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Abstract— This paper focuses on the computation of the joint
spectral radius (JSR), when the involved matrices are sparse.
We provide a sparse variant of the procedure proposed by
Parrilo and Jadbabaie to compute upper bounds of the JSR by
means of sum-of-squares (SOS) programming. Our resulting
iterative algorithm, called SparseJSR, is based on the term
sparsity SOS (TSSOS) framework developed by Wang, Magron
and Lasserre, which yields SOS decompositions of polynomi-
als with arbitrary sparse supports. SparseJSR exploits the
sparsity of the input matrices to significantly reduce the com-
putational burden associated with the JSR computation. Our
algorithmic framework is then successfully applied to compute
upper bounds for JSR on randomly generated benchmarks as
well as on problems arising from stability proofs of controllers,
in relation with possible hardware and software faults.

I. INTRODUCTION

Given a set of matrices A = {A1, . . . , Am} ⊆ Rn×n, the
joint spectral radius (JSR) of A is defined by

ρ(A) := lim
k→∞

max
σ∈{1,...,m}k

||Aσ1Aσ2 · · ·Aσk
|| 1k , (1)

which characterizes the maximal asymptotic growth rate of
products of matrices from A. Note that the value of ρ(A)
is independent of the choice of the norm used in (1). When
A contains a single matrix, the JSR coincides with the usual
spectral radius. Hence JSR can be viewed as a generalization
of the usual spectral radius to the case of multiple matrices.

The concept of JSR was first introduced by Rota and
Strang in [22] and since then has found applications in many
areas such as the stability of switched linear dynamical sys-
tems, the continuity of wavelet functions, combinatorics and
language theory, the capacity of some codes, the trackability
of graphs. We refer the readers to [14] for a survey of the
theory and applications of JSR.

Inspired by the various applications, there has been a lot of
work on the computation of JSR; see e.g. [2], [5], [11], [12],
[19], [20] to name a few. Unfortunately, it turns out that
the exact computation and even the approximation of JSR
are notoriously difficult [23]. It was proved in [6] that the
problem of deciding whether ρ(A) ≤ 1 is undecidable even
for A consisting of two matrices. Therefore, various methods
focus on computing lower bounds and upper bounds for JSR
[2], [5], [11], [19].

Parrilo and Jadbabaie proposed in [19] a sum-of-squares
(SOS) approach which makes use of semidefinite pro-
gramming (SDP) to compute a sequence of upper bounds
{ρSOS,2d(A)}d≥1 for ρ(A). They proved that the sequence
{ρSOS,2d(A)}d≥1 converges to ρ(A) when d increases. In
practice, mostly often even small d (e.g., d = 1, 2) can
provide upper bounds of good quality for ρ(A). Once the

upper bound coincides with a lower bound provided by other
methods, then we obtain the exact value of the JSR. However,
the computational burden of the SOS approach grows rapidly
when the matrix size or d increases. Given the current state
of SDP solvers, this approach can only handle matrices of
modest sizes when d ≥ 2.

For general polynomial optimization problems (POP), one
way to reduce the computational cost of the associated SOS
relaxations is to exploit the so-called correlative sparsity
pattern relative to the variables of the POP [26]. To build
these sparse SOS relaxations, one relies on the correlative
sparsity pattern (csp) graph of the POP. The nodes of the
csp graph are the variables and two nodes are connected
via an edge when the corresponding variables appear in the
same term of the objective function or in the same constraint
involved in the POP. This approach was successfully used for
several interesting applications, including certified roundoff
error bounds [17], optimal powerflow problems [13], non-
commutative optimization [15], Lipschitz constants of ReLU
networks [9], robust geometric perception [32].

A complementary workaround is to take into account
term sparsity (TS) of the input data to obtain sparse SOS
relaxations, as recently studied in [28], [30], [29], yielding
the so-called TSSOS framework. TSSOS relies on the term
sparsity pattern (tsp) graph related to the input polynomials.
To build the associated sparse SOS relaxations, one connects
the nodes of this graph (corresponding to monomials from a
monomial basis) whenever the product of the corresponding
monomials either appears in the supports of input poly-
nomials or is a monomial of even degree. Recent appli-
cations include learning and forecasting of linear systems
[33], [34] via reformulation into noncommutative polynomial
optimization and exploiting term sparsity to reduce the size
of the associated relaxations. Note that term sparsity can be
combined with correlative sparsity to reduce even further the
size of the associated relaxations [18], [31].

