ⊆
R⊥ and supp(aj), supp(bj), supp(cj) ⊆ R⊥ for j = 0, 1, . . . ,m in (3.3), the resulting
program has the same optimum with (3.3).

Proof. Suppose that v, w, {aj}mj=0, {bj}mj=0, {cj}mj=0 are an optimal solution to (3.3).

We remove the terms of v, w with exponents not belonging to R⊥ from the expres-
sion of v, w and denote the resulting polynomials by ṽ, w̃ respectively. Let Qj be

a PSD Gram matrix of aj for any j such that aj = (x
Nn

d−dj )TQjx
Nn

d−dj . We then

define Q̃j ∈ S
|Nn

d−dj
|

by

[Q̃j ]βγ :=

{
[Qj ]βγ , if β + γ ∈ R⊥,
0, otherwise,

and let ãj := (x
Nn

d−dj )T Q̃jx
Nn

d−dj . One can easily check that Q̃j is block diagonal

(after an appropriate permutation on rows and columns). So Qj � 0 implies Q̃j � 0

and it follows that ãj is an SOS polynomial. In a similar way, we define b̃j ,c̃j for
j = 0, 1, . . . ,m which are all SOS polynomials by a similar argument as for ãj . As
we remove exactly the terms with exponents not belonging to R⊥ from both sides of
the equations in (3.3), ṽ, w̃, {ãj}mj=0, {b̃j}mj=0, {c̃j}mj=0 are again a feasible solution

4That is, g((−1)r ◦ x) = g(x) for any r ∈ R.
5A similar symmetry reduction already appeared in [2] in the study of bounding extreme events

in dynamical systems.
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to (3.3). It remains to show
∫
X
w̃(x) dλ =

∫
X
w(x) dλ. Take any α ∈ Nn2d\R⊥.

Then there exists r = (ri)i ∈ R such that α · r 6≡ 0 (mod 2). We have∫
X

xα dλ =

∫
X

((−1)r ◦ x)α dλ =

∫
X

(−1)α·rxα dλ = −
∫
X

xα dλ,

where the first equality follows from the fact that X is invariant under the sign sym-
metry r. This immediately gives

∫
X

xα dλ = 0 from which we deduce
∫
X
w̃(x) dλ =∫

X
w(x) dλ as desired. �

From the proof of Theorem 3.3, we see that the sign symmetries of the dynamical
system (3.1) endow any SOS polynomial involved in (3.3) with a block structure.
Our iterative procedure to exploit term sparsity actually produces block structures
that are compatible with the sign symmetries of the dynamical system. Further-
more, when maximal chordal extensions are used in the construction, the block
structures converge to the one given by the sign symmetries of the system. The
key observation is the following lemma.

Lemma 3.4. For any relaxation order d ≥ max{ddf/2e, ddp/2e}, the sign sym-
metries of the system (3.1) with the constraint set X (3.2) coincide with the sign
symmetries of A 1

d (3.4), i.e., the set {r ∈ Zn2 | r ·α ≡ 0 mod 2, ∀α ∈ A 1
d }.

Proof. Let us denote the set of sign symmetries of the system (3.1) by R and the
set of sign symmetries of A 1

d by R′. For any r ∈ R, we wish to show r ∈ R′. It
suffices to show r ·α ≡ 0 mod 2 for any α ∈ A 1

d = A ∪ supp(∇v · f) ∪ 2Nnd where
A =

⋃m
j=1 supp(pj) and v is a polynomial with generic coefficients supported on

A . If α ∈ A ∪ 2Nnd , we clearly have r · α ≡ 0 mod 2 by definition. Noting
∇v(x) = ∇v((−1)r ◦ x) = (−1)r ◦ (∇v)((−1)r ◦ x), we have (∇v · f)((−1)r ◦ x) =
(∇v)((−1)r ◦ x) · f((−1)r ◦ x) = ((−1)r ◦ ∇v(x)) · ((−1)r ◦ f(x)) = (∇v · f)(x). As
a result, r ·α ≡ 0 mod 2 for any α ∈ supp(∇v · f).

Conversely, for any r ∈ R′, we wish to show r ∈ R. Since A ⊆ A 1
d , we

have pj((−1)r ◦ x) = pj(x) for j = 1, . . . ,m. Let α = (αi) ∈ A with α1 > 0.
Then supp(xαf1/x1) ⊆ A 1

d . The condition r ∈ R′ implies (−1)r·αxαf1((−1)r ◦
x)/((−1)r1x1) = xαf1/x1, which gives f1((−1)r ◦x) = (−1)r1f1(x) as (−1)r·α = 1.
Similarly, we can prove fi((−1)r◦x) = (−1)rifi(x) for i = 2, . . . , n. Thus r ∈ R. �

Based on Lemma 3.4, we can prove the following theorem by a similar argument
as for [20, Theorem 6.5] and so we omit the proof.

Theorem 3.5. For any relaxation order d ≥ max{ddf/2e, ddp/2e}, if maximal
chordal extensions are used in the construction, then the block structures produced
by the above iterative procedure converge to the one given by the sign symmetries of
the system (3.1) (with the constraint set X (3.2)) as s, l increase. As a corollary,

in this case θs,ld = θd when s, l are sufficiently large6.

Remark 3.6. The flexibility of choosing chordal extensions in the construction
allows one to balance between the computation cost and the quality of approximation.

