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ABSTRACT

A new sparse SOS decomposition algorithm is proposed based
on a new sparsity pattern, called cross sparsity patterns. The
new sparsity pattern focuses on the sparsity of terms and
thus is different from the well-known correlative sparsity
pattern which focuses on the sparsity of variables though
the sparse SOS decomposition algorithms based on these
two sparsity patterns both take use of chordal extensions
/chordal decompositions. Moreover, it is proved that the SOS
decomposition obtained by the new sparsity pattern is always
a refinement of the block-diagonalization obtained by the
sign-symmetry method. Various experiments show that the
new algorithm dramatically saves the computational cost
compared to existing tools and can handle some really huge
polynomials.
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1 INTRODUCTION

Deciding global nonnegativity of multivariate polynomials
and the related polynomial optimization problems (POPs)
arise from many fields such as mathematics, control, engineer-
ing, probability, statistics and physics. In general, the problem
of nonnegativity decision is NP-hard (when the degree is at
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least four) [26]. The well-known Cylindrical Algebraic Decom-
position algorithm solves the nonnegativity decision problem
in time doubly exponential in the number of variables of poly-
nomials ([8]) and the critical point methods allow to decide
global nonnegativity in singly exponential time in the number
of variables [13, 27]. A more efficient method for tackling this
problem is using sum of squares (SOS) decompositions which
severs as a certificate of nonnegativity of a given polynomial
though the SOS condition is stronger than nonnegativity. For
a polynomial 𝑓 ∈ R[x] = R[𝑥1, . . . , 𝑥𝑛] and a given monomial
basis 𝑀 = {x𝜔1 , . . . ,x𝜔𝑟}, the SOS condition for 𝑓 can be
converted to the problem of deciding if there exists a positive
semidefinite matrix 𝑄 (Gram matrix) such that 𝑓 = 𝑀𝑇𝑄𝑀
which can be effectively solved by semidefinite programming
(SDP) [19, 26].

However, the size of the corresponding SDP matrix for
a polynomial with 𝑛 variables and of degree 2𝑑 is

(︀
𝑛+𝑑
𝑛

)︀
.

When the given polynomial has many variables and a high
degree, the corresponding SDP problem is hard to be dealt
with by existing SDP solvers due to the very large size of
the corresponding SDP matrix. On the other hand, most
polynomials coming from practice have certain structures
including symmetry and sparsity. So it is crucial to take full
advantage of structures of polynomials to reduce the size of
corresponding SDP problems. In recent years, a lot of work
has been done on this subject.

In the literature, there are three kinds of approaches to
reduce computations by exploiting sparsity. One approach is
reducing the size of the monomial basis 𝑀 ; such techniques
include computing Newton polytopes [32], using the diagonal
inconsistency [21], the iterative elimination method [18], and
the facial reduction [28].The second approach is exploiting the
non-diagonal sparsity of the Gram matrix 𝑄; such techniques
include using the sparsity of variables [6, 24, 25, 34, 37],
using the symmetry property [11], using the split property
[9], and minimal coordinate projections [29]. The third ap-
proach is exploiting the sparsity of constrained conditions of
corresponding SDP problems, such as coefficient matching
conditions [4, 16, 38].

In this paper, a new sparse SOS decomposition algorithm
is proposed based on a new sparsity pattern, called cross
sparsity patterns. Given a polynomial 𝑓 ∈ R[x] with the
support A ⊆ N𝑛 and a monomial basis 𝑀 = {x𝜔1 , . . . ,x𝜔𝑟},
the cross sparsity pattern associated with A is represented
by an 𝑟 × 𝑟 symmetric (0, 1)-matrix 𝑅A whose elements are
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defined by

𝑅𝑖𝑗 =

{︃
1, 𝜔𝑖 + 𝜔𝑗 ∈ A ∪ 2B,

0, otherwise,
(1)

where 2B = {2𝜔1, . . . , 2𝜔𝑟}.
It can be seen that the new sparsity pattern focuses on the

sparsity of terms and thus is different from the well-known
correlative sparsity pattern [34] which focuses on the sparsity
of variables. For example, for a polynomial 𝑓 ∈ R[x], if 𝑓
contains a term involving all variables 𝑥1, . . . , 𝑥𝑛, then 𝑓 is not
sparse in the sense of correlative sparsity patterns and hence
the corresponding SDP matrix for the SOS decomposition of
𝑓 cannot be block-diagonalized. But 𝑓 may still be sparse in
the sense of cross sparsity patterns (see Example 3.4).

Following the chordal sparsity approaches, we associate
the matrix 𝑅A with an undirected graph 𝐺(𝑉A , 𝐸A ) where

𝑉A = {1, 2, . . . , 𝑟}

and

𝐸A = {{𝑖, 𝑗} | 𝑖, 𝑗 ∈ 𝑉A , 𝑖 < 𝑗,𝑅𝑖𝑗 = 1},
and generate a chordal extension of 𝐺(𝑉A , 𝐸A ). Then as
usual, we use matrix decompositions for positive semidefinite
matrices with chordal sparsity patterns to construct sets of
supports for a blocking SOS decomposition. We prove that
the blocking SOS decomposition obtained by cross sparsity
patterns is always a refinement of the block-diagonalization
obtained by the sign-symmetry method [21].

We test the new algorithm on various examples. It turns
out that the new algorithm dramatically reduces the compu-
tational cost compared to existing tools on certain examples
and can handle sparse polynomials of a large size. It also
should be noted that though a nonnegative polynomial ad-
mitting an SOS decomposition does not necessarily admit a
sparse SOS decomposition, these two notions always coincide
for our examples, and moreover we prove that they coincide
in the quadratic case.

