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ABSTRACT

The second-order cone (SOC) is a class of simple convex cones

and optimizing over them can be done more efficiently than with

semidefinite programming. It is interesting both in theory and in

practice to investigate which convex cones admit a representation

using SOCs, given that they have a strong expressive ability. In this

paper, we prove constructively that the cone of sums of nonnega-

tive circuits (SONC) admits an SOC representation. Based on this,

we give a new algorithm to compute SONC decompositions for

certain classes of nonnegative polynomials via SOC programming.

Numerical experiments demonstrate the efficiency of our algorithm

for polynomials with a fairly large size (both size of degree and

number of variables).
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1 INTRODUCTION

A circuit polynomial is of the form
∑

𝜶 ∈A 𝑐𝜶 x
𝜶 − 𝑑x𝜷 ∈ R[x] =

R[𝑥1, . . . , 𝑥𝑛], where 𝑐𝜶 > 0 for all 𝜶 ∈ A , A ⊆ (2N)𝑛 comprises

the vertices of a simplex and 𝜷 lies in the interior of this simplex.

The set of sums of nonnegative circuit polynomials (SONC)was intro-

duced by Iliman andWolff in [10] as a new certificate of nonnegativ-

ity for sparse polynomials, which is independent of the well-known

set of sums of squares (SOS). Another recently introduced alterna-

tive certificates [6] are sums of arithmetic-geometric-exponentials

(SAGE), which can be obtained via relative entropy programming.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ISSAC ’20, July 20ś23, 2020, Kalamata, Greece

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7100-1/20/07. . . $15.00
https://doi.org/10.1145/3373207.3404033

The connection between SONC and SAGE polynomials have been

recently studied in [13, 20, 27]. It happens that SONC polynomi-

als and SAGE polynomials are actually equivalent [20], and that

both have a cancellation-free representation in terms of generators

[20, 27].

One of the significant differences between SONC and SOS is that

SONC decompositions preserve sparsity of polynomials while SOS

decompositions do not in general [27]. The set of SONC polynomials

with a given support forms a convex cone, called a SONC cone.

Optimization problems over SONC cones can be formulated as

geometric programs or more generally relative entropy programs

(see [11] for the unconstrained case and [7] for the constrained

case). Numerical experiments for unconstrained POPs (polynomial

optimization problems) in [25] have demonstrated the advantage

of the SONC-based methods compared to the SOS-based methods,

especially in the high-degree but fairly sparse case.

In the SOS case, there have been several attempts to exploit spar-

sity occurring in (un-)constrained POPs. The sparse variant [26] of

the moment-SOS hierarchy exploits the correlative sparsity pattern

among the input variables to reduce the support of the resulting

SOS decompositions. Such sparse representation results have been

successfully applied inmany fields, such as optimal power-flow [12],

roundoff error bounds [15] and recently extended to the noncom-

mutative case [14]. Another way to exploit sparsity is to consider

patterns based on terms (rather than variables), yielding an alterna-

tive sparse variant of Lasserre’s hierarchy [28].

One of the similar features shared by SOS/SONC-based frame-

works is their intrinsic connections with conic programming: SOS

decompositions are computed via semidefinite programming and

SONC decompositions via geometric programming. In both cases,

the resulting optimization problems are solved with interior-point

algorithms, thus output approximate nonnegativity certificates.

However, one can still obtain an exact certificate from such output

via hybrid numerical-symbolic algorithms when the input polyno-

mial lies in the interior of the SOS/SONC cone. One way is to rely on

rounding-projection algorithms adapted to the SOS cone [22] and

the SONC cone [19], or alternatively on perturbation-compensation

schemes [16, 18] available within the RealCertify [17] library.

In this paper, we study the second-order cone representation of

SONC cones. An 𝑛-dimensional (rotated) second-order cone (SOC) is

defined as K𝑛 := {𝒂 ∈ R𝑛 | 2𝑎1𝑎2 ≥
∑𝑛
𝑖=3 𝑎

2
𝑖 , 𝑎1 ≥ 0, 𝑎2 ≥ 0}. The

SOC is well-studied and has mature solvers. Optimizing via second-

order cone programming (SOCP) can be handled more efficiently

than with semidefinite programming [1, 2]. On the other hand,

despite the simplicity of SOCs, they have a strong ability to express

other convex cones (many such examples can be found in [5, Section

3.3]). Therefore, it is interesting in theory and also important from
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the view of applications to investigate which convex cones can be

expressed by SOCs.

Given sets of lattice points A ⊆ (2N)𝑛 , B1 ⊆ conv(A ) ∩ (2N)𝑛

and B2 ⊆ conv(A ) ∩ (N𝑛\(2N)𝑛) (conv(A ) is the convex hull

of A ) with A ∩ B1 = ∅, let SONCA ,B1,B2
be the SONC cone

supported on A ,B1,B2 (see Definition 4.2). The first main result

of this paper is the following theorem.

Theorem 1.1. For A ⊆ (2N)𝑛 , B1 ⊆ conv(A ) ∩ (2N)𝑛 and

B2 ⊆ conv(A ) ∩ (N𝑛\(2N)𝑛) with A ∩ B1 = ∅, the convex cone

SONCA ,B1,B2
admits an SOC representation.

The fact that SONC cones admit an SOC characterization was

firstly proven by Averkov [4, Theorem 17]. However, Averkov’s

result is more theoretical. Even though Averkov’s proof theoreti-

cally allows one to construct an SOC representation for a SONC

cone, the construction is complicated and wasn’t explicitly given in

Averkov’s paper. Our proof of Theorem 1.1, which involves writing

a SONC polynomial as a sum of binomial squares with rational

exponents (Theorem 3.9), is totally different from Averkov’s and

leads to a more concise (hence more efficient) SOC representation

for SONC cones. This enables us to propose a new algorithm, based

on SOCP, providing SONC decompositions for a certain class of

nonnegative polynomials, which in turn yields lower bounds for

unconstrained POPs. We test the algorithm on various randomly

generated polynomials up to a fairly large size, involving 𝑛 ∼ 40

variables and of degree 𝑑 ∼ 60. The numerical results demonstrate

the efficiency of our algorithm.

2 PRELIMINARIES

Let R[x] = R[𝑥1, . . . , 𝑥𝑛] be the ring of real 𝑛-variate polynomials,

and let R+ be the set of positive real numbers. For a finite set A ⊆

N𝑛 , we denote by conv(A ) the convex hull of A . Given a finite set

A ⊆ N𝑛 , we consider polynomials 𝑓 ∈ R[x] supported onA ⊆ N𝑛 ,

i.e., 𝑓 is of the form 𝑓 (x) =
∑

𝜶 ∈A 𝑐𝜶 x
𝜶 with 𝑐𝜶 ∈ R, x𝜶 =

𝑥
𝛼1
1 · · · 𝑥

𝛼𝑛
𝑛 . The support of 𝑓 is supp(𝑓 ) := {𝜶 ∈ A | 𝑐𝜶 ≠ 0} and

the Newton polytope of 𝑓 is defined as New(𝑓 ) := conv(supp(𝑓 )).

For a polytope 𝑃 , we use𝑉 (𝑃) to denote the vertex set of 𝑃 and use

𝑃◦ to denote the interior of 𝑃 . For a set 𝐴, we use #𝐴 to denote the

cardinality of𝐴. A polynomial 𝑓 ∈ R[x] which is nonnegative over

R𝑛 is called a nonnegative polynomial, or a positive semi-definite

(PSD) polynomial. The following definition of circuit polynomials

was proposed by Iliman and De Wolff in [10].

Definition 2.1. A polynomial 𝑓 ∈ R[x] is called a circuit polyno-

mial if it is of the form 𝑓 (x) =
∑

𝜶 ∈A 𝑐𝜶 x
𝜶 − 𝑑x𝜷 and satisfies

the following conditions: (i) A ⊆ (2N)𝑛 comprises the vertices of

a simplex, (ii) 𝑐𝜶 > 0 for each 𝜶 ∈ A , (iii) 𝜷 ∈ conv(A )◦ ∩ N𝑛 .

If 𝑓 =
∑

𝜶 ∈A 𝑐𝜶 x
𝜶 − 𝑑x𝜷 is a circuit polynomial, then from

the definition we can uniquely write 𝜷 =
∑

𝜶 ∈A 𝜆𝜶𝜶 with 𝜆𝜶 >

0 and
∑

𝜶 ∈A 𝜆𝜶 = 1. We define the corresponding circuit num-

ber as Θ𝑓 :=
∏

𝜶 ∈A (𝑐𝜶 /𝜆𝜶 )
𝜆𝜶 . The nonnegativity of the circuit

polynomial 𝑓 is decided by its circuit number alone, that is, 𝑓 is

nonnegative if and only if either 𝜷 ∉ (2N)𝑛 and |𝑑 | ≤ Θ𝑓 , or

𝜷 ∈ (2N)𝑛 and 𝑑 ≤ Θ𝑓 ([10, Theorem 3.8]). To provide a concise

narrative, we refer to a nonnegative circuit polynomial by a non-

negative circuit and also view a monomial square as a nonnegative

circuit. An explicit representation of a polynomial being a sum of

nonnegative circuits, or SONC for short, provides a certificate for

its nonnegativity. Such a certificate is called a SONC decomposition.