6The values of s, l for θs,ld = θd to be valid are a priori unknown, but they are typically no

greater than 3 in practice.
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4. Illustrative examples

In this section, we give two numerical examples to illustrate the iterative pro-
cedure to exploit term sparsity. The procedure has been implemented as a Julia
package SparseDynamicSystem which is available at:

https://github.com/wangjie212/SparseDynamicSystem.

All numerical examples were computed on an Intel Core i5-8265U@1.60GHz CPU
with 8GB RAM memory and Mosek 9.0 is used as an SDP solver.

4.1. Randomly generated models ([13]). We consider the following sparse dy-
namical system for varying n:

(4.1) ẋi = (xTBx− 1)xi, i = 1, . . . , n,

where B ∈ SG is a random positive definite matrix satisfying:

(1) G is a random graph with n nodes and n− 4 edges;
(2) For 1 ≤ i ≤ n, Bii ∈ [1, 2] and for 1 ≤ i < j ≤ n, Bij ∈ [−0.5, 0.5].

The constraint set is X = {x ∈ Rn | 1 − x2i ≥ 0 for i = 1, . . . , n}. For each
system, we approximate the MPI set via solving the dense relaxation (3.3) and
the sparse relaxations (3.6) with s = 1, 27 respectively. Figures 2a–2d show outer
approximations of the MPI set for n = 6, 8, 10, 12 respectively, where TS (term
sparsity) corresponds to the sparse relaxation with s = 1, SS (sign symmetry)
corresponds to the sparse relaxation with s = 28, and FD (fully dense) corresponds
to the dense relaxation. In Table 1, we list the optima and the running time for
solving the corresponding SDPs. From Figures 2a-2d and Table 1, we can conclude
that SS is significantly faster than FD by one or two orders of magnitude without
sacrificing any accuracy; TS is several times faster than SS at the cost of possibly
providing slightly weaker approximations.

Table 1. The results for randomly generated models, TS: term
sparsity, SS: sign symmetry, FD: fully dense, opt: optimum, time:
running time in seconds.

n 2d
TS SS FD

opt time opt time opt time

6
10 6.60 6.41 6.23 26.7 6.23 2633
12 5.69 159 5.05 289 - -

8
8 15.0 34.5 14.5 61.8 14.5 3288
10 12.4 486 11.8 1861 - -

10
6 93.3 7.21 93.3 15.6 93.3 518
8 30.7 899 29.8 1368 - -

12
4 510 0.39 438 1.46 438 8.84
6 312 125 311 288 - -

7The value of l can be either 1 or 2, depending on problems.
8Namely, the block structures of the sparse hierarchy converge to the one determined by the

sign symmetries of the system when s = 2.

https://github.com/wangjie212/SparseDynamicSystem
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(a) n = 6, 2d = 10. The projection shown is for xi = 0, i = 3, . . . , 6.

(b) n = 8, 2d = 8. The projection shown is for xi = 0, i = 3, . . . , 8.

(c) n = 10, 2d = 6. The projection shown is for xi = 0, i = 3, . . . , 10.

(d) n = 12, 2d = 4. The projection shown is for xi = 0, i = 3, . . . , 12.

Figure 2. Outer approximations for the MPI set of randomly gener-
ated models. Term sparsity • Sign symmetries • Fully dense •

4.2. The 16 mode fluid model ([2, Example 4.2]). This model is given by the
dynamical system:

(4.2) ẋn = −(2πn)2xn +
√

2πn

(
16−n∑
i=1

xixi+n −
1

2

n−1∑
i=1

xixn−i

)
, n = 1, . . . , 16.

Let Φ(x) = 2π2
∑16
i=1 i

2x2i , X0 = {x ∈ R16 | Φ(x) = Φ0} and X = {x ∈ R16 |
||x||22 ≤ Φ0/(2π

2)}, where Φ0 ∈ R.
Let Φ∗∞ denote the largest value attained by Φ(x(t; t0,x0)) among all trajectories

that start from X0 ⊆ X and evolve forward over the time interval [0,∞). The
SOS relaxations were proposed in [2] to bound Φ∗∞ from above. We can adapt
the iterative procedure presented in this paper to derive sparse SOS relaxations
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for bounding Φ∗∞. We solve the dense relaxation and the sparse relaxations with
2d = 4 and with s = 1, 2 respectively. The results are shown in Figure 3 and Figure
4, where TS corresponds to the sparse relaxation with s = 1, SS corresponds to the
sparse relaxation with s = 2, and FD corresponds to the dense relaxation. As we
can see, all three approaches give almost the same upper bounds for different Φ0;
on average, TS is six times faster than SS and SS is five times faster than FD.
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·104
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∗ ∞
/
Φ
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FD

Figure 3. Upper bounds on Φ∗∞ for the 16 mode fluid model with
2d = 4, TS: term sparsity, SS: sign symmetry, FD: fully dense.
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Figure 4. Running time for the 16 mode fluid model with 2d = 4,
TS: term sparsity, SS: sign symmetry, FD: fully dense.

5. Conclusions

This paper presents a reduction approach by exploiting term sparsity for the
moment-SOS hierarchy of problems arising from the study of dynamical systems.
As demonstrated by the numerical examples, this approach provides a trade-off
between computational costs and the solution accuracy. Moreover, it is able to
guarantee convergence under certain conditions and recover the sign symmetry
reduction. Our next plan is to apply this approach for analyzing properties of
dynamical systems, e.g., coming from power systems.
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