The original underlying motivation of this paper was to
apply term sparsity to improve the scalability of JSR com-
putation arising from the study of deadline hit and deadline
miss [16]. In this case, the computation of the control signal
can fail due to a hardware and software fault, causing either
no update or a delayed application of the control signal. The
main application in this case is to determine how long the
controller can operate in a faulty state (in which it does not
complete the computation in due time, causing a deadline
miss) before the stability of the system is compromised. The
idea is to bound the JSR of products between state matrices
associated to deadline hit and deadline miss by solving a POP



[2]. For such JSR problems, matrices of large sizes issued
from applications reveal certain kinds of sparsity in many
cases. A natural question is: can we exploit the sparsity of
matrices to improve the scalability of the SOS approach and
to compute upper bounds more efficiently? In this paper, we
address this specific question.

Contributions and outline: In Section II, we recall pre-
liminary background about SOS forms, chordal graphs and
approximation of JSR via SOS programming. To make the
current paper as self-contained as possible, Section III is
dedicated to detailed explanation about sparse SOS decom-
positions via generation of smaller monomial bases and
exploitation of the block structure of Gram matrices. Our
main contribution is described in Section IV. We propose a
so-called SparseJSR algorithm, which is based on the SOS
approach and in coordination with the sparsity of matrices
appearing within the JSR computation. The algorithm is
implemented in the open-source Julia package, also called
SparseJSR, and is freely available1. The performance
of SparseJSR is then illustrated in Section V, first on
randomly generated benchmarks, and then on benchmarks
coming from the study of deadline hit/miss in [16]. Although
our sparse version of the SOS approach is not guaranteed to
produce upper bounds for JSR as good as the dense one with
the same relaxation order, the numerical experiments in this
paper demonstrate that our sparse approach is able to produce
upper bounds of rather good quality but at a significantly
cheaper computational cost compared to the dense approach.

II. NOTATION AND PRELIMINARIES

Let x = (x1, . . . , xn) be a tuple of variables and R[x] =
R[x1, . . . , xn] be the ring of real n-variate polynomials. We
use R[x]2d to denote the set of forms (i.e., homogeneous
polynomials) of degree 2d for d ∈ N. A polynomial f ∈ R[x]
can be written as f(x) =

∑
α∈A fαx

α with fα ∈ R,xα =
xα1
1 · · ·xαn

n . The support of f is defined by supp(f) := {α ∈
A | fα 6= 0}. We use | · | to denote the cardinality of a set.
For a nonempty finite set A ⊆ Nn, let R[A ] be the set
of polynomials in R[x] whose supports are contained in A ,
i.e., R[A ] = {f ∈ R[x] | supp(f) ⊆ A } and let xA be
the |A |-dimensional column vector consisting of elements
xα,α ∈ A (fix any ordering on Nn). For convenience, we
abuse notation a bit in this paper and use also B ⊆ Nn (resp.
β ∈ Nn) to denote a monomial set (resp. a monomial). For
a positive integer r, let Sr be the set of r × r symmetric
matrices and the set of r × r positive semidefinite (PSD)
matrices is denoted by Sr+.

A. SOS forms

Given a form f ∈ R[x]2d with d ∈ N, if there exist forms
f1, . . . , ft ∈ R[x]d such that f =

∑t
i=1 f

2
i , then we say that

f is a sum-of-squares (SOS) form. The set of SOS forms in
R[x]2d is denoted by Σn,2d. For d ∈ N, let Nnd := {(αi)ni=1 ∈
Nn |

∑n
i=1 αi = d} and assume that f ∈ R[x]2d. Then

deciding whether f ∈ Σn,2d is equivalent to verifying the

1https://github.com/wangjie212/SparseJSR

existence of a PSD matrix Q (which is called a Gram matrix
for f ) such that

f = (xNn
d )TQxNn

d , (2)

which can be formulated as a semidefinite program (SDP).
The monomial basis xNn

d used in (2) is called the standard
monomial basis.