For simplicity, we denote the set of SONC polynomials by SONC.

For a polynomial 𝑓 ∈ R[x], let Λ(𝑓 ) := {𝜶 ∈ supp(𝑓 ) | 𝜶 ∈

(2N)𝑛 and 𝑐𝜶 > 0} and Γ(𝑓 ) := supp(𝑓 )\Λ(𝑓 ). Then we can write

𝑓 as 𝑓 =
∑

𝜶 ∈Λ(𝑓 ) 𝑐𝜶 x
𝜶 −

∑
𝜷 ∈Γ (𝑓 ) 𝑑𝜷x

𝜷 . For each 𝜷 ∈ Γ(𝑓 ), let

F (𝜷) := {Δ | Δ is a simplex, 𝜷 ∈ Δ
◦,𝑉 (Δ) ⊆ Λ(𝑓 )}. (1)

By [27, Theorem 5.5], if 𝑓 ∈ SONC, then it has a decomposition

𝑓 =

∑

𝜷 ∈Γ (𝑓 )

∑

Δ∈F (𝜷)

𝑓𝜷Δ +
∑

𝜶 ∈ ˜A

𝑐𝜶 x
𝜶 , (2)

where 𝑓𝜷Δ is a nonnegative circuit supported on 𝑉 (Δ) ∪ {𝜷} for

each Δ and ˜A = {𝜶 ∈ Λ(𝑓 ) | 𝜶 ∉ ∪𝜷 ∈Γ (𝑓 ) ∪Δ∈F (𝜷) 𝑉 (Δ)}.

3 SONC AND SUMS OF BINOMIAL SQUARES

In this section, we give a characterization of SONC polynomials in

terms of sums of binomial squares with rational exponents.

3.1 Rational mediated sets

A lattice point 𝜶 ∈ N𝑛 is even if it is in (2N)𝑛 . For a subset𝑀 ⊆ N𝑛 ,

define 𝐴(𝑀) := { 12 (𝒗 +𝒘) | 𝒗 ≠ 𝒘, 𝒗,𝒘 ∈ 𝑀 ∩ (2N)𝑛} as the set of

averages of distinct even points in𝑀 . A subset A ⊆ (2N)𝑛 is called

a trellis if A comprises the vertices of a simplex. For a trellis A ,

we call𝑀 an A -mediated set if A ⊆ 𝑀 ⊆ 𝐴(𝑀) ∪ A ([9, 23, 24]).

Theorem 3.1. Let 𝑓 =
∑

𝜶 ∈A 𝑐𝜶 x
𝜶 −𝑑x𝜷 ∈ R[x] with 𝑑 ≠ 0 be

a nonnegative circuit. Then 𝑓 is a sum of binomial squares iff there

exists an A -mediated set containing 𝜷 . Moreover, suppose that 𝜷

belongs to an A -mediated set𝑀 and for each 𝒖 ∈ 𝑀\A , let us write

𝒖 =
1
2 (𝒗𝒖 +𝒘𝒖 ) for some 𝒗𝒖 ≠ 𝒘𝒖 ∈ 𝑀 ∩ (2N)𝑛 . Then one has the

decomposition 𝑓 =
∑
𝒖∈𝑀\A (𝑎𝒖x

1
2 𝒗𝒖 −𝑏𝒖x

1
2𝒘𝒖 )2, with 𝑎𝒖 , 𝑏𝒖 ∈ R.

Proof. It follows from Theorem 5.2 in [10]. □

By Theorem 3.1, if we want to represent a nonnegative circuit

polynomial as a sum of binomial squares, we need to first decide if

there exists an A -mediated set containing a given lattice point and

then to compute one if there exists. However, there are obstacles for

each of these two steps: (1) there may not exist such anA -mediated

set containing a given lattice point; (2) even if such a set exists, there

is no efficient algorithm to compute it. In order to overcome these

two difficulties, we introduce the concept of A -rational mediated

sets as a replacement of A -mediated sets by admitting rational

numbers in coordinates.

Concretely, for a subset𝑀 ⊆ Q𝑛 , let us define 𝐴(𝑀) := { 12 (𝒗 +

𝒘) | 𝒗 ≠ 𝒘, 𝒗,𝒘 ∈ 𝑀} as the set of averages of distinct rational

points in 𝑀 . Let us assume that A ⊆ Q𝑛 comprises the vertices

of a simplex. We say that𝑀 is an A -rational mediated set if A ⊆

𝑀 ⊆ 𝐴(𝑀) ∪A . We shall see that for a trellis A and a lattice point

𝜷 ∈ conv(A )◦, an A -rational mediated set containing 𝜷 always

exists and moreover, there is an effective algorithm to compute it.

First, let us consider the one dimensional case. For a sequence

of integer numbers 𝐴 = {𝑠, 𝑞1, . . . , 𝑞𝑚, 𝑝} (arranged from small to

large), if every 𝑞𝑖 is an average of two distinct numbers in 𝐴, then

we say 𝐴 is an (𝑠, 𝑝)-mediated sequence. Note that the property

of (𝑠, 𝑝)-mediated sequences is preserved under translations, that
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is, there is a one-to-one correspondence between (𝑠, 𝑝)-mediated

sequences and (𝑠 + 𝑟, 𝑝 + 𝑟 )-mediated sequences for any integer

number 𝑟 . So it suffices to consider the case of 𝑠 = 0.

For a fixed 𝑝 and an integer 0 < 𝑞 < 𝑝 , aminimal (0, 𝑝)-mediated

sequence containing 𝑞 is a (0, 𝑝)-mediated sequence containing 𝑞

with the least number of elements. Denote the number of elements

in a minimal (0, 𝑝)-mediated sequence containing 𝑞 by 𝑁 (
𝑞
𝑝 ). One

can then easily show that 𝑁 ( 1𝑝 ) =
⌈
log2 (𝑝)

⌉
+ 2 by induction on 𝑝 .

We conjecture that this formula holds for general 𝑞, i.e.,

Conjecture 3.2. If gcd(𝑝, 𝑞) = 1, then 𝑁 (
𝑞
𝑝 ) =

⌈
log2 (𝑝)

⌉
+ 2.

Generally we do not know how to compute a minimal (0, 𝑝)-

mediated sequence containing a given 𝑞. However, we have an

algorithm to compute an approximately minimal (0, 𝑝)-mediated

sequence containing a given 𝑞 as the following lemma shows.

Lemma 3.3. For 0 < 𝑞 < 𝑝 ∈ N, there exists a (0, 𝑝)-mediated

sequence containing 𝑞 with the cardinality less than 1
2 (log2 (𝑝) +

3
2 )

2.

Proof. We can assume gcd(𝑝, 𝑞) = 1 (otherwise one can con-

sider 𝑝/gcd(𝑝, 𝑞), 𝑞/gcd(𝑝, 𝑞) instead). Let us do induction on 𝑝 .

Assume that for any 𝑝 ′, 𝑞′ ∈ N, 0 < 𝑞′ < 𝑝 ′ < 𝑝 , there exists a

(0, 𝑝 ′)-mediated sequence containing 𝑞′ with the number of ele-

ments less than 1
2 (log2 (𝑝

′) + 3
2 )

2.

Case 1: Suppose that 𝑝 is an even number. If 𝑞 =
𝑝
2 , then by

gcd(𝑝, 𝑞) = 1, we have 𝑞 = 1 and 𝐴 = {0, 1, 2} is a (0, 𝑝)-mediated

sequence containing 𝑞. Otherwise, we have either 0 < 𝑞 <
𝑝
2 or

𝑝
2 < 𝑞 < 𝑝 . For 0 < 𝑞 <

𝑝
2 , by the induction hypothesis, there exists

a (0,
𝑝
2 )-mediated sequence 𝐴′ containing 𝑞. For

𝑝
2 < 𝑞 < 𝑝 , since

the property of mediated sequences is preserved under translations,

one can first subtract
𝑝
2 and obtain a (0,

𝑝
2 )-mediated sequence

containing 𝑞 −
𝑝
2 by the induction hypothesis. Then by adding

𝑝
2 ,

one obtains a (
𝑝
2 , 𝑝)-mediated sequence 𝐴′ containing 𝑞. It follows

that 𝐴 = 𝐴′ ∪ {𝑝} or 𝐴 = {0} ∪ 𝐴′ is a (0, 𝑝)-mediated sequence

containing 𝑞.