The algorithms based on SDP programming output only
numerical SOS decompositions. If we want to obtain exa-
ct SOS decompositions as certificates of nonnegativity, the
rounding-projection procedure can compute a weighted ra-
tional SOS decomposition when the given polynomial lies
in the interior of the SOS cone [30]. More recently, another
framework for computing exact SOS decompositions under
the same assumption was proposed [22, 23].

The rest of this paper is organized as follows. Section 2
introduces some basic notions from nonnegative polynomials
and graph theory. Section 3 defines a cross sparsity pattern
matrix and a cross sparsity pattern graph associated with
a sparse polynomial. We show that how we can exploit this
sparsity pattern to obtain a block SOS decomposition for a
sparse nonnegative polynomial. Moreover, we compare our
approach with other methods to exploit sparsity in SOS
decompositions, including correlative sparsity patterns and
sign-symmetries. We discuss in Section 4 when the sparse
SOS relaxation obtain the same optimal values as the dense
SOS relaxation for polynomial optimization problems. The

algorithm is given in Section 5. Section 6 includes numeri-
cal results on various examples. We show that the proposed
SparseSOS algorithm exhibits a significantly better perfor-
mance in practice. Finally, the paper is concluded in Section
7.

2 PRELIMINARIES

2.1 Nonnegative polynomials

Let R[x] = R[𝑥1, . . . , 𝑥𝑛] be the ring of real 𝑛-variate polyno-
mials. For a finite set A ⊂ N𝑛, we denote by conv(A ) the
convex hull of A , and by 𝑉 (A ) the vertices of the convex hull
of A . Also we denote by 𝑉 (𝑃 ) the vertex set of a polytope 𝑃 .
A polynomial 𝑓 ∈ R[x] can be written as 𝑓(x) =

∑︀
𝛼∈A 𝑐𝛼x

𝛼

with 𝑐𝛼 ∈ R,x𝛼 = 𝑥𝛼1
1 · · ·𝑥𝛼𝑛

𝑛 . The support of 𝑓 is defined
by supp(𝑓) = {𝛼 ∈ A | 𝑐𝛼 ̸= 0}, the degree of 𝑓 is defined
by deg(𝑓) = max{

∑︀𝑛
𝑖=1 𝛼𝑖 : 𝛼 ∈ supp(𝑓)}, and the New-

ton polytope of 𝑓 is defined as New(𝑓) = conv({𝛼 : 𝛼 ∈
supp(𝑓)}).

A polynomial 𝑓 ∈ R[x] which is nonnegative over R𝑛 is
called a nonnegative polynomial. The class of nonnegative
polynomials is denoted by PSD, which is a convex cone.

A vector 𝛼 ∈ N𝑛 is even if 𝛼𝑖 is an even number for
𝑖 = 1, . . . , 𝑛. A necessary condition for a polynomial 𝑓(x) to
be nonnegative is that every vertex of its Newton polytope is
an even vector, i.e. 𝑉 (New(𝑓)) = 𝑉 (supp(𝑓)) ⊆ (2N)𝑛 [32].

For a nonempty finite set B ⊆ N𝑛, R[B] denotes the set
of polynomials in R[x] whose supports are contained in B,
i.e., R[B] = {𝑓 ∈ R[x] | supp(𝑓) ⊆ B} and we use R[B]2 to
denote the set of polynomials which are sums of squares of
polynomials in R[B]. The set of 𝑟 × 𝑟 symmetric matrices
is denoted by 𝑆𝑟 and the set of 𝑟 × 𝑟 positive semidefinite
matrices is denoted by 𝑆𝑟

+. Let x
B be the |B|-dimensional

column vector consisting of elements x𝛽,𝛽 ∈ B, then

R[B]2 = {(xB)𝑇𝑄xB | 𝑄 ∈ 𝑆
|B|
+ },

where the matrix 𝑄 is called the Gram matrix.

2.2 Chordal graphs

We introduce some basic notions from graph theory. A graph
𝐺(𝑉,𝐸) consists of a set of nodes 𝑉 = {1, 2, . . . , 𝑟} and a
set of edges 𝐸 ⊆ 𝑉 × 𝑉 . A graph 𝐺(𝑉,𝐸) is said to be
undirected if and only if (𝑖, 𝑗) ∈ 𝐸 ⇔ (𝑗, 𝑖) ∈ 𝐸. A cycle of
length 𝑘 is a sequence of nodes {𝑣1, 𝑣2, . . . , 𝑣𝑘} ⊆ 𝑉 with
(𝑣𝑘, 𝑣1) ∈ 𝐸 and (𝑣𝑖, 𝑣𝑖+1) ∈ 𝐸, for 𝑖 = 1, . . . , 𝑘 − 1. A chord
in a cycle {𝑣1, 𝑣2, . . . , 𝑣𝑘} is an edge (𝑣𝑖, 𝑣𝑗) that joins two
nonconsecutive nodes in the cycle.

An undirected graph is called a chordal graph if all its
cycles of length at least four have a chord. Chordal graphs
include some common classes of graphs, such as complete
graphs, line graphs and trees, and have applications in sparse
matrix theory. Note that any non-chordal graph 𝐺(𝑉,𝐸) can

always be extended to a chordal graph ̃︀𝐺(𝑉, ̃︀𝐸) by adding
appropriate edges to 𝐸, which is called a chordal extension of
𝐺(𝑉,𝐸). A clique 𝐶 ⊆ 𝑉 is a subset of nodes where (𝑖, 𝑗) ∈ 𝐸
for any 𝑖, 𝑗 ∈ 𝐶, 𝑖 ̸= 𝑗. If a clique 𝐶 is not a subset of any
other clique, then it is called a maximal clique. It is known
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that maximal cliques of a chordal graph can be enumerated
efficiently in linear time in the number of vertices and edges
of the graph. See for example [5, 10, 12] for the details.