B. Chordal graphs and sparse matrices

An (undirected) graph G(V,E) or simply G consists of
a set of nodes V and a set of edges E ⊆ {{vi, vj} |
(vi, vj) ∈ V × V }. For a graph G(V,E), a cycle of length
k is a set of nodes {v1, v2, . . . , vk} ⊆ V with {vk, v1} ∈ E
and {vi, vi+1} ∈ E for i = 1, . . . , k − 1. A chord in a
cycle {v1, v2, . . . , vk} is an edge {vi, vj} that joins two
nonconsecutive nodes in the cycle. A graph is called a
chordal graph if all its cycles of length at least four have
a chord. Chordal graphs include some common classes of
graphs, such as complete graphs, line graphs and trees, and
have applications in sparse matrix theory [24]. Any non-
chordal graph G(V,E) can always be extended to a chordal
graph G(V,E) by adding appropriate edges to E, which is
called a chordal extension of G(V,E). A clique C ⊆ V of G
is a subset of nodes where {vi, vj} ∈ E for any vi, vj ∈ C.
If a clique C is not a subset of any other clique, then it is
called a maximal clique. It is known that maximal cliques of
a chordal graph can be enumerated efficiently in linear time
in the number of nodes and edges of the graph [4].

For a graph G, the chordal extension of G is usually
not unique. We would prefer a chordal extension with the
smallest clique number. Finding a chordal extension with
the smallest clique number is an NP-complete problem in
general. Fortunately, several heuristic algorithms are known
to efficiently produce a good approximation [7].

Given a graph G(V,E), a symmetric matrix Q with row
and column indices labeled by V is said to have sparsity
pattern G if Qβγ = Qγβ = 0 whenever β 6= γ and {β,γ} /∈
E. Let SG be the set of symmetric matrices with sparsity
pattern G. A matrix in SG exhibits a block structure (after an
appropriate permutation of rows and columns) as illustrated
in Figure 1. Each block corresponds to a maximal clique of
G. The maximal block size is the maximal size of maximal
cliques of G, namely, the clique number of G. Note that there
might be overlaps between blocks because different maximal
cliques may share nodes.

Fig. 1. A block structure of matrices in SG. The gray area indicates the
positions of possible nonzero entries.
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Given a maximal clique C of G(V,E), we define an
indexing matrix PC ∈ R|C|×|V | as

[PC ]iβ =

{
1, if C(i) = β,

0, otherwise,
(3)

where C(i) denotes the i-th node in C, sorted in the ordering
compatible with V . Note that QC = PCQP

T
C ∈ S|C| extracts

a principal submatrix QC defined by the indices in the clique
C from a symmetric matrix Q, and Q = PTCQCPC inflates
a |C| × |C| matrix QC into a sparse |V | × |V | matrix Q.

PSD matrices with sparsity pattern G form a convex cone

S
|V |
+ ∩ SG = {Q ∈ SG | Q � 0}. (4)

When the sparsity pattern graph G is chordal, the cone S
|V |
+ ∩

SG can be decomposed as a sum of simple convex cones, as
stated in the following theorem.

Theorem 2.1 ([1]): Let G(V,E) be a chordal graph and
assume that C1, . . . , Ct are the list of maximal cliques of
G(V,E). Then a matrix Q ∈ S

|V |
+ ∩ SG if and only if

there exists Qk ∈ S
|Ck|
+ for k = 1, . . . , t such that Q =∑t

k=1 P
T
Ck
QkPCk

.
For more details about sparse matrices and chordal graphs,

the reader may refer to [24].

C. Approximating the joint spectral radius via SOS relax-
ations

The joint spectral radius (JSR) for a set of matrices A =
{A1, . . . , Am} ⊆ Rn×n is given by

ρ(A) := lim
k→∞

max
σ∈{1,...,m}k

||Aσ1
Aσ2
· · ·Aσk

|| 1k . (5)

Parrilo and Jadbabaie proposed to compute a sequence of
upper bounds for ρ(A) via SOS relaxations. The core idea
is based on the following theorem.

Theorem 2.2 ([19], Theorem 2.2): Given a set of matrices
A = {A1, . . . , Am} ⊆ Rn×n, let p be a strictly positive form
of degree 2d that satisfies

p(Aix) ≤ γ2dp(x), ∀x ∈ Rn, i = 1, . . . ,m.

Then, ρ(A) ≤ γ.
Replacing positive forms by more tractable SOS forms,

Theorem 2.2 immediately suggests the following SOS re-
laxations indexed by d ∈ N\{0} to compute a sequence of
upper bounds for ρ(A):

ρSOS,2d(A) := inf
p∈R[x]2d,γ

γ (6)

s.t.

{
p(x)− ||x||2d2 ∈ Σn,2d,

γ2dp(x)− p(Aix) ∈ Σn,2d, 1 ≤ i ≤ m.