0 𝑞
𝑝
2 (𝑞) 𝑝

Moreover, we have

#𝐴 = 1 + #𝐴′
< 1 +

1

2
(log2 (

𝑝

2
) +

3

2
)2 <

1

2
(log2 (𝑝) +

3

2
)2 .

Case 2: Suppose that 𝑝 is an odd number. Without loss of gener-

ality, assume that 𝑞 is an even number (otherwise one can consider

𝑝−𝑞 instead and then obtain a (0, 𝑝)-mediated sequence containing

𝑞 through the map 𝑥 ↦→ 𝑝 − 𝑥 which clearly preserves the property

of mediated sequences).

Let 𝑞 = 2𝑘𝑟 for some 𝑘, 𝑟 ∈ N\{0} and 2 ∤ 𝑟 . If 𝑞 = 𝑝 − 𝑟 ,

then 𝑞 =
𝑞−𝑟+𝑝

2 . Since gcd(𝑝, 𝑞) = 1, we have 𝑟 = 1. Let 𝐴 =

{0, 12𝑞,
3
4𝑞, . . . , (1 −

1
2𝑘
)𝑞, 𝑞, 𝑝}. For 1 ≤ 𝑖 ≤ 𝑘 , we have (1 − 1

2𝑖
)𝑞 =

1
2 (1 −

1
2𝑖−1

)𝑞 + 1
2𝑞. Therefore, 𝐴 is a (0, 𝑝)-mediated sequence con-

taining 𝑞.

0
1
2𝑞 · · ·

3
4𝑞

(1 − 1
2𝑘

)𝑞

𝑞 − 𝑟

𝑞 𝑝

#𝐴 = 𝑘 + 3 <

1

2
(log2 (2

𝑘 + 1) +
3

2
)2 =

1

2
(log2 (𝑝) +

3

2
)2 .

If 𝑞 < 𝑝 − 𝑟 , then 𝑞 lies on the line segment between 𝑞 − 𝑟

and
𝑞−𝑟+𝑝

2 . Since
𝑞−𝑟+𝑝

2 − (𝑞 − 𝑟 ) =
𝑝+𝑟−𝑞

2 < 𝑝 , then by the

induction hypothesis, there exists a (𝑞 − 𝑟,
𝑞−𝑟+𝑝

2 )-mediated se-

quence 𝐴′ containing 𝑞 (using translations). It follows that 𝐴 =

{0, 12𝑞,
3
4𝑞, . . . , (1 − 1

2𝑘−1
)𝑞, 𝑝} ∪ 𝐴′ is a (0, 𝑝)-mediated sequence

containing 𝑞.

0
1
2𝑞 · · ·

3
4𝑞

(1 − 1
2𝑘

)𝑞

𝑞 − 𝑟

𝑞
𝑞−𝑟+𝑝

2 𝑝

#𝐴 = 𝑘 + 1 + #𝐴′
< log2 (

𝑞

𝑟
) + 1 +

1

2
(log2 (

𝑝 + 𝑟 − 𝑞

2
) +

3

2
)2

< log2 (𝑝) + 1 +
1

2
(log2 (

𝑝

2
) +

3

2
)2

=
1

2
(log2 (𝑝) +

3

2
)2 .

If 𝑞 > 𝑝 − 𝑟 , then 𝑞 lies on the line segment between
𝑞−𝑟+𝑝

2 and

𝑝 . Since 𝑝 −
𝑞−𝑟+𝑝

2 =
𝑝+𝑟−𝑞

2 < 𝑝 , then by the induction hypothesis,

there exists a (
𝑞−𝑟+𝑝

2 , 𝑝)-mediated sequence 𝐴′ containing 𝑞 (using

translations). It follows that the set𝐴 = {0, 12𝑞,
3
4𝑞, . . . , (1−

1
2𝑘
)𝑞} ∪

𝐴′ is a (0, 𝑝)-mediated sequence containing 𝑞.

0
1
2𝑞 · · ·

3
4𝑞

(1 − 1
2𝑘

)𝑞

𝑞 − 𝑟

𝑞−𝑟+𝑝
2 𝑞 𝑝

As previously, we have #𝐴 = 𝑘 + 1 + #𝐴′
<

1
2 (log2 (𝑝) +

3
2 )

2. □

Lemma 3.4. Suppose that 𝜶 1 and 𝜶 2 are two rational points, and

𝜷 is any rational point on the line segment between 𝜶 1 and 𝜶 2.

Then there exists an {𝜶 1,𝜶 2}-rational mediated set 𝑀 containing

𝜷 . Furthermore, if the denominators of coordinates of 𝜶 1,𝜶 2, 𝜷 are

odd numbers, and the numerators of coordinates of 𝜶 1,𝜶 2 are even

numbers, then we can ensure that the denominators of coordinates of

points in 𝑀 are odd numbers and the numerators of coordinates of

points in𝑀\{𝜷} are even numbers.

Proof. Suppose 𝜷 = (1 −
𝑞
𝑝 )𝜶 1 +

𝑞
𝑝 𝜶 2, 𝑝, 𝑞 ∈ N, 0 < 𝑞 <

𝑝 ,gcd(𝑝, 𝑞) = 1. We then construct a one-to-one correspondence

between the points on the one-dimensional number axis and the

points on the line across 𝜶 1 and 𝜶 2 via the map: 𝑠 ↦→ (1 − 𝑠
𝑝 )𝜶 1 +

𝑠
𝑝 𝜶 2, such that 𝜶 1 corresponds to the origin, 𝜶 2 corresponds to

𝑝 and 𝜷 corresponds to 𝑞. Then it is clear that a (0, 𝑝)-mediated

sequence containing 𝑞 corresponds to a {𝜶 1,𝜶 2}-rational mediated

set containing 𝜷 . Hence by Lemma 3.3, there exists a {𝜶 1,𝜶 2}-

rational mediated set𝑀 containing 𝜷 with the number of elements

less than 1
2 (log2 (𝑝) +

3
2 )

2. Moreover, we can see that if 𝜶 1,𝜶 2, 𝜷

are lattice points, then the elements in𝑀 are also lattice points.

If the denominators of coordinates of 𝜶 1,𝜶 2, 𝜷 are odd numbers,

and the numerators of coordinates of 𝜶 1,𝜶 2 are even numbers, as-

sume that the least common multiple of denominators appearing in

the coordinates of 𝜶 1,𝜶 2, 𝜷 is 𝑟 and then remove the denominators

by multiplying the coordinates of 𝜶 1,𝜶 2, 𝜷 by 𝑟 such that 𝑟𝜶 1, 𝑟𝜶 2

are even lattice points. If 𝑟𝜷 is even, let 𝑀 ′ be the { 𝑟2𝜶 1,
𝑟
2𝜶 2}-

rational mediated set containing 𝑟
2𝜷 obtained as above (the ele-

ments in 𝑀 ′ are lattice points). Then 𝑀 =
2
𝑟𝑀

′ := { 2𝑟 𝒖 | 𝒖 ∈ 𝑀 ′}
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is an {𝜶 1,𝜶 2}-rational mediated set containing 𝜷 such that the de-

nominators of coordinates of points in𝑀 are odd numbers and the

numerators of coordinates of points in𝑀\{𝜷} are even numbers.

If 𝑟𝜷 is not even, assume without loss of generality that 𝜷 lies on

the line segment between 𝜶 1 and
𝜶 1+𝜶 2

2 . Let 𝜷 ′
= 2𝜷−𝜶 1 with 𝑟𝜷

′

an even lattice point. Let𝑀 ′ be the { 𝑟2𝜶 1,
𝑟
2𝜶 2}-rational mediated

set containing 𝑟
2𝜷

′ obtained as above (note that the elements in𝑀 ′

are lattice points). Then𝑀 =
2
𝑟𝑀

′∪{𝜷} is an {𝜶 1,𝜶 2}-rational me-

diated set containing 𝜷 such that the denominators of coordinates

of points in𝑀 are odd numbers and the numerators of coordinates

of points in𝑀\{𝜷} are even numbers as desired. □

Lemma 3.5. For a trellis A = {𝜶 1, . . . ,𝜶𝑚} and a lattice point

𝜷 ∈ conv(A )◦, there exists an A -rational mediated set𝑀A 𝜷 con-

taining 𝜷 such that the denominators of coordinates of points in

𝑀A 𝜷 are odd numbers and the numerators of coordinates of points

in𝑀A 𝜷\{𝜷} are even numbers.

Proof. Suppose 𝜷 =
∑𝑚
𝑖=1

𝑞𝑖
𝑝 𝜶 𝑖 , where 𝑝 =

∑𝑚
𝑖=1 𝑞𝑖 , 𝑝, 𝑞𝑖 ∈

N\{0}, (𝑝, 𝑞1, . . . , 𝑞𝑚) = 1. If 𝑝 is an even number, then because

(𝑝, 𝑞1, . . . , 𝑞𝑚) = 1, there must exist an odd number among the 𝑞𝑖 ’s.