Given an undirected graph 𝐺(𝑉,𝐸), we define an extended
set of edges 𝐸⋆ := 𝐸 ∪ {(𝑖, 𝑖) | 𝑖 ∈ 𝑉 } that includes all
selfloops. Then, we define the space of symmetric sparse
matrices as

𝑆𝑟(𝐸, 0) := {𝑋 ∈ 𝑆𝑟 | 𝑋𝑖𝑗 = 𝑋𝑗𝑖 = 0 if (𝑖, 𝑗) /∈ 𝐸⋆} (2)

and the cone of sparse PSD matrices as

𝑆𝑟
+(𝐸, 0) := {𝑋 ∈ 𝑆𝑟(𝐸, 0) | 𝑋 ⪰ 0}. (3)

Given a maximal clique 𝐶𝑘 of 𝐺(𝑉,𝐸), we define a matrix

𝑃𝐶𝑘 ∈ R|𝐶𝑘|×𝑟 as

(𝑃𝐶𝑘 )𝑖𝑗 =

{︃
1, 𝐶𝑘(𝑖) = 𝑗,

0, otherwise.
(4)

where 𝐶𝑘(𝑖) denotes the 𝑖-th node in 𝐶𝑘, sorted in the natural

ordering. Note that 𝑋𝑘 = 𝑃𝐶𝑘𝑋𝑃𝑇
𝐶𝑘

∈ 𝑆|𝐶𝑘| extracts a
principal submatrix 𝑋𝑘 defined by the indices in the clique
𝐶𝑘 from a symmetry matrix 𝑋, and 𝑋 = 𝑃𝑇

𝐶𝑘
𝑋𝑘𝑃𝐶𝑘 inflates

a |𝐶𝑘| × |𝐶𝑘| matrix 𝑋𝑘 into a sparse 𝑟 × 𝑟 matrix 𝑋. Then,
the following theorem characterizes the membership to the
set 𝑆𝑟

+(𝐸, 0) when the underlying graph 𝐺(𝑉,𝐸) is chordal.

Theorem 2.1 ([1]). Let 𝐺(𝑉,𝐸) be a chordal graph and
𝑋 ∈ 𝑆𝑟(𝐸, 0). Assume that 𝐶1, . . . , 𝐶𝑡 are all of the maximal
cliques of 𝐺(𝑉,𝐸). Then the matrix 𝑋 is positive semidefinite

if and only if there exist 𝑋𝑘 ∈ 𝑆
|𝐶𝑘|
+ for 𝑘 = 1, . . . , 𝑡 such

that 𝑋 =
∑︀𝑡

𝑘=1 𝑃
𝑇
𝐶𝑘

𝑋𝑘𝑃𝐶𝑘 .

3 EXPLOITING TERM SPARSITY IN
SOS DECOMPOSITIONS

A convenient but incomplete method for checking global non-
negativity of multivariate polynomials, as introduced in [7],
is using sum of squares decompositions. Given a polynomial
𝑓(x) ∈ R[x], if there exist polynomials 𝑓1(x), . . . , 𝑓𝑚(x) ∈
R[x] such that

𝑓(x) =

𝑚∑︁
𝑖=1

𝑓𝑖(x)
2, (5)

then we say 𝑓(x) is a sum of squares (SOS). The existence
of an SOS decomposition of a given polynomial serves as a
certificate for its global nonnegativity. For 𝑑 ∈ N, let N𝑛

𝑑 :=
{𝛼 ∈ N𝑛 |

∑︀𝑛
𝑖=1 𝛼𝑖 ≤ 𝑑} and assume 𝑓 ∈ R[N𝑛

2𝑑]. The SOS
condition (5) can be converted to the problem of deciding if
there exists a positive semidefinite matrix 𝑄 such that

𝑓(x) = (xN𝑛
𝑑 )𝑇𝑄xN𝑛

𝑑 , (6)

which can be solved by a semidefinite programming (SDP)
problem.

We say that a polynomial 𝑓 ∈ R[N𝑛
2𝑑] is sparse if the

number of elements in its support A = supp(𝑓) is much less
than the number of elements in N𝑛

2𝑑 that forms a support
of fully dense polynomials in R[N𝑛

2𝑑]. When 𝑓(x) is a sparse
polynomial in R[N𝑛

2𝑑], the size of the SDP problem (6) can

be reduced by eliminating redundant elements from N𝑛
𝑑 . In

fact, N𝑛
𝑑 in problem (6) can be replaced by [32]

B = conv({𝛼
2

| 𝛼 ∈ 𝑉 (A )}) ∩ N𝑛 ⊆ N𝑛
𝑑 . (7)

There are also other methods to reduce the size of B further,
see for example [18, 28, 36].

3.1 Cross sparsity pattern

To exploit the term sparsity of polynomials in SOS decom-
positions, we introduce the notion of cross sparsity patterns,
which, roughly speaking, is measured by the different kind-
s of cross products of monomials arising in the objective
polynomial 𝑓(x).

Definition 3.1. Let 𝑓(x) ∈ R[x] with supp(𝑓) = A . As-

sume that xB = {x𝜔1 , . . . ,x𝜔𝑟} is a monomial basis. An
𝑟 × 𝑟 cross sparsity pattern matrix RA = (𝑅𝑖𝑗) is defined by

𝑅𝑖𝑗 =

{︃
1, 𝜔𝑖 + 𝜔𝑗 ∈ A ∪ 2B,

0, otherwise,
(8)

where 2B = {2𝜔1, . . . , 2𝜔𝑟}.
Given a cross sparsity pattern matrix RA = (𝑅𝑖𝑗), the

associated graph 𝐺(𝑉A , 𝐸A ) with

𝑉A = {1, 2, . . . , 𝑟}
and

𝐸A = {{𝑖, 𝑗} | 𝑖, 𝑗 ∈ 𝑉A , 𝑖 < 𝑗,𝑅𝑖𝑗 = 1}
is called the cross sparsity pattern graph.

