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Abstract. This paper is concerned with polynomial optimization problems. We show how to
exploit term (or monomial) sparsity of the input polynomials to obtain a new converging hierarchy of
semidefinite programming relaxations. The novelty (and distinguishing feature) of such relaxations
is to involve block-diagonal matrices obtained in an iterative procedure performing completion of the
connected components of certain adjacency graphs. The graphs are related to the terms arising in
the original data and not to the links between variables. Our theoretical framework is then applied
to compute lower bounds for polynomial optimization problems either randomly generated or coming
from the networked system literature.
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1. Introduction. In this paper, we provide a new method to handle a certain
class of sparse polynomial optimization problems. Roughly speaking, for problems
in this class the terms (monomials) appearing in the involved polynomials satisfy a
certain ``sparsity pattern"" which is represented by block-diagonal binary matrices.
This sparsity pattern, which is concerned with the structure of monomials involved in
the problem, is different from the correlative sparsity pattern already studied in [37]
and related to the links between variables.

Background. The problem of minimizing a polynomial over a set defined by a
finite conjunction of polynomial inequalities (also known as a basic semialgebraic set)
is known to be NP-hard [18]. The moment-sum of squares (moment-SOS) hierarchy
by Lasserre [15] is a nowadays established methodology allowing one to handle this
problem. Optimizing a polynomial can be reformulated either with a primal infinite-
dimensional linear program (LP) over probability measures or with its dual LP over
nonnegative polynomials. In a nutshell, the moment-SOS hierarchy is based on the
fact that one can consider a sequence of finite-dimensional primal-dual relaxations for
the two above-mentioned LPs. At each step of the hierarchy, one only needs to solve
a single semidefinite program (SDP). Under mild assumptions (slightly stronger than
compactness), the related sequence of optimal values converges to the optimal value
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A MOMENT-SOS HIERARCHY THAT EXPLOITS TERM SPARSITY 31

of the initial problem. One well-known limitation of this methodology is that the size
of the matrices involved in the primal-dual SDP at the dth step of the hierarchy is
proportional to

\bigl( 
n+d
n

\bigr) 
, where n is the number of variables of the initial problem.

There are several existing ways to overcome these scalability limitations. To
compute the SOS decomposition of a given nonnegative polynomial, one can sys-
tematically reduce the size of the corresponding SDP matrix by removing the terms
(monomials) which cannot appear in the support of the decomposition [33]. One
can also exploit (i) the sparsity pattern satisfied by the variables of the initial prob-
lem [16, 37] (see also the related SparsePOP solver [38]) as well as (ii) the symme-
tries [34] of the problem. In particular, sparsity has been successively exploited for
specific applications, e.g., for solving optimal power flow problems [12], for round-
off error bound analysis [22, 21], or more recently for approximating the volume of
sparse semialgebraic sets [36]. The polynomials involved in these applications have
a specific correlative sparsity pattern. Sparse polynomial optimization is based on
re-indexing the SDP matrices involved in the moment-SOS hierarchy by considering
subsets I1, . . . , Ip \subseteq \{ 1, . . . , n\} of the input variables. One then obtains a sparse
variant of the moment-SOS hierarchy with quasi-block-diagonal SDP matrices, each
block having a size related to the cardinality of these subsets. Hence if the cardinal-
ities are small with respect to n, then the resulting SDP relaxations yield significant
(sometimes drastic) computational savings. Under mild assumptions, global conver-
gence of this sparse version of the moment-SOS hierarchy is guaranteed if the so-called
running intersection property (RIP) holds. Recently, this methodology has been ex-
tended in [13] to sparse problems with noncommuting variables (for instance, matri-
ces). Other SOS-based representations include the bounded degree sum of squares [17]
with its sparse variant [42]. These two latter hierarchies come with the same conver-
gence guarantees as the standard ones (under the same sparsity pattern assumption).
They involve SDP matrices of smaller size but come with potentially larger sets of
linear constraints which may sometimes result in ill-conditioned relaxations.

Other than exploiting sparsity from the perspective of variables, one can also ex-
ploit sparsity from the perspective of terms, such as sign-symmetries [20] and minimal
coordinate projections [31] in the unconstrained case. More recently, cross sparsity
patterns, a new attempt in this direction introduced in [39], apply to a wider class of
polynomials. By exploiting