Without loss of generality assume 𝑞1 is an odd number. If 𝑝 is an

odd number and there exists an even number among the 𝑞𝑖 ’s, then

without loss of generality assume 𝑞1 is an even number. In any of

these two cases, we have

𝜷 =
𝑞1

𝑝
𝜶 1 +

𝑝 − 𝑞1

𝑝
(

𝑞2

𝑝 − 𝑞1
𝜶 2 + · · · +

𝑞𝑚

𝑝 − 𝑞1
𝜶𝑚).

Let 𝜷1 =
𝑞2

𝑝−𝑞1
𝜶 2 + · · · +

𝑞𝑚
𝑝−𝑞1

𝜶𝑚 . Then 𝜷 =
𝑞1
𝑝 𝜶 1 +

𝑝−𝑞1
𝑝 𝜷1.

If 𝑝 is an odd number and all 𝑞𝑖 ’s are odd numbers, then we have

𝜷 =
𝑞1

𝑞1 + 𝑞2
(
𝑞1 + 𝑞2

𝑝
𝜶 1 +

𝑞3

𝑝
𝜶 3 + · · · +

𝑞𝑚

𝑝
𝜶𝑚)

+
𝑞2

𝑞1 + 𝑞2
(
𝑞1 + 𝑞2

𝑝
𝜶 2 +

𝑞3

𝑝
𝜶 3 + · · · +

𝑞𝑚

𝑝
𝜶𝑚).

Let 𝜷1 =
𝑞1+𝑞2
𝑝 𝜶 1+

𝑞3
𝑝 𝜶 3+· · ·+

𝑞𝑚
𝑝 𝜶𝑚 and 𝜷2 =

𝑞1+𝑞2
𝑝 𝜶 2+

𝑞3
𝑝 𝜶 3+

· · · +
𝑞𝑚
𝑝 𝜶𝑚 . Then 𝜷 =

𝑞1
𝑞1+𝑞2

𝜷1 +
𝑞2

𝑞1+𝑞2
𝜷2.

Apply the same procedure for 𝜷1 (and 𝜷2), and continue itera-

tively. Eventually we obtain a set of points {𝜷𝑖 }
𝑙
𝑖=1 such that for

each 𝑖 , 𝜷𝑖 = 𝜆𝑖𝜷 𝑗 + 𝜇𝑖𝜷𝑘 or 𝜷𝑖 = 𝜆𝑖𝜷 𝑗 + 𝜇𝑖𝜶𝑘 or 𝜷𝑖 = 𝜆𝑖𝜶 𝑗 + 𝜇𝑖𝜶𝑘 ,

where 𝜆𝑖 + 𝜇𝑖 = 1, 𝜆𝑖 , 𝜇𝑖 > 0. We claim the denominators of coor-

dinates of 𝜷𝑖 are odd numbers, and the numerators of coordinates

of 𝜷𝑖 are even numbers. This is because for each 𝜷𝑖 , we have the

expression 𝜷𝑖 =
∑

𝑗
𝑠 𝑗
𝑟 𝜶 𝑗 , where 𝑟 is an odd number and all 𝜶 𝑗 ’s

are even lattice points. For 𝜷𝑖 = 𝜆𝜷 𝑗 + 𝜇𝜷𝑘 (or 𝜷𝑖 = 𝜆𝜷 𝑗 + 𝜇𝜶𝑘 ,

𝜷𝑖 = 𝜆𝜶 𝑗 + 𝜇𝜶𝑘 respectively), let𝑀𝑖 be the {𝜷 𝑗 , 𝜷𝑘 }- (or {𝜷 𝑗 ,𝜶𝑘 }-

, {𝜶 𝑗 ,𝜶𝑘 }- respectively) rational mediated set containing 𝜷𝑖 ob-

tained by Lemma 3.4 such that the denominators of coordinates of

points in𝑀𝑖 are odd numbers and the numerators of coordinates

of points in𝑀𝑖\{𝜷} are even numbers for 𝑖 = 0, . . . , 𝑙 (set 𝜷0 = 𝜷 ).

Let𝑀A 𝜷 = ∪𝑙𝑖=0𝑀𝑖 . Then𝑀A 𝜷 is clearly an A -rational mediated

set containing 𝜷 with the desired property. □

3.2 Decomposing SONC with binomial squares

For 𝑟 ∈ N and 𝑓 (x) ∈ R[x], let 𝑓 (x𝑟 ) := 𝑓 (𝑥𝑟1 , . . . , 𝑥
𝑟
𝑛). For any

odd 𝑟 ∈ N, 𝑓 (x) =
∑

𝜶 ∈A 𝑐𝜶 x
𝜶 − 𝑑x𝜷 is a nonnegative circuit iff

𝑓 (x𝑟 ) =
∑

𝜶 ∈A 𝑐𝜶 x
𝑟𝜶 − 𝑑x𝑟𝜷 is a nonnegative circuit.

Theorem 3.6. Let 𝑓 =
∑

𝜶 ∈A 𝑐𝜶 x
𝜶 −𝑑x𝜷 ∈ R[x] with 𝑑 ≠ 0 be

a circuit polynomial. Assume that𝑀A 𝜷 is the A -rational mediated

set containing 𝜷 provided by Lemma 3.5. and for each 𝒖 ∈ 𝑀A 𝜷\A ,

let 𝒖 =
1
2 (𝒗𝒖 +𝒘𝒖 ), 𝒗𝒖 ≠ 𝒘𝒖 ∈ 𝑀A 𝜷 . Then 𝑓 is nonnegative iff 𝑓 can

be written as 𝑓 =
∑
𝒖∈𝑀A𝜷 \A

(𝑎𝒖x
1
2 𝒗𝒖 − 𝑏𝒖x

1
2𝒘𝒖 )2, 𝑎𝒖 , 𝑏𝒖 ∈ R.

Proof. Assume that the least common multiple of denomina-

tors appearing in the coordinates of points in 𝑀A 𝜷 is 𝑟 , which

is odd. Then 𝑓 (x) is nonnegative if and only if 𝑓 (x𝑟 ) is nonneg-

ative. Multiply all coordinates of points in 𝑀A 𝜷 by 𝑟 to remove

the denominators, and the obtained 𝑟𝑀A 𝜷 := {𝑟𝒖 | 𝒖 ∈ 𝑀A 𝜷 } is

an 𝑟A -mediated set containing 𝑟𝜷 . Hence by Theorem 3.1, 𝑓 (x𝑟 )

is nonnegative if and only if 𝑓 (x𝑟 ) can be written as 𝑓 (x𝑟 ) =∑
𝒖∈𝑀A𝜷 \A

(𝑎𝒖x
𝑟
2 𝒗𝒖 −𝑏𝒖x

𝑟
2𝒘𝒖 )2, 𝑎𝒖 , 𝑏𝒖 ∈ R, which is equivalent

to 𝑓 (x) =
∑
𝒖∈𝑀A𝜷 \A

(𝑎𝒖x
1
2 𝒗𝒖 − 𝑏𝒖x

1
2𝒘𝒖 )2. □

Example 3.7. Let 𝑓 = 𝑥4𝑦2 + 𝑥2𝑦4 + 1 − 3𝑥2𝑦2 and A = {𝜶 1 =

(0, 0),𝜶 2 = (4, 2),𝜶 3 = (2, 4)}, 𝜷 = (2, 2). Let 𝜷1 =
1
3𝜶 1 +

2
3𝜶 2 and

𝜷2 =
1
3𝜶 1 +

2
3𝜶 3 such that 𝜷 =

1
2𝜷1 +

1
2𝜷2. Let 𝜷3 =

2
3𝜶 1 +

1
3𝜶 2

and 𝜷4 =
2
3𝜶 1 +

1
3𝜶 3. Then 𝑀 = {𝜶 1,𝜶 2,𝜶 3, 𝜷, 𝜷1, 𝜷2, 𝜷3, 𝜷4} is

an A -rational mediated set containing 𝜷 .

(0, 0)

𝜶 1

(2, 4)𝜶 3

(4, 2)

𝜶 2

(2, 2)

𝜷

( 43 ,
8
3 )

𝜷2

( 83 ,
4
3 )

𝜷1

( 23 ,
4
3 )

𝜷4
( 43 ,

2
3 )

𝜷3

By Theorem 3.6, one has 𝑓 = 𝑥4𝑦2+𝑥2𝑦4+1−3𝑥2𝑦2 = (𝑎1𝑥
2
3𝑦

4
3 −

𝑏1𝑥
4
3𝑦

2
3 )2+(𝑎2𝑥𝑦

2−𝑏2𝑥
1
3𝑦

2
3 )2+(𝑎3𝑥

2
3𝑦

4
3−𝑏3)

2+(𝑎4𝑥
2𝑦−𝑏4𝑥

2
3𝑦

1
3 )2+

(𝑎5𝑥
4
3𝑦

2
3 − 𝑏5)

2. Comparing coefficients yields 𝑓 =
3
2 (𝑥

2
3𝑦

4
3 −

𝑥
4
3𝑦

2
3 )2+(𝑥𝑦2−𝑥

1
3𝑦

2
3 )2+ 1

2 (𝑥
2
3𝑦

4
3 −1)2+(𝑥2𝑦−𝑥

2
3𝑦

1
3 )2+ 1

2 (𝑥
4
3𝑦

2
3 −

1)2, a sum of five binomial squares with rational exponents.