To apply Theorem 2.1, we first generate a chordal extensioñ︀𝐺(𝑉A , ̃︀𝐸A ) of the cross sparsity pattern graph 𝐺(𝑉A , 𝐸A )
and then use the extended cross sparsity pattern graph̃︀𝐺(𝑉A , ̃︀𝐸A ) instead of 𝐺(𝑉A , 𝐸A ).

Remark 3.2. Given a graph 𝐺(𝑉A , 𝐸A ), there may be
many different chordal extensions and choosing anyone of
them is valid for deriving the sparse SOS decompositions
presented in this paper. For example, we can add edges to
all of the connected components of 𝐺(𝑉A , 𝐸A ) such that
every connected component becomes a complete subgraph to
obtain a chordal extension. The chordal extension with the
least number of edges is called the minimum chordal exten-
sion. Finding the minimum chordal extension of a graph is
an NP-hard problem in general. Finding a chordal extension
of a graph is equivalent to calculating the symbolic sparse
Cholesky factorization of its adjacency matrix. Fortunately,
several heuristic algorithms, such as the minimum degree or-
dering, are known to efficiently produce a good approximation.
For more information on symbolic Cholesky factorizations
with the minimum degree ordering and minimum chordal
extensions, see [2, 3, 15].

3.2 Sparse SOS relaxations

Given A ⊆ N𝑛 with 𝑉 (A ) ⊆ (2N)𝑛, assume that B is
the support set of a monomial basis. Let the set of SOS
polynomials supported on A be

Σ(A ) := {𝑓 ∈ R[A ] | ∃𝑄 ∈ 𝑆𝑟
+ s.t. 𝑓 = (xB)𝑇𝑄xB}.
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Generally the Gram matrix 𝑄 for a sparse SOS polynomial
𝑓(x) can be dense. Let 𝐺(𝑉A , 𝐸A ) be the cross sparsity pat-

tern graph and ̃︀𝐺(𝑉A , ̃︀𝐸A ) a chordal extension. To maintain
the sparsity of 𝑓(x) in the Gram matrix 𝑄, we consider a
subset of SOS polynomials̃︀Σ(A ) := {𝑓 ∈ R[A ] | ∃𝑄 ∈ 𝑆𝑟

+( ̃︀𝐸A , 0) s.t. 𝑓 = (xB)𝑇𝑄xB}.

By virtue of Theorem 2.1, the following theorem gives the

blocking SOS decompositions for polynomials in ̃︀Σ(A ).

Theorem 3.3. Given A ⊆ N𝑛 with 𝑉 (A ) ⊆ (2N)𝑛, as-
sume that B = {𝜔1, . . . ,𝜔𝑟} is the support set of a monomial
basis and a chordal extension of the cross sparsity pattern

graph is ̃︀𝐺(𝑉A , ̃︀𝐸A ). Let 𝐶1, 𝐶2, . . . , 𝐶𝑡 ⊆ 𝑉A denote the

maximal cliques of ̃︀𝐺(𝑉A , ̃︀𝐸A ) and B𝑘 = {𝜔𝑖 ∈ B | 𝑖 ∈
𝐶𝑘}, 𝑘 = 1, 2, . . . , 𝑡. Then, 𝑓(x) ∈ ̃︀Σ(A ) if and only if there
exist 𝑓𝑘(x) ∈ R[B𝑘]

2 for 𝑘 = 1, . . . , 𝑡 such that

𝑓(x) =

𝑡∑︁
𝑘=1

𝑓𝑘(x). (9)

Proof. By Theorem 2.1, 𝑄 ∈ 𝑆𝑟
+( ̃︀𝐸A , 0) if and only if

there exist 𝑄𝑘 ∈ 𝑆
|𝐶𝑘|
+ , 𝑘 = 1, . . . , 𝑡 such that

𝑄 =

𝑡∑︁
𝑘=1

𝑃𝑇
𝐶𝑘

𝑄𝑘𝑃𝐶𝑘 .

So 𝑓(x) ∈ ̃︀Σ(A ) if and only if there exist 𝑄𝑘 ∈ 𝑆
|𝐶𝑘|
+ , 𝑘 =

1, . . . , 𝑡 such that

𝑓(x) = (xB)𝑇 (

𝑡∑︁
𝑘=1

𝑃𝑇
𝐶𝑘

𝑄𝑘𝑃𝐶𝑘 )x
B

=

𝑡∑︁
𝑘=1

(𝑃𝐶𝑘x
B)𝑇𝑄𝑘(𝑃𝐶𝑘x

B)

=

𝑡∑︁
𝑘=1

(xB𝑘 )𝑇𝑄𝑘x
B𝑘 ,

which is equivalent to that there exist 𝑓𝑘(x) ∈ R[B𝑘]
2 for

𝑘 = 1, . . . , 𝑡 such that 𝑓(x) =
∑︀𝑡

𝑘=1 𝑓𝑘(x). �

3.3 Comparison with correlative sparsity
patterns

The notion of correlative sparsity patterns was introduced by
Waki et al. [34] to exploit variable sparsity of polynomials in
SOS programming, which also takes use of chordal extensions
/chordal decompositions. An interpretation of correlative
sparsity patterns in terms of the sparsity of Gram matrices
was recently given in [39]. It should be emphasized that
the angles of correlative sparsity patterns and cross sparsity
patterns to exploit sparsity are different. Correlative sparsity
patterns focus on the sparsity of variables, while cross sparsity
patterns focus on the sparsity of terms. For example, for
a polynomial 𝑓 ∈ R[x], if 𝑓 contains a term involving all
variables 𝑥1, . . . , 𝑥𝑛, then 𝑓 is not sparse in the sense of
correlative sparsity patterns and hence the corresponding

SDP matrix for the SOS decomposition of 𝑓 cannot be block-
diagonalized. But 𝑓 may still be sparse in the sense of cross
sparsity patterns.