The terms “||x||2d2 ” is added to make sure p is strictly
positive. The optimization problem (6) can be solved via
SDP by bisection on γ. It was shown in [19] that the upper
bound ρSOS,2d(A) satisfies the following theorem.

Theorem 2.3 ([19]): Let A = {A1, . . . , Am} ⊆ Rn×n.
For any integer d ≥ 1, one has m−

1
2d ρSOS,2d(A) ≤ ρ(A) ≤

ρSOS,2d(A).
It is immediate from Theorem 2.3 that {ρSOS,2d(A)}d≥1
converges to ρ(A) when d increases.

III. SPARSE SOS DECOMPOSITIONS

Deciding whether a form f is SOS involves solving an
SDP whose size scales combinatorially with the number of
variables and the degree of f . When f is sparse, it is possible
to exploit the sparsity to construct an SDP of smaller size in
order to reduce the computational burden. This includes two
aspects: generating a smaller monomial basis and exploiting
block structures for Gram matrices.

A. Generating a smaller monomial basis

Given a polynomial f ∈ R[x], the Newton polytope of f
is the convex hull of the support of f . It is known that the
standard monomial basis Nnd used in (2) can be replaced by
the integer points in half of the Newton polytope of f , i.e.,
by

B =
1

2
New(f) ∩ Nn ⊆ Nnd . (7)

See, e.g., [21] for a proof.
In [29], an algorithm named GenerateBasis was pro-

posed to generate a smaller monomial basis for (2) than the
one provided by the Newton polytope. Given the support of
f , the output of GenerateBasis is an increasing chain of
monomial sets:

B1 ⊆ B2 ⊆ B3 ⊆ · · · ⊆ Nnd .

Each Bp can serve as a candidate monomial basis. In
practice, if indexing the unknown Gram matrix from (2) by
Bp leads to an infeasible SDP, then we turn to Bp+1 until
a feasible SDP is retrieved. In many cases, the algorithm
GenerateBasis can provide a monomial basis smaller than
the one given by (7); see [29] for such examples.

Remark 3.1: For all tested examples, B1 is a suitable
monomial basis, but we do not know if this is true in general.

B. Term sparsity patterns

To derive a block structure for Gram matrices, we recall
the concept of term sparsity patterns [28], [30], [29].

Definition 3.2: Let f(x) ∈ R[x] with supp(f) = A .
Assume that B is a monomial basis. The term sparsity
pattern graph G(V,E) of f is defined by V = B and

E = {{β,γ} | β,γ ∈ V, β 6= γ, β + γ ∈ A ∪ 2B}, (8)

where 2B = {2β | β ∈ B}.
For a term sparsity pattern graph G(V,E), we denote a
chordal extension of G by G(V,E).

Example 3.3: Consider the polynomial f = x41 + x42 +
x43 + x1x2x

2
3 + x1x

2
2x3. A monomial basis for f is

{x21, x22, x23, x1x2, x1x3, x2x3}. See Figure 2 for the term
sparsity pattern graph G of f and a chordal extension G
of G.

Given a sparse SOS form f(x) ∈ R[A ] and a monomial
basis B, generally a Gram matrix for f is not necessarily
sparse. Let G be the term sparsity pattern graph of f and G a
chordal extension of G. To get a sparse SOS decomposition
of f , we then impose the sparsity pattern G to the Gram
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Fig. 2. The term sparsity pattern graph and a chordal extension for Example
3.3. The dashed edges are added after a chordal extension.

matrix for f , i.e., we consider the following subset of SOS
forms in Σn,2d:

ΣA := {f ∈ R[A ] | ∃Q ∈ S
|B|
+ ∩SG s.t. f = (xB)TQxB}.

Theorem 2.1 enables us to give the following sparse SOS
decompositions for polynomials in ΣA .

Theorem 3.4 ([28], Theorem 3.3): Given A ⊆ Nn, as-
sume that B = {β1, . . . ,βr} is a monomial basis and G
is the term sparsity pattern graph. Let C1, C2, . . . , Ct ⊆ V
denote the list of maximal cliques of G (a chordal extension
of G) and Bk = {βi ∈ B | i ∈ Ck}, k = 1, 2, . . . , t.
Then, f(x) ∈ ΣA if and only if there exist fk(x) =

(xBk)TQkx
Bk with Qk ∈ S

|Ck|
+ for k = 1, . . . , t such that

f(x) =

t∑
k=1

fk(x). (9)

By virtue of Theorem 3.4, checking membership in ΣA

boils down to solving an SDP problem involving PSD ma-
trices of small sizes if each maximal clique of G has a small
size relative to the original matrix. This might significantly
reduce the overall computational cost.