Lemma 3.8. Let 𝑓 (x) ∈ R[x]. For an odd number 𝑟 , 𝑓 (x) ∈ SONC

if and only if 𝑓 (x𝑟 ) ∈ SONC.

Proof. It comes from the fact that 𝑓 (x) is a nonnegative circuit

iff 𝑓 (x𝑟 ) is a nonnegative circuit for an odd number 𝑟 . □

Theorem 3.9. Let 𝑓 =
∑

𝜶 ∈Λ(𝑓 ) 𝑐𝜶 x
𝜶 −

∑
𝜷 ∈Γ (𝑓 ) 𝑑𝜷x

𝜷 ∈ R[x].

Let F (𝜷) be as in (1). For every 𝜷 ∈ Γ(𝑓 ) and every Δ ∈ F (𝜷), let

𝑀𝜷Δ be the 𝑉 (Δ)-rational mediated set containing 𝜷 provided by

Lemma 3.5. Let𝑀 = ∪𝜷 ∈Γ (𝑓 ) ∪Δ∈F (𝜷) 𝑀𝜷Δ. For each 𝒖 ∈ 𝑀\Λ(𝑓 ),

let 𝒖 =
1
2 (𝒗𝒖 + 𝒘𝒖 ), 𝒗𝒖 ≠ 𝒘𝒖 ∈ 𝑀 . Let ˜A = {𝜶 ∈ Λ(𝑓 ) | 𝜶 ∉

∪𝜷 ∈Γ (𝑓 ) ∪Δ∈F (𝜷) 𝑉 (Δ)}. Then 𝑓 ∈ SONC iff 𝑓 can be written as

𝑓 =
∑
𝒖∈𝑀\Λ(𝑓 ) (𝑎𝒖x

1
2 𝒗𝒖 − 𝑏𝒖x

1
2𝒘𝒖 )2 +

∑
𝜶 ∈ ˜A

𝑐𝜶 x
𝜶 , 𝑎𝒖 , 𝑏𝒖 ∈ R.

Proof. Suppose 𝑓 ∈ SONC. By Theorem 5.5 in [27], we can

write 𝑓 as 𝑓 =
∑

𝜷 ∈Γ (𝑓 )
∑

Δ∈F (𝜷) 𝑓𝜷Δ +
∑

𝜶 ∈ ˜A
𝑐𝜶 x

𝜶 such that ev-

ery 𝑓𝜷Δ =
∑

𝜶 ∈𝑉 (Δ) 𝑐𝜷Δ𝜶 x
𝜶 −𝑑𝜷Δx

𝜷 is a nonnegative circuit poly-

nomial. We have 𝑓𝜷Δ =
∑
𝒖∈𝑀A𝜷 \A

(𝑎𝒖x
1
2 𝒗𝒖 −𝑏𝒖x

1
2𝒘𝒖 )2, 𝑎𝒖 , 𝑏𝒖 ∈

R by Theorem 3.6. Thus 𝑓 =
∑
𝒖∈𝑀\Λ(𝑓 ) (𝑎𝒖x

1
2 𝒗𝒖 − 𝑏𝒖x

1
2𝒘𝒖 )2 +

∑
𝜶 ∈ ˜A

𝑐𝜶 x
𝜶 , 𝑎𝒖 , 𝑏𝒖 ∈ R. Suppose 𝑓 =

∑
𝒖∈𝑀\Λ(𝑓 ) (𝑎𝒖x

1
2 𝒗𝒖 −
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𝑏𝒖x
1
2𝒘𝒖 )2 +

∑
𝜶 ∈ ˜A

𝑐𝜶 x
𝜶 , 𝑎𝒖 , 𝑏𝒖 ∈ R. Assume that the least com-

mon multiple of denominators appearing in the coordinates of

points in𝑀 is 𝑟 , which is odd. Then 𝑓 (x𝑟 ) =
∑
𝒖∈𝑀\Λ(𝑓 ) (𝑎𝒖x

𝑟
2 𝒗𝒖 −

𝑏𝒖x
𝑟
2𝒘𝒖 )2 +

∑
𝜶 ∈ ˜A

𝑐𝜶 x
𝑟𝜶 , 𝑎𝒖 , 𝑏𝒖 ∈ R, which is a SONC since ev-

ery binomial square (and monomial square) is a nonnegative circuit.

Hence by Lemma 3.8, 𝑓 (x) ∈ SONC. □

4 SOC REPRESENTATIONS OF SONC CONES

SOCP plays an important role in convex optimization and can be

handled via very efficient algorithms. If an SOC representation

exists for a given convex cone, then it is possible to design efficient

algorithms for optimization problems over the convex cone. In [8],

Fawzi proved that PSD cones do not admit any SOC representa-

tions in general, which implies that SOS cones do not admit any

SOC representations in general. In this section, we prove that dra-

matically unlike the SOS cones, SONC cones always admit SOC

representations. Let Q𝑘 := Q × · · · × Q be the Cartesian product of

𝑘 copies of an SOC Q. A linear slice of Q𝑘 is an intersection of Q𝑘

with a linear subspace.

Definition 4.1. A convex cone 𝐶 ⊆ R𝑚 has a SOC lift of size

𝑘 (or simply a Q𝑘 -lift) if it can be written as the projection of a

slice of Q𝑘 , that is, there is a subspace 𝐿 of Q𝑘 and a linear map

𝜋 : Q𝑘 → R𝑚 such that 𝐶 = 𝜋 (Q𝑘 ∩ 𝐿).

Definition 4.2. Given sets of lattice points A ⊆ (2N)𝑛 , B1 ⊆

conv(A ) ∩ (2N)𝑛 and B2 ⊆ conv(A ) ∩ (N𝑛\(2N)𝑛) such that

A ∩ B1 = ∅, define the SONC cone supported on A ,B1,B2 as

SONCA ,B1,B2
:={(cA , dB1

, dB2
) ∈ R

|A |
+ × R

|B1 |
+ × R |B2 |

|
∑

𝜶 ∈A

𝑐𝜶 x
𝜶 −

∑

𝜷 ∈B1∪B2

𝑑𝜷x
𝜷 ∈ SONC},

where cA = (𝑐𝜶 )𝜶 ∈A , dB1
= (𝑑𝜷 )𝜷 ∈B1

and dB2
= (𝑑𝜷 )𝜷 ∈B2

. It

is easy to check that SONCA ,B1,B2
is indeed a convex cone.

Let S2+ be the convex cone of 2× 2 positive semidefinite matrices

S2+ :=

{[
𝑎 𝑏

𝑏 𝑐

]
∈ R2×2 |

[
𝑎 𝑏

𝑏 𝑐

]
is positive semidefinite

}
.

Lemma 4.3. S2+ is a 3-dimensional rotated SOC.

Proof. It is immediate from the definition. □

Theorem 4.4. For A ⊆ (2N)𝑛 , B1 ⊆ conv(A ) ∩ (2N)𝑛 and

B2 ⊆ conv(A ) ∩ (N𝑛\(2N)𝑛) such that A ∩ B1 = ∅, the convex

cone SONCA ,B1,B2
has an (S2+)

𝑘 -lift for some 𝑘 ∈ N.

Proof. For every 𝜷 ∈ B1 ∪ B2, let F (𝜷) be as in (1). Then for

every 𝜷 ∈ B1 ∪ B2 and every Δ ∈ F (𝜷), let 𝑀𝜷Δ be the 𝑉 (Δ)-

rational mediated set containing 𝜷 provided by Lemma 3.5. Let

𝑀 = ∪𝜷 ∈B1∪B2
∪Δ∈F (𝜷) 𝑀𝜷Δ. For each 𝒖𝑖 ∈ 𝑀\A , let us write

𝒖𝑖 =
1
2 (𝒗𝑖 +𝒘𝑖 ). Let 𝐵 = ∪𝒖𝑖 ∈𝑀\A { 12𝒗𝑖 ,

1
2𝒘𝑖 }, ˜A = {𝜶 ∈ Λ(𝑓 ) |

𝜶 ∉ ∪𝜷 ∈Γ (𝑓 ) ∪Δ∈F (𝜷) 𝑉 (Δ)} and 𝑘 = #𝑀\A + # ˜A .