Example 3.4. Consider the polynomial 𝑓 = 𝑥2𝑦2 + 𝑥2 +
𝑦2+1−𝑥𝑦. A monomial basis for 𝑓 is {1, 𝑥, 𝑦, 𝑥𝑦, 𝑥2, 𝑦2}. The
correlative sparsity pattern graph of 𝑓 is a complete graph,
and hence the corresponding Gram matrix of 𝑓 cannot be
blocked. On the other hand, the cross sparsity pattern graph
of 𝑓 has three maximal cliques, corresponding to {1, 𝑥2, 𝑦2},
{1, 𝑥𝑦} and {𝑥, 𝑦} respectively. Hence, the corresponding
Gram matrix of 𝑓 can be blocked into one 3× 3 submatrix
and two 2× 2 submatrices.

1 𝑥2 𝑥

𝑦2 𝑥𝑦 𝑦

3.4 Comparison with sign-symmetries

In [21], sign-symmetries are exploited to block diagonalize
sums of squares programming ([21, Theorem 3]), which is
implemented in Yalmip. Given a polynomial 𝑓 ∈ R[x] with
supp(𝑓) = A . The sign-symmetries of 𝑓 are defined by all
vectors r ∈ {0, 1}𝑛 such that r𝑇𝛼 ≡ 0 (mod 2) for all 𝛼 ∈ A .

By virtue of sign-symmetries, SOS programming can be
blocked as follows.

Theorem 3.5 ([21]). Given 𝑓 ∈ R[x] with supp(𝑓) =
A , assume that B = {𝜔1, . . . ,𝜔𝑟} is the support set of a
monomial basis and the sign-symmetries of 𝑓 are defined by
the binary matrix 𝑅 = [r1, . . . , r𝑠]. Then xB can be blocked
in the SOS programming of 𝑓 and x𝜔𝑖 ,x𝜔𝑗 belong to the
same block if and only if 𝑅𝑇𝜔𝑖 ≡ 𝑅𝑇𝜔𝑗 (mod 2).

We show in Theorem 3.6 that the blocking decomposition
obtained by cross sparsity patterns is always a refinement of
the block-diagonalization obtained by sign-symmetries.

Theorem 3.6. Given 𝑓 ∈ R[x] with supp(𝑓) = A , assume
that B = {𝜔1, . . . ,𝜔𝑟} is the support set of a monomial
basis and the sign-symmetries of 𝑓 are defined by the binary
matrix 𝑅 = [r1, . . . , r𝑠]. Then the blocking decomposition
obtained by cross sparsity patterns is a refinement of the
block-diagonalization obtained by sign-symmetries in the SOS
programming of 𝑓 .

Proof. The block-diagonalization of the SOS decomposi-
tion for 𝑓 obtained by sign-symmetries can be represented
by a graph 𝐺(𝑉,𝐸) with 𝑉 = {1, . . . , 𝑟} and (𝑖, 𝑗) ∈ 𝐸
if and only if 𝑅𝑇𝜔𝑖 ≡ 𝑅𝑇𝜔𝑗 (mod 2). Then by Theorem
3.5, the blocks obtained by sign-symmetries correspond to
the connected components of 𝐺(𝑉,𝐸). To show that the
blocking decomposition obtained by cross sparsity patter-
ns is a refinement of the block-diagonalization obtained by
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sign-symmetries, we only need to prove that the cross spar-
sity pattern graph 𝐺(𝑉,𝐸A ) is a subgraph of 𝐺(𝑉,𝐸), i.e.

𝐸A ⊆ 𝐸.
By the definition of sign-symmetries, we have 𝑅𝑇𝛼 ≡ 0

(mod 2) for all 𝛼 ∈ A . By the definition of cross sparsity
pattern graphs, (𝑖, 𝑗) ∈ 𝐸A if and only if 𝜔𝑖 +𝜔𝑗 ∈ A ∪ 2B.
So if (𝑖, 𝑗) ∈ 𝐸A , then either 𝜔𝑖 +𝜔𝑗 ∈ A or 𝜔𝑖 +𝜔𝑗 ∈ 2B.
In anyone of these two cases, we always have 𝑅𝑇 (𝜔𝑖+𝜔𝑗) ≡ 0
(mod 2), which is equivalent to 𝑅𝑇𝜔𝑖 ≡ 𝑅𝑇𝜔𝑗 (mod 2). Thus

(𝑖, 𝑗) ∈ 𝐸 as desired. �

4 WHEN DO Σ(A ) AND ̃︀Σ(A )
COINCIDE

Given a subset of lattice points A ⊆ N𝑛 with 𝑉 (A ) ⊆ (2N)𝑛,
we define in Section 3.2 two sets of SOS polynomials: Σ(A )

and ̃︀Σ(A ). Generally we have ̃︀Σ(A ) ⊆ Σ(A ) for a given

chordal extension. It can happen that ̃︀Σ(A ) ( Σ(A ). As an
explicit example, the following polynomial

𝑓 = 1 + 𝑥3
1 + 𝑥4

1 − 3𝑥1𝑥2 − 4𝑥2
1𝑥2 + 2𝑥2

2 + 𝑥3
2 + 𝑥1𝑥

3
2 + 𝑥4

2

taken from [33] admits an SOS decomposition but does not
admit a sparse SOS decomposition for a minimal chordal
extension.

However, if Σ(A ) = ̃︀Σ(A ) indeed holds, then the sparse
SOS relaxation and the dense SOS relaxation obtain the
same optimal value for the optimization of a polynomial 𝑓
with the support A . It is interesting to invest under which

conditions the equality Σ(A ) = ̃︀Σ(A ) holds. Here we prove

that in the quadratic case the equality Σ(A ) = ̃︀Σ(A ) holds.