IV. THE SPARSEJSR ALGORITHM

In this section, we propose an algorithm for bounding JSR
based on the sparse SOS decomposition discussed in the
previous section. To this end, we first establish a hierarchy
of sparse supports for the auxiliary form p(x) used in the
SOS program (6).

Let A = {A1, . . . , Am} ⊆ Rn×n be a tuple of matrices.
Fixing a relaxation order d, let p0(x) =

∑n
j=1 cjx

2d
j with

random coefficients cj ∈ (0, 1) and let A (0) = supp(p0).
Then for s ∈ N\{0}, we iteratively define

A (s) := A (s−1) ∪
m⋃
i=1

supp(ps−1(Aix)), (10)

where ps−1(x) =
∑

α∈A (s−1) cαx
α with random coeffi-

cients cα ∈ (0, 1). Note that the particular form of p0(x)
is chosen such that A (s) contains all possible homogeneous
monomials of degree 2d that are “compatible” with the
couplings between variables x1, . . . , xn introduced by the
mappings x 7→ Aix for all i. It is clear that

A (1) ⊆ · · · ⊆ A (s) ⊆ A (s+1) ⊆ · · · ⊆ Nn2d (11)

and the sequence {A (s)}s≥1 stabilizes in finitely many steps.
We point out that it is not guaranteed a hierarchy of sparse

supports is always retrieved in (11) even if all Ai are sparse.
For instance, if some matrix Ai ∈ A has a fully dense row,
then by definition, one immediately has A (1) = Nn2d. In this
case, the sparsity of A cannot be exploited by the present
method. This obstacle might be overcome if a more suitable
p0(x) is chosen taking into account the sparsity pattern of
A, which we leave for future investigation.

On the other hand, if the matrices inA have some common
zero columns, then a hierarchy of sparse supports must be
retrieved.

Proposition 4.1: Let A = {A1, . . . , Am} ⊆ Rn×n and
assume that the matrices in A have common zero columns
indexed by J ⊆ [n] := {1, 2, . . . , n}. Let Ñn−|J|2d :=

{(αi)i∈[n] ∈ Nn | (αi)i∈[n]\J ∈ Nn−|J|2d , αi = 0 for i ∈ J}
and bj := {(αi)i∈[n] ∈ Nn | αj = 2d, αi = 0 for i 6= j} for
j ∈ [n]. Then A (s) ⊆ Ñn−|J|2d ∪ {bj}j∈J for all s ≥ 1.

Proof: Let us do induction on s. It is obvious that
A (0) ⊆ Ñn−|J|2d ∪ {bj}j∈J . Now assume A (s) ⊆ Ñn−|J|2d ∪
{bj}j∈J for some s ≥ 0. Since the variables effectively
involved in ps(Ajx) are contained in {xi}i∈[n]\J , we have
supp(ps(Ajx)) ⊆ Ñn−|J|2d for j = 1, . . . ,m. This combined
with the induction hypothesis yields A (s+1) ⊆ Ñn−|J|2d ∪
{bj}j∈J as desired.

For each s ≥ 1, by restricting p(x) to forms with the
sparse support A (s), (6) now reads as

inf
p∈R[A (s)],γ

γ (12)

s.t.

{
p(x)− ||x||2d2 ∈ Σn,2d,

γ2dp(x)− p(Aix) ∈ Σn,2d, 1 ≤ i ≤ m.

Let A
(s)
i = A (s) ∪ supp(ps(Aix) for i = 1, . . . ,m. In

order to exploit the sparsity present in (12), we then replace
Σn,2d with ΣA (s) or Σ

A
(s)
i

in (12). Consequently we obtain
a hierarchy of SOS relaxations indexed by s for a fixed d:

ρs,2d(A) := inf
p∈R[A (s)],γ

γ (13)

s.t.

{
p(x)− ||x||2d2 ∈ ΣA (s) ,

γ2dp(x)− p(Aix) ∈ Σ
A

(s)
i
, 1 ≤ i ≤ m.

We call the index s the sparse order of (13). As in the dense
case, the optimization problem (13) can be solved via SDP
by bisection on γ. Moreover, we have the following theorem.