Then by Theorem 3.9, a polynomial 𝑓 is in SONCA ,B1,B2
if and

only if 𝑓 can be written as 𝑓 =
∑
𝒖𝑖 ∈𝑀\A (𝑎𝑖x

1
2 𝒗𝑖 − 𝑏𝑖x

1
2𝒘𝑖 )2 +∑

𝜶 ∈ ˜A
𝑐𝜶 x

𝜶 , 𝑎𝑖 , 𝑏𝑖 ∈ R, which is equivalent to the existence of a

symmetric matrix𝑄 =
∑𝑘
𝑖=1𝑄𝑖 such that 𝑓 = (x𝐵)𝑇𝑄x𝐵 with x𝐵 :=

(x𝜷 )𝜷 ∈𝐵 , where 𝑄𝑖 is a symmetric matrix with zeros everywhere

except either at the four positions corresponding to the monomials

x
1
2 𝒗𝑖 , x

1
2𝒘𝑖 or at the position corresponding to a monomial x

1
2𝜶 for

some 𝜶 ∈ ˜A . This leads respectively to either four entries forming

a 2 × 2 positive semidefinite submatrix or one single positive entry.

Let 𝜋 : (S2+)
𝑘 → SONCA ,B1,B2

be the linear map that maps an

element in 𝑄1 × · · · ×𝑄𝑘 to the coefficient vector of 𝑓 which is in

SONCA ,B1,B2
via the equality 𝑓 = (x𝐵)𝑇𝑄x𝐵 with 𝑄 =

∑𝑘
𝑖=1𝑄𝑖 .

So we obtain an (S2+)
𝑘 -lift for SONCA ,B1,B2

.

□

5 SONC OPTIMIZATION VIA SOCP

In this section, we tackle the following unconstrained polynomial

optimization problem via SOCP, based on the representation of

SONC cones derived in the previous section:

(P) : sup{𝜉 : 𝑓 (x) − 𝜉 ≥ 0, x ∈ R𝑛} . (3)

Let us denote by 𝜉∗ the optimal value of (3). Replace the nonneg-

ativity constraint in (3) by the following one to obtain a SONC

relaxation with optimal value 𝜉𝑠𝑜𝑛𝑐 :

(SONC) : sup{𝜉 : 𝑓 (x) − 𝜉 ∈ SONC} . (4)

5.1 Conversion to PN-polynomials

Suppose 𝑓 =
∑

𝜶 ∈Λ(𝑓 ) 𝑐𝜶 x
𝜶 −

∑
𝜷 ∈Γ (𝑓 ) 𝑑𝜷x

𝜷 ∈ R[x]. If 𝑑𝜷 > 0

for all 𝜷 ∈ Γ(𝑓 ), then we call 𝑓 a PN-polynomial. The łPN" in

PN-polynomial is short for łpositive part plus negative part". For

a PN-polynomial 𝑓 (x), it is clear that 𝑓 (x) ≥ 0 for all x ∈ R𝑛 iff

𝑓 (x) ≥ 0 for all x ∈ R𝑛+.

Lemma 5.1. Let 𝑓 (x) ∈ R[x] be a PN-polynomial. Then for any

positive integer 𝑘 , 𝑓 (x) ∈ SONC if and only if 𝑓 (x𝑘 ) ∈ SONC.

Proof. It comes from the fact that a polynomial 𝑓 (x) with ex-

actly one negative term is a nonnegative circuit iff 𝑓 (x𝑘 ) is a non-

negative circuit for any positive integer 𝑘 ∈ N. □

Theorem 5.2. Let 𝑓 =
∑

𝜶 ∈Λ(𝑓 ) 𝑐𝜶 x
𝜶 −

∑
𝜷 ∈Γ (𝑓 ) 𝑑𝜷x

𝜷 ∈ R[x]

be a PN-polynomial. Let F (𝜷) be as in (1). For every 𝜷 ∈ Γ(𝑓 )

and every Δ ∈ F (𝜷), let 𝑀𝜷Δ be a 𝑉 (Δ)-rational mediated set

containing 𝜷 . Let 𝑀 = ∪𝜷 ∈Γ (𝑓 ) ∪Δ∈F (𝜷) 𝑀𝜷Δ and ˜A = {𝜶 ∈

Λ(𝑓 ) | 𝜶 ∉ ∪𝜷 ∈Γ (𝑓 ) ∪Δ∈F (𝜷) 𝑉 (Δ)}. For each 𝒖 ∈ 𝑀\Λ(𝑓 ), let

𝒖 =
1
2 (𝒗 + 𝒘). Then 𝑓 ∈ SONC if and only if 𝑓 can be written as

𝑓 =
∑
𝒖∈𝑀\Λ(𝑓 ) (𝑎𝒖x

1
2 𝒗 − 𝑏𝒖x

1
2𝒘)2 +

∑
𝜶 ∈ ˜A

𝑐𝜶 x
𝜶 , 𝑎𝒖 , 𝑏𝒖 ∈ R.

Proof. It follows easily from Lemma 5.1 and Theorem 3.1. □

The significant difference between Theorem 3.9 and Theorem

5.2 is that to represent a SONC PN-polynomial as a sum of binomial

squares, we do not require the denominators of coordinates of

points in A -rational mediated sets to be odd. By virtue of this

fact, for given trellis A = {𝜶 1, . . . ,𝜶𝑚} and lattice point 𝜷 ∈

conv(A )◦, we can then construct anA -rational mediated set𝑀A 𝜷

containing 𝜷 which is smaller than that the one from Lemma 3.5.

Lemma 5.3. For a trellis A and a lattice point 𝜷 ∈ conv(A )◦,

there is an A -rational mediated set𝑀A 𝜷 containing 𝜷 .
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Proof. Suppose that 𝜷 =
∑𝑚
𝑖=1

𝑞𝑖
𝑝 𝜶 𝑖 , where 𝑝 =

∑𝑚
𝑖=1 𝑞𝑖 , 𝑝, 𝑞𝑖 ∈

N∗, (𝑝, 𝑞1, . . . , 𝑞𝑚) = 1. We can write

𝜷 =
𝑞1

𝑝
𝜶 1 +

𝑝 − 𝑞1

𝑝
(

𝑞2

𝑝 − 𝑞1
𝜶 2 + · · · +

𝑞𝑚

𝑝 − 𝑞1
𝜶𝑚).

Let 𝜷1 =
𝑞2

𝑝−𝑞1
𝜶 2 + · · · +

𝑞𝑚
𝑝−𝑞1

𝜶𝑚 . Then 𝜷 =
𝑞1
𝑝 𝜶 1 +

𝑝−𝑞1
𝑝 𝜷1.

Apply the same procedure for 𝜷1, and continue like this. Eventually

we obtain a set of points {𝜷𝑖 }
𝑚−2
𝑖=0 (set 𝜷0 = 𝜷 ) such that 𝜷𝑖 =

𝜆𝑖𝜶 𝑖+1+𝜇𝑖𝜷𝑖+1, 𝑖 = 0, . . . ,𝑚−3 and 𝜷𝑚−2 = 𝜆𝑚−2𝜶𝑚−1+𝜇𝑚−2𝜶𝑚 ,

where 𝜆𝑖+𝜇𝑖 = 1, 𝜆𝑖 , 𝜇𝑖 > 0, 𝑖 = 0, . . . ,𝑚−2. For 𝜷𝑖 = 𝜆𝑖𝜶 𝑖+1+𝜇𝑖𝜷𝑖+1
(resp. 𝜷𝑚−2 = 𝜆𝑚−2𝜶𝑚−1 + 𝜇𝑚−2𝜶𝑚), let 𝑀𝑖 be the {𝜶 𝑖+1, 𝜷𝑖+1}-

(resp. {𝜶𝑚−1,𝜶𝑚}-) rational mediated set containing 𝜷𝑖 obtained

by Lemma 3.4, 𝑖 = 0, . . . ,𝑚 − 2. Let𝑀A 𝜷 = ∪𝑚−2
𝑖=0 𝑀𝑖 . Then clearly

𝑀A 𝜷 is an A -rational mediated set containing 𝜷 . □

Example 5.4. Let 𝑓 = 𝑥4𝑦2 + 𝑥2𝑦4 + 1 − 3𝑥2𝑦2 be the Motzkin’s

polynomial and A = {𝜶 1 = (4, 2),𝜶 2 = (2, 4),𝜶 3 = (0, 0)}, 𝜷 =

(2, 2). Then 𝜷 =
1
3𝜶 1 +

1
3𝜶 2 +

1
3𝜶 3 =

1
3𝜶 1 +

2
3 (

1
2𝜶 2 +

1
2𝜶 3). Let

𝜷1 =
1
2𝜶 2 +

1
2𝜶 3 such that 𝜷 =

1
3𝜶 1 +

2
3𝜷1. Let 𝜷2 =

2
3𝜶 1 +

1
3𝜷1.

Then it is easy to check that 𝑀 = {𝜶 1,𝜶 2,𝜶 3, 𝜷, 𝜷1, 𝜷2} is an

A -rational mediated set containing 𝜷 .