Theorem 4.1. If for any 𝛼 ∈ A ,
∑︀𝑛

𝑖=1 𝛼𝑖 ≤ 2, then

Σ(A ) = ̃︀Σ(A ) for any chordal extension.

Proof. Suppose 𝑓 ∈ Σ(A ) is a quadratic polynomial with
supp(𝑓) = A . Let 𝑀 = [1, 𝑥1, . . . , 𝑥𝑛] be a monomial basis
and assume 𝑓 = 𝑀𝑇𝑄𝑀 for a positive semidefinite matrix
𝑄 = (𝑞𝑖𝑗)

𝑛
𝑖,𝑗=0. Let R = (𝑅𝑖𝑗)

𝑛
𝑖,𝑗=0 be the corresponding

cross sparsity pattern matrix for 𝑓 . To prove Σ(A ) ⊆ ̃︀Σ(A ),

we need to show 𝑄 ∈ 𝑆𝑛+1
+ ( ̃︀𝐸A , 0), or 𝑄 ∈ 𝑆𝑛+1

+ (𝐸A , 0).

Note that 𝑄 ∈ 𝑆𝑛+1
+ (𝐸A , 0) is equivalent to the proposition

that 𝑅𝑖𝑗 = 0 implies 𝑞𝑖𝑗 = 0 for all 𝑖, 𝑗. Let {e𝑘}𝑛𝑘=1 be the
standard basis. If 𝑖 = 0, 𝑗 > 0, from 𝑅0𝑗 = 0 we have e𝑗 /∈ A .
If 𝑖 > 0, 𝑗 = 0, from 𝑅𝑖0 = 0 we have e𝑖 /∈ A . If 𝑖, 𝑗 > 0, 𝑖 ̸= 𝑗,
from 𝑅𝑖𝑗 = 0 we have e𝑖 + e𝑗 /∈ A . In anyone of these three
cases, we have 𝑞𝑖𝑗 = 0 as desired. �

5 ALGORITHM

According to Section 3, a sparse SOS decomposition proce-
dure can be easily divided into the following four steps:

(1) Compute the support set of a monomial basis B;
(2) Generate the cross sparsity pattern graph 𝐺(𝑉A , 𝐸A )

and a chordal extension ̃︀𝐺(𝑉A , ̃︀𝐸A );

(3) Compute all of the maximal cliques of ̃︀𝐺(𝑉A , ̃︀𝐸A ) and
obtain the blocking SOS problem;

(4) Use an SDP solver to solve the blocking SOS problem.

In step 1, we compute the support set of a monomial basis
B following the method in [21].

In step 2, different chordal extensions will lead to different
blocking SOS decompositions. When implementing this step,

we obtain a chordal extension ̃︀𝐺(𝑉A , ̃︀𝐸A ) by adding edges to
𝐺(𝑉A , 𝐸A ) such that every connected component becomes
a complete subgraph.

The above procedure is formally stated as Algorithm 1
(named SparseSOS) in the following. Obviously, since we
use well-known and popular methods and tools for Step 1
and Step 4, the efficiency of SparseSOS essentially depends
on Step 2 and Step 3. That is, if we can convert original
problems into problems of smaller sizes via Step 2 and Step
3, the computation cost will certainly be decreased since
SDP solvers in Step 4 receives smaller inputs. We will show
in the next section that SparseSOS performs well on many
examples.

Algorithm 1 SparseSOS

input: a polynomial 𝑓 with supp(𝑓) = A
output: a representation 𝑓 =

∑︀𝑚
𝑖=1 𝑔

2
𝑖 or unknown

1: Compute the support set of a monomial basis B =
{𝜔1, . . . ,𝜔𝑟};

2: Generate the cross sparsity pattern graph 𝐺(𝑉A , 𝐸A );
3: Take the connected components {𝐶1, . . . , 𝐶𝑡} of

𝐺(𝑉A , 𝐸A ) to obtain a chordal extension ̃︀𝐺(𝑉A , ̃︀𝐸A );
4: Solve the blocking SOS problem

𝑓 =

𝑡∑︁
𝑘=1

𝑓𝑘, 𝑓𝑘 ∈ R[B𝑘]
2, (*)

where B𝑘 = {𝜔𝑖 ∈ B | 𝑖 ∈ 𝐶𝑘}, 𝑘 = 1, 2, . . . , 𝑡;
5: If (*) is feasible, then return 𝑓 =

∑︀𝑚
𝑖=1 𝑔

2
𝑖 . Otherwise

return unknown.

6 NUMERICAL EXPERIMENTS

In this section, we give numerical results to illustrate the
effectiveness of the algorithm SparseSOS. The algorithm is
implemented with C++ as a tool also named SparseSOS. It
turns out that SparseSOS is extremely powerful and can deal
with some really huge polynomials.

6.1 Versions and Commands

Our tool SparseSOS can be downloaded at
https://gitlab.com/haokunli/sparsesos.

All the examples in the following subsections can be down-
loaded there as well. We illustrate by a very simple example
how to use SparseSOS. Suppose we want to check whether
the following polynomial is SOS by SparseSOS:

36𝑥10
0 𝑥2

1 + 4𝑥10
0 𝑥2

2 + 81𝑥2
0𝑥

8
1𝑥

2
2 − 84𝑥8

0𝑥
3
1 + 18𝑥2

0𝑥
8
1𝑥2

+49𝑥6
0𝑥

4
1 + 𝑥2

0𝑥
8
1 + 36𝑥4

0𝑥
4
1𝑥

2
2 + 4𝑥4

0𝑥
4
1𝑥2 + 4𝑥6

0𝑥
2
2.