Theorem 4.2: Let A = {A1, . . . , Am} ⊆ Rn×n. For any
integer d ≥ 1, one has ρSOS,2d(A) ≤ · · · ≤ ρs,2d(A) ≤
· · · ≤ ρ2,2d(A) ≤ ρ1,2d(A).

Proof: For any fixed d ∈ N\{0}, because of (11), it
is clear that the feasible set of (13) with the sparse order s
is contained in the feasible set of (13) with the sparse order
s + 1, which is in turn contained in the feasible set of (6).
This yields the desired conclusion.

So we can propose the algorithm SparseJSR that com-
putes a non-increasing sequence of upper bounds for the
JSR of a tuple of matrices via solving (13) for any fixed
d. By varying the relaxation order d and the sparse order s,
SparseJSR offers a trade-off between the computational
cost and the quality of the obtained upper bound. The



correctness of SparseJSR is guaranteed by Theorem 2.2
and Theorem 4.2.

V. NUMERICAL EXPERIMENTS

In this section, we present numerical experiments for the
proposed algorithm SparseJSR, which is implemented in
the Julia package also named SparseJSR and based on
the TSSOS package used in [30], [29], [31]. SparseJSR
utilizes the Julia packages LightGraphs [8] to handle
graphs, ChordalGraph [27] to generate chordal extensions
and JuMP [10] to model SDP. Finally, SparseJSR relies on
the SDP solver MOSEK [3] to solve SDP. For the comparison
purpose, we also implement the dense SOS relaxation (6) in
SparseJSR using the same SDP solver MOSEK. For all
examples, the sparse order s is set as 1, the tolerance for
bisection is set as ε = 1 × 10−5, and the initial interval for
bisection is set as [0, 2]. To measure the quality of upper
bounds that we obtain, a lower bound for JSR is also com-
puted using the MATLAB JSR toolbox [25]. All examples
were computed on an Intel Core i5-8265U@1.60GHz CPU
with 8GB RAM memory. The notations that we use are listed
in Table I.

TABLE I
THE NOTATIONS

m the number of matrices in A
n the size of matrices in A
lb lower bounds for JSR given by the JSR toolbox
ub upper bounds for JSR given by SparseJSR
d the relaxation order
mb the maximal size of PSD blocks
time running time in seconds

- > 3600 s
∗ an out of memory error

We consider randomly generated examples and examples
arising from the study of deadline hit/miss in [16].

A. Randomly generated examples

We generate random sparse matrices as follows2: first
call the function “erdos renyi” in the Julia packages
LightGraphs to generate a random directed graph G with
n nodes and n+ 10 edges; for each edge (i, j) of G, put a
random number in [−1, 1] on the position (i, j) of the matrix
and put zeros for other positions. We compute an upper
bound of the JSR for pairs of such matrices with different
sparsity patterns using the first-order SOS relaxations. The
results are displayed in Table II. It is evident that the sparse
approach is much more efficient than the dense approach.
For instance, the dense approach takes over 3600 s when the
size of matrices is greater than 100 while the sparse approach
can easily handle matrices of size 120 within 12 s. Both
the dense approach and the sparse approach produce upper
bounds which are within 0.05 greater than the corresponding
lower bounds.

2Available at https://wangjie212.github.io/jiewang/code.html.

TABLE II
RANDOMLY GENERATED EXAMPLES WITH d = 1 AND m = 2

Sparse (d = 1) Dense (d = 1)
n lb time ub mb time ub mb
20 0.7894 0.74 0.8192 10 1.88 0.7967 20
30 0.8502 1.65 0.8666 10 7.79 0.8523 30
40 0.9446 2.68 0.9446 14 25.6 0.9446 40
50 0.8838 2.97 0.9102 14 55.9 0.8838 50
60 0.7612 3.64 0.7843 13 171 0.7612 60
70 0.9629 4.35 0.9629 11 308 0.9629 70
80 0.9345 5.95 0.9399 15 743 0.9345 80
90 0.8020 6.27 0.8465 14 1282 0.8020 90
100 0.8642 8.15 0.9132 13 2568 0.8659 100
110 0.8355 9.59 0.8839 15 - - -
120 0.7483 11.7 0.7735 16 - - -