(0, 0)

𝜶 3

(2, 4)𝜶 2

(4, 2)

𝜶 1

(2, 2)

𝜷

(1, 2)

𝜷1

(3, 2)

𝜷2

By a simple computation, we have 𝑓 = (1−𝑥𝑦2)2+2(𝑥
1
2𝑦−𝑥

3
2𝑦)2+

(𝑥𝑦−𝑥2𝑦)2. Here we represent 𝑓 as a sum of three binomial squares

with rational exponents.

We associate to a polynomial 𝑓 =
∑

𝜶 ∈Λ(𝑓 ) 𝑐𝜶 x
𝜶−

∑
𝜷 ∈Γ (𝑓 ) 𝑑𝜷x

𝜷 ,

the PN-polynomial 𝑓 =
∑

𝜶 ∈Λ(𝑓 ) 𝑐𝜶 x
𝜶 −

∑
𝜷 ∈Γ (𝑓 ) |𝑑𝜷 |x

𝜷 .

Lemma 5.5. Suppose 𝑓 =
∑

𝜶 ∈Λ(𝑓 ) 𝑐𝜶 x
𝜶 −

∑
𝜷 ∈Γ (𝑓 ) 𝑑𝜷x

𝜷 ∈

R[x]. If 𝑓 is nonnegative, then 𝑓 is nonnegative. Moreover, 𝑓 ∈ SONC

if and only if 𝑓 ∈ SONC.

Proof. For any x ∈ R𝑛 , we have

𝑓 (x) =
∑

𝜶 ∈Λ(𝑓 )

𝑐𝜶 x
𝜶 −

∑

𝜷 ∈Γ (𝑓 )

𝑑𝜷x
𝜷

≥
∑

𝜶 ∈Λ(𝑓 )

𝑐𝜶 |x|𝜶 −
∑

𝜷 ∈Γ (𝑓 )

|𝑑𝜷 | |x|
𝜷
= 𝑓 ( |x|),

where |x| = ( |𝑥1 |, . . . , |𝑥𝑛 |). It follows that the nonnegativity of 𝑓

implies the nonnegativity of 𝑓 .

For every 𝜷 ∈ Γ(𝑓 ), let F (𝜷) be as in (1). Let B = {𝜷 ∈

Γ(𝑓 ) | 𝜷 ∉ (2N)𝑛 and 𝑑𝜷 < 0} and ˜A = {𝜶 ∈ Λ(𝑓 ) | 𝜶 ∉

∪𝜷 ∈Γ (𝑓 ) ∪Δ∈F (𝜷) 𝑉 (Δ)}. Assume 𝑓 ∈ SONC. Then we can write

𝑓 =

∑

𝜷 ∈Γ (𝑓 )\B

∑

Δ∈F (𝜷)

(
∑

𝜶 ∈𝑉 (Δ)

𝑐𝜷Δ𝜶 x
𝜶 − 𝑑𝜷Δx

𝜷 )

+
∑

𝜷 ∈B

∑

Δ∈F (𝜷)

(
∑

𝜶 ∈𝑉 (Δ)

𝑐𝜷Δ𝜶 x
𝜶 − 𝑑𝜷Δx

𝜷 ) +
∑

𝜶 ∈ ˜A

𝑐𝜶 x
𝜶

s.t. each
∑

𝜶 ∈𝑉 (Δ) 𝑐𝜷Δ𝜶 x
𝜶 −𝑑𝜷Δx

𝜷 and each
∑

𝜶 ∈𝑉 (Δ) 𝑐𝜷Δ𝜶 x
𝜶 −

𝑑𝜷Δx
𝜷 are nonnegative circuit polynomials. Note that

∑
𝜶 ∈𝑉 (Δ) 𝑐𝜷Δ𝜶

x
𝜶 +𝑑𝜷Δx

𝜷 is also a nonnegative circuit polynomial and
∑

Δ∈Δ(𝜷) 𝑑𝜷Δ
= |𝑑𝜷 | = −𝑑𝜷 for any 𝜷 ∈ B. Hence,

𝑓 =

∑

𝜷 ∈Γ (𝑓 )\B

∑

Δ∈F (𝜷)

(
∑

𝜶 ∈𝑉 (Δ)

𝑐𝜷Δ𝜶 x
𝜶 − 𝑑𝜷Δx

𝜷 )

+
∑

𝜷 ∈B

∑

Δ∈F (𝜷)

(
∑

𝜶 ∈𝑉 (Δ)

𝑐𝜷Δ𝜶 x
𝜶 + 𝑑𝜷Δx

𝜷 ) +
∑

𝜶 ∈ ˜A

𝑐𝜶 x
𝜶 ∈ SONC.

The inverse follows similarly. □

Hence by Lemma 5.5, if we replace the polynomial 𝑓 in (4) by its

associated PN-polynomial 𝑓 , then this does not affect the optimal

value of (4):

(SONC-PN) : sup{𝜉 : 𝑓 (x) − 𝜉 ∈ SONC} . (5)

5.2 Compute a simplex cover

Given a polynomial 𝑓 =
∑

𝜶 ∈Λ(𝑓 ) 𝑐𝜶 x
𝜶 −

∑
𝜷 ∈Γ (𝑓 ) 𝑑𝜷x

𝜷 ∈ R[x],

in order to obtain a SONC decomposition of 𝑓 , we use all simplices

containing 𝜷 for each 𝜷 ∈ Γ(𝑓 ) in Theorem 3.9. In practice, we

do not need that many simplices. A recent study [21] proposes a

systematic method to compute an optimal simplex cover. It would

be worth trying to combine this framework with our SOC charac-

terization for SONC cones to achieve a more accurate algorithm.

Here we rely on a heuristics to compute a set of simplices with

vertices coming from Λ(𝑓 ) and that covers Γ(𝑓 ). For 𝜷 ∈ Γ(𝑓 ) and

𝜶 0 ∈ Λ(𝑓 ), define an auxiliary linear program:

SimSel(𝜷,Λ(𝑓 ),𝜶 0) = Argmax 𝜆𝜶 0

s.t.{
∑

𝜶 ∈Λ(𝑓 )

𝜆𝜶 · 𝜶 = 𝜷,
∑

𝜶 ∈Λ(𝑓 )

𝜆𝜶 = 1, 𝜆𝜶 ≥ 0,∀𝜶 ∈ Λ(𝑓 )}.

Following [25], we can ensure the output of SimSel(𝜷,Λ(𝑓 ),𝜶 0)

corresponds to a trellis which contains 𝜶 0 and covers 𝜷 . The so-

called SimplexCover1 procedure computes such a simplex cover.

Let K be the 3-dimensional rotated SOC, i.e.,

K := {(𝑎, 𝑏, 𝑐) ∈ R3 | 2𝑎𝑏 ≥ 𝑐2, 𝑎 ≥ 0, 𝑏 ≥ 0}. (6)

Suppose 𝑓 =
∑

𝜶 ∈Λ(𝑓 ) 𝑐𝜶 x
𝜶 −

∑
𝜷 ∈Γ (𝑓 ) 𝑑𝜷x

𝜷 ∈ R[x]. By algo-

rithm SimplexCover, we compute a simplex cover {(A𝑘 , 𝜷𝑘 )}
𝑙
𝑘=1

.

For each𝑘 , let𝑀𝑘 be anA𝑘 -rational mediated set containing 𝜷𝑘 and

𝑠𝑘 = #𝑀𝑘\A𝑘 . For each 𝒖𝑘𝑖 ∈ 𝑀𝑘\A𝑘 , let us write 𝒖
𝑘
𝑖 =

1
2 (𝒗

𝑘
𝑖 +𝒘

𝑘
𝑖 ).

Let ˜A = {𝜶 ∈ Λ(𝑓 ) | 𝜶 ∉ ∪𝜷 ∈Γ (𝑓 ) ∪Δ∈F (𝜷) 𝑉 (Δ)}. Then we can

relax (SONC-PN) to an SOCP problem (SONC-SOCP) as follows:




sup 𝜉

s.t. 𝑓 (x) − 𝜉 =
∑𝑙

𝑘=1

∑𝑠𝑘
𝑖=1 (2𝑎

𝑘
𝑖 x

𝒗𝑘𝑖 + 𝑏𝑘𝑖 x
𝒘𝑘
𝑖 − 2𝑐𝑘𝑖 x

𝒖𝑘𝑖 ) +
∑

𝜶 ∈ ˜A
𝑐𝜶 x

𝜶 ,

(𝑎𝑘𝑖 , 𝑏
𝑘
𝑖 , 𝑐

𝑘
𝑖 ) ∈ K, ∀𝑖, 𝑘.

(7)

Let us denote by 𝜉𝑠𝑜𝑐𝑝 the optimal value of (7). Then, we have

𝜉𝑠𝑜𝑐𝑝 ≤ 𝜉𝑠𝑜𝑛𝑐 ≤ 𝜉∗.