First, express the polynomial by +,−, *,̂ , integers and
variables in a file, say example.txt, as follows:

36*x0^10*x1^2 + 4*x0^10*x2^2 + 81*x0^2*x1^8*x2^2 -
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84*x0^8*x1^3 + 18*x0^2*x1^8*x2 +49*x0^6*x1^4

+ x0^2*x1^8 + 36*x0^4*x1^4*x2^2 + 4*x0^4*x1^4*x2

+ 4*x0^6*x2^2.

Then, we only need to type in:

is_sos example.txt

to run SparseSOS on the example.
SparseSOS uses mosek 8.1 as an LP solver and csdp 6.2

as an SDP solver. In the following subsections, we compare
the performance on some examples of SparseSOS with that
of Yalmip [20], SOSTOOLS [31], and SparsePOP [35] which also
exploit sparsity in SOS decompositions. The versions of the
tools and their LP and SDP solvers are listed here: Yalmip
R20181012 (LP solver: gurobi 8.1; SDP solver: mosek 8.1),
SOSTOOLS303 (SDP solver: sdpt 3.4) and SparsePOP301 (SDP
solver: sdpt 3.4).

All numerical examples were computed on a 6-Core Intel
Core i7-8750H@2.20GHz CPU with 16GB RAM memory and
ARCH LINUX SYSTEM.

6.2 The polynomials 𝐵𝑚

Let

𝐵𝑚 =

(︃
3𝑚+2∑︁
𝑖=1

𝑥2
𝑖

)︃⎛⎝(︃3𝑚+2∑︁
𝑖=1

𝑥2
𝑖

)︃2

− 2

3𝑚+2∑︁
𝑖=1

𝑥2
𝑖

𝑚∑︁
𝑗=1

𝑥2
𝑖+3𝑗+1

⎞⎠ ,

where we set 𝑥3𝑚+2+𝑟 = 𝑥𝑟. Note that 𝐵𝑚 is modified from
[26]. For any 𝑚 ∈ N∖{0}, 𝐵𝑚 is homogeneous and is an SOS
polynomial. For these 𝐵𝑚’s, SparseSOS dramatically reduces
the problem sizes and the computation time (see Table 2).

Remark 6.1. It is easy to see that, for 𝑚 ≤ 4, SOSTOOLS
and SparsePOP cannot block-diagonalize the corresponding
Gram matrices for 𝐵𝑚 while Yalmip and our tool SparseSOS
reduce the Gram matrices to smaller submatrices of the
same size. That is the reason why Yalmip and SparseSOS

cost much less time on those problems. For 𝑚 ≥ 5, only
SparseSOS can work out results and Yalmip fails to obtain a
block-diagonalization.

6.3 MCP polynomials 𝑃𝑖,𝑗

The Monotone Column Permanent (MCP) Conjecture was
given in [14]. In the dimension 4, this conjecture is equivalent
to deciding whether particular polynomials 𝑝1,2, 𝑝1,3, 𝑝2,2,
𝑝2,3 are nonnegative (the definitions of 𝑝𝑖,𝑗 can be found in
[17]). Actually, it was proved that every 𝑝𝑖,𝑗 multiplied by a
small particular polynomial is an SOS polynomial ([17]). Let

𝑃1,2 = (𝑎2 + 2𝑏2 + 𝑐2) · 𝑝1,2,
𝑃1,3 = 𝑝1,3,

𝑃2,2 = (𝑎2 + 2𝑏2 + 𝑐2) · 𝑝2,2,

𝑃2,3 = (𝑎2 + 2𝑏2 + 𝑐2) · 𝑝2,3.
We use SparseSOS to certify nonnegativity of 𝑃1,2, 𝑃1,3, 𝑃2,2,
𝑃2,3. The result is listed in Table 3.

Remark 6.2. When we use the ’sparse’ option, SOSTOOLS
seems to make a mistake in computing a monomial basis for
𝑃2,2 and fails to obtain an SOS decomposition for 𝑃2,2.

6.4 Randomly generated polynomials

Now we present the numerical results for randomly generated
polynomials. A sparse randomly generated polynomial

𝑓 =

𝑘∑︁
𝑖=1

𝑓2
𝑖 ∈ randpoly(𝑛, 𝑑, 𝑘, 𝑝)

is constructed as follows: first generate a set of monomials 𝑀
in the set xN𝑛

𝑑 with probability 𝑝, and then randomly assign
the elements of 𝑀 to 𝑓1, . . . , 𝑓𝑘 with random coefficients
between −10 and 10. We generate 18 random polynomials
𝐹1, . . . , 𝐹18 from 6 different classes, where

𝐹1, 𝐹2, 𝐹3 ∈ randpoly(10, 6, 10, 0.01),

𝐹4, 𝐹5, 𝐹6 ∈ randpoly(10, 6, 10, 0.015),

𝐹7, 𝐹8, 𝐹9 ∈ randpoly(10, 10, 10, 0.001),

𝐹10, 𝐹11, 𝐹12 ∈ randpoly(10, 8, 20, 0.002),

𝐹13, 𝐹14, 𝐹15 ∈ randpoly(10, 8, 20, 0.005)

and

𝐹16, 𝐹17, 𝐹18 ∈ randpoly(10, 8, 20, 0.01).

See Table 4 for the performance of Yalmip and SparseSOS on
these polynomials. Since SOSTOOLS and SparsePOP can hardly
handle these polynomials, we do not list the performance of
them in the table.

Remark 6.3. From Table 4, we can see that SparseSOS
obtains block-diagonalizations for 𝐹1, ..., 𝐹15 while Yalmip

fails for these polynomials. For polynomials 𝐹16, 𝐹17, 𝐹18, both
SparseSOS and Yalmip cannot obtain block-diagonalizations.