B. Examples from control systems

Here we consider examples from [16], where the dynamics
of closed-loop systems are given by the combination of
a plant and a one-step delay controller that stabilizes the
plant. The closed-loop system evolves according to either a
completed or a missed computation. In the case of a deadline
hit, the closed-loop state matrix is AH . In the case of a
deadline miss, the associated closed-loop state matrix is AM .
The computational platform (hardware and software) ensures
that no more than m−1 deadlines are missed consecutively.
The set of possible realisations A of such a system contains
either a single hit or at most m−1 misses followed by a hit,
namely A := {AHAiM | 0 ≤ i ≤ m− 1}. Then, the closed-
loop system that can switch between the realisations included
in A is asymptotically stable if and only if ρ(A) < 1. This
gives an indication for scheduling and control co-design, in
which the hardware and software platform must guarantee
that the maximum number of deadlines missed consecutively
does not interfere with stability requirements.

In Table III and Table IV, we report the results obtained
for various control systems with n states, under m − 1
deadline misses, by applying the dense and sparse relaxations
with relaxation orders d = 1 and d = 2, respectively. The
examples are randomly generated, i.e., our script generates
a random system and then tries to control it3.

In Table III, we fix m = 5 and vary n from 20 to 110. For
these examples, surprisingly the dense and sparse approaches
with the relaxation order d = 1 always produce the same
upper bounds. As we can see from the table, the sparse
approach is more scalable and efficient than the dense one.

In Table IV, we vary m from 2 to 11 and vary n from
6 to 24. For each instance, one has mb = 10 for the sparse
approach. The column “ub” indicates the upper bound given
by the dense approach with the relaxation order d = 1. For
these examples, with the relaxation order d = 2, the sparse
approach produces upper bounds that are very close to those
given by the dense approach. And again the sparse approach
is more scalable and more efficient than the dense one.

3Available at https://wangjie212.github.io/jiewang/code.html.

https://github.com/wangjie212/SparseJSR
https://github.com/wangjie212/TSSOS


TABLE III
RESULTS FOR CONTROL SYSTEMS WITH d = 1 AND m = 5

Sparse (d = 1) Dense (d = 1)
n lb time ub mb time ub mb
20 0.9058 1.78 0.9316 12 9.92 0.9316 20
20 0.8142 1.62 0.8142 12 9.08 0.8142 20
30 1.4682 4.30 1.5132 14 57.8 1.5131 30
30 1.0924 4.42 1.0961 14 65.4 1.0961 30
40 1.1648 9.29 1.1977 16 249 1.1977 30
40 0.9772 9.69 0.9804 16 259 0.9804 30
50 1.3153 17.3 1.3248 18 660 1.3248 50
50 1.1884 17.5 1.1884 18 680 1.1884 50
60 1.8366 29.7 1.8820 20 2049 1.8820 60
60 1.3259 30.7 1.3259 20 1776 1.3259 60
70 1.8135 54.2 1.8578 22 - - -
70 1.2727 53.9 1.2727 22 - - -
80 2.3005 85.3 2.3445 24 - - -
80 1.4262 85.6 1.4262 24 - - -
90 1.8745 133 1.9020 26 - - -
90 1.4452 132 1.4452 26 - - -
100 2.2316 196 2.2733 28 ∗ ∗ ∗
100 1.5267 195 1.5267 28 ∗ ∗ ∗
110 2.3597 280 2.3943 30 ∗ ∗ ∗
110 1.5753 287 1.5753 30 ∗ ∗ ∗

TABLE IV
RESULTS FOR CONTROL SYSTEMS WITH d = 2

Sparse (d = 2) Dense (d = 2)
m n lb ub time ub time ub mb
2 6 0.9464 0.9782 0.42 0.9547 1.87 0.9539 21
3 8 0.7218 0.7467 0.60 0.7310 13.4 0.7305 36
4 10 0.7458 0.7738 0.75 0.7564 107 0.7554 55
5 12 0.8601 0.8937 1.08 0.8706 1157 0.8699 78
6 14 0.7875 0.8107 1.32 0.7958 - - -
7 16 1.1110 1.1531 1.81 1.1182 ∗ ∗ ∗
8 18 1.0487 1.0881 2.05 1.0569 ∗ ∗ ∗
9 20 0.7570 0.7808 2.52 0.7660 ∗ ∗ ∗
10 22 0.9911 1.0315 2.70 1.0002 ∗ ∗ ∗
11 24 0.7339 0.7530 3.67 0.7418 ∗ ∗ ∗
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