Remark 5.6. The quality of obtained SONC lower bounds de-

pends on two successive steps: the relaxation to the corresponding

PN-polynomial (from 𝜉∗ to 𝜉𝑠𝑜𝑛𝑐 ) and the relaxation to a specific

simplex cover (from 𝜉𝑠𝑜𝑛𝑐 to 𝜉𝑠𝑜𝑐𝑝 ). The loss of bound-quality at the

1Algorithm 4 in https://arxiv.org/abs/1906.06179
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second step can be improved by choosing a more optimal simplex cover.

Nevertheless, it may happen that the loss of bound-quality at the first

step is already big, as shown in Example 5.7, which indicates that the

gap between nonnegative polynomials and SONC PN-polynomials

may greatly affect the quality of SONC lower bounds.

Example 5.7. Let 𝑓 = 1 + 𝑥41 + 𝑥42 − 𝑥1𝑥
2
2 − 𝑥21𝑥2 + 5𝑥1𝑥2. Since

Λ(𝑓 ) forms a trellis, the simplex cover for 𝑓 is unique. One ob-

tains 𝜉𝑠𝑜𝑐𝑝 = 𝜉𝑠𝑜𝑛𝑐 ≈ −6.916501 while 𝜉∗ ≈ −2.203372. Hence the

relative optimality gap is near 214%.

6 NUMERICAL EXPERIMENTS

Here, we present numerical results of the proposed algorithms for

unconstrained POPs. Our tool, called SONCSOCP, implements the

simplex cover algorithm as well as a procedure MedSet2 computing

the rational mediated set and computes the optimal value 𝜉𝑠𝑜𝑐𝑝 of

the SOCP (7) with Mosek [3]. All experiments were performed on

an Intel Core i5-8265U@1.60GHz CPU with 8GB RAMmemory and

WINDOWS 10 system. SONCSOCP is available at github:SONCSOCP.

Our benchmarks are issued from the database of randomly gen-

erated polynomials provided by Seidler and de Wolff in [25]. De-

pending on the Newton polytope, these benchmarks are divided

into three classes: the ones with standard simplices, the ones with

general simplices and the ones with arbitrary Newton polytopes.

(We use 𝑛,𝑑, 𝑡, 𝑙 to denote the number of variables, the degree, the

number of terms and the lower bound on the number of inner terms

respectively. See [25] for the details on the construction of these

polynomials). We compare the performance of SONCSOCP with the

ones of POEM, which relies on the ECOS solver to solve geomet-

ric programs (see [25] for more details). To measure the quality

of a given lower bound 𝜉𝑙𝑏 , we rely on the ‘local_min’ function

available in POEM which computes an upper bound 𝜉𝑚𝑖𝑛 on the

minimum of a polynomial. The relative optimality gap is defined by
|𝜉𝑚𝑖𝑛−𝜉𝑙𝑏 |
|𝜉𝑚𝑖𝑛 |

. In the following tables, the column ‘time’ is the running

time in seconds and the column ‘opt’ the optimal value.

Standard simplex. For the standard simplex case, we take 10

polynomials of different types (labeled by 𝑁 ). Running time and

lower bounds obtained with SONCSOCP and POEM are displayed in

Table 1. Note that for polynomials with Λ(·) forming a trellis, the

simplex cover is unique, thus the bounds obtained by SONCSOCP

and POEM are the same theoretically, which is also reflected in Table

1. For each polynomial, the relative optimality gap is less than 1%

and for 8 out of 10 polynomials, it is less than 0.1% (see Figure 2).

𝑁 1 2 3 4 5 6 7 8 9 10
𝑛 10 10 10 20 20 20 30 30 40 40
𝑑 40 50 60 40 50 60 50 60 50 60
𝑡 20 20 20 30 30 30 50 50 100 100

time
SONCSOCP 0.04 0.04 0.04 0.14 0.14 0.13 0.43 0.40 2.23 2.21
POEM 0.26 0.27 0.26 0.43 0.44 0.42 1.78 1.79 2.20 2.25

opt
SONCSOCP 3.52 3.52 3.52 2.64 2.64 2.64 2.94 2.94 4.41 4.41
POEM 3.52 3.52 3.52 2.64 2.64 2.64 2.94 2.94 4.41 4.41

Table 1: Results for the standard simplex case

General simplex. Here, we take 10 polynomials of different

types (labeled by 𝑁 ). Running time and lower bounds obtained

with SONCSOCP and POEM are displayed in Table 2. As before, the

SONC lower bounds obtained by SONCSOCP and POEM are the same.
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Figure 1: Running time for the standard simplex case

2 4 6 8 10

0

5 · 10−2

0.1

𝑁

R
el
at
iv
e
o
p
ti
m
al
it
y
g
ap

(%
)

SONCSOCP

POEM

Figure 2: Relative optimality gap for the standard simplex case

For each polynomial except for the one corresponding to 𝑁 =

7, the relative optimality gap is within 30%, and for 6 out of 10

polynomials, the gap is below 1% (see Figure 4). POEM fails to obtain

a lower bound for the instance 𝑁 = 10 by returning −Inf. Figure

3 shows that, overall, the running times of SONCSOCP and POEM

are close. SONCSOCP is faster than POEM for the instance 𝑁 = 6,

possibly because better performance are obtained when the degree

is relatively low.

𝑁 1 2 3 4 5 6 7 8 9 10
𝑛 10 10 10 10 10 10 10 10 10 10
𝑑 20 30 40 50 60 20 30 40 50 60
𝑡 20 20 20 20 20 30 30 30 30 30

time
SONCSOCP 0.32 0.29 0.36 0.48 0.54 0.56 0.73 0.88 1.04 1.04
POEM 0.28 0.31 0.31 0.31 0.43 0.74 0.75 0.74 0.72 0.76

opt
SONCSOCP 1.18 0.22 0.38 0.90 0.06 4.00 −4.64 1.62 2.95 5.40
POEM 1.18 0.22 0.38 0.90 0.06 4.00 −4.64 1.62 2.95 −Inf

Table 2: Results for the general simplex case
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Figure 3: Running time for the general simplex case

Arbitrary polytope. We take 20 polynomials of different types

(labeled by 𝑁 ). POEM always throws an error łexpected square ma-

trixž. Running time and lower bounds obtained with SONCSOCP are

displayed in Table 3. The relative optimality gap is always within

25% and within 1% for 17 out of 20 polynomials (see Figure 5).

7 CONCLUSIONS

In this paper, we provide a constructive proof that each SONC

cone admits an SOC representation. Based on this, we propose an
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Figure 4: Relative optimality gap for the general simplex case

𝑁 1 2 3 4 5 6 7 8 9 10
𝑛 10 10 10 10 10 10 10 10 10 10
𝑑 20 20 20 30 30 30 40 40 40 50
𝑡 30 100 300 30 100 300 30 100 300 30
𝑙 15 71 231 15 71 231 15 71 231 15

SONCSOCP
time 0.38 1.75 6.86 0.64 3.13 11.3 0.72 4.01 14.6 0.76
opt 0.70 3.32 31.7 3.31 15.3 3.31 0.47 5.42 38.7 1.56

𝑁 11 12 13 14 15 16 17 18 19 20
𝑛 10 10 10 10 10 20 20 20 20 20
𝑑 50 50 60 60 60 30 30 40 40 40
𝑡 100 300 30 100 300 50 100 50 100 200
𝑙 71 231 15 71 231 5 15 5 15 35

SONCSOCP
time 4.41 16.8 1.84 11.2 42.4 3.20 8.84 2.60 10.5 38.7
opt 0.20 7.00 3.31 2.52 23.4 0.70 4.91 4.13 2.81 9.97

Table 3: Results for the arbitrary polytope case
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Figure 5: Relative optimality gap for the arbitrary polytope case

algorithm to compute a lower bound for unconstrained POPs via

SOCP. Numerical experiments demonstrate the efficiency of our

algorithm even when the number of variables and the degree are

fairly large. Even though the complexity of our algorithm depends

on the degree in theory, it turns out that this dependency is rather

mild. For all numerical examples tested in this paper, the running

time is below one minute even for polynomials of degree up to 60.

Since the running time is satisfactory, the main concern of SONC-

based algorithms for sparse polynomial optimization may be the

quality of obtained lower bounds. For many examples tested in

this paper, the relative optimality gap is within 1%. However, it can

happen that the SONC lower bound is not accurate and this can-

not be avoided by choosing an optimal simplex cover. To improve

the quality of such bounds, it is mandatory to find more complex

representations of nonnegative polynomials, which involve SONC

polynomials. We also plan to design a rounding-projection proce-

dure, in the spirit of [22], to obtain exact nonnegativity certificates

for polynomials lying in the interior of the SONC cone. A related

investigation track is the complexity analysis and software imple-

mentation of the resulting hybrid numeric-symbolic scheme, as

well as performance comparisons with concurrent methods based

on semidefinite programming [16] or geometric programming [19].
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