For 𝐹1, ..., 𝐹6 and 𝐹10, ..., 𝐹12, SparseSOS succeeds in ob-
taining the final SOS decompositions while Yalmip fails on
𝐹4, 𝐹5 and 𝐹10. Furthermore, SparseSOS is faster than Yalmip

on all these polynomials except 𝐹6. We observe that the rea-
son why Yalmip is faster on 𝐹6 lies in the efficiency of SDP
solvers. Mosek is faster on 𝐹6 than csdp.

Although we select only three polynomials from each class of
random polynomials, we notice that SparseSOS performs simi-
larly on polynomials from the same class. For example, for the
classes randpoly(10, 6, 10, 0.01), randpoly(10, 6, 10, 0.015),
and randpoly(10, 8, 20, 0.002), SparseSOS succeeds in obtain-
ing the final SOS decompositions. For the classes randpoly(10,
10, 10, 0.001) and randpoly(10, 8, 20, 0.005), SparseSOS can
obtain block-diagonalizations but cannot work out the final
SOS decompositions. For the class randpoly(10, 8, 20, 0.01),
SparseSOS cannot obtain block-diagonalizations.

7 CONCLUSIONS

We exploit the term sparsity of polynomials in SOS Program-
ming by virtue of cross sparsity patterns and prove a sparse
SOS decomposition theorem for sparse polynomials via PSD
matrix decompositions with chordal sparsity patterns. Based
on this, a new sparse SOS algorithm is proposed and is tested
on various examples. The experimental results show that the
new algorithm is very efficient. The algorithm can be com-
bined with other simplification methods, e.g. [4], to reduce
computational costs further. We will apply the SparseSOS
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Table 1: Notation

#supp the number of support monomials of a polynomial

#block the size of blocks obtained by SparseSOS

𝑖× 𝑗 𝑖 blocks of size 𝑗

* a failure information to obtain an SOS decomposition

OM an out-of-memory error

Table 2: Results for 𝐵𝑚

SparseSOS Yalmip SOSTOOLS SparsePOP

𝑚 #supp #block time #block time #block time #block time

1 35 5× 5, 10× 1 0.01s 5× 5, 10× 1 0.45s 1× 35 0.95s 1× 56 0.54s

2 104 8× 8, 56× 1 0.04s 8× 8, 56× 1 0.95s 1× 120 2.59s 1× 165 4.66s

3 242 11× 11, 165× 1 0.15s 11× 11, 165× 1 1.18s 1× 286 34.00s 1× 364 93.9s

4 476 14× 14, 364× 1 0.45s 14× 14, 364× 1 2.94s 1× 560 423s 1× 680 764s

5 833 17× 17, 680× 1 1.56s 1× 969 OM 1× 969 OM OM

10 5408 32× 32, 4960× 1 65.55s

Table 3: Results for 𝑃𝑖,𝑗

SparseSOS Yalmip SOSTOOLS SparsePOP

#supp #block time #block time #block time #block time

𝑃1,2 159
1× 15, 2× 12, 7× 4,

0.29s
1× 15, 2× 12, 7× 4,

1.86s 1× 77 2.39s 1× 112 2.56s
1× 3, 2× 2, 3× 1 1× 3, 2× 2, 3× 1

𝑃1,3 53
1× 8, 4× 3,

0.08s
1× 8, 4× 3,

0.41s 1× 29 0.86s 2× 30, 1× 29 0.52s
2× 2, 5× 1 2× 2, 5× 1

𝑃2,2 144
3× 12, 2× 4,

0.27s
3× 12, 2× 4,

0.40s 1× 25 * 1× 97 2.23s
8× 2, 2× 1 8× 2, 2× 1

𝑃2,3 107
2× 10, 1× 8, 1× 4,

0.19s
2× 10, 1× 8, 1× 4,

0.40s 1× 53 1.62s 1× 65, 1× 60 1.48s
1× 3, 8× 2, 2× 1 1× 3, 8× 2, 2× 1

Table 4: The result for randomly generated polynomials

SparseSOS Yalmip SparseSOS Yalmip

#supp #block time #block time #supp #block time #block time

𝐹1 590
187, 5,

179.2s 248 315.60s 𝐹4 873
303, 8,

1850.54s 357 OM
6× 2, 44× 1 3× 2, 40× 1

𝐹2 310
83, 3,

4.42s 131 16.34s 𝐹5 709
238, 4,

633.51s 331 OM
4× 2, 37× 1 4× 3, 12, 55× 1

𝐹3 504
162, 6, 4,

63.86s 218 116.09s 𝐹6 927
231, 3,

470.40s 261 297.40s
6× 2, 34× 1 2× 2, 23× 1

𝐹7 1344
4658, 7, 2× 5, 3× 4

OM 4769 OM 𝐹10 306
110, 10, 6, 3× 4,

29.95s 389 OM
7× 3, 16× 2, 29× 1 5× 3, 22× 2, 192× 1

𝐹8 1392
5012, 5, 3,

OM 5046 OM 𝐹11 255
62, 8, 5, 4,

32.09s 220 185.35s
3× 2, 20× 1 2× 3, 2× 2, 131× 1

𝐹9 1845
4528, 7, 3,

OM 4576 OM 𝐹12 228
56, 13, 2× 6, 2× 4,

11.24s 232 200.43s
5× 2, 28× 1 4× 3, 12× 2, 107× 1

𝐹13 1446
2394, 3,

OM 2450 OM 𝐹16 4777 8866 OM 8866 OM
8× 2, 37× 1

𝐹14 1636
2154, 3,

OM 2206 OM 𝐹17 4959 8415 OM 8415 OM
4× 2, 43× 1

𝐹15 1085
1800, 8, 4, 6× 3,

OM 1980 OM 𝐹18 4869 8712 OM 8712 OM
23× 2, 104× 1

In this table, 1× 𝑗 is denoted by 𝑗 for short. For example, the #block data 248 of Yalmip for 𝐹1 stands for one block of size 248.
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algorithm to solve large scale unconstrained and constrained
polynomial optimization problems in future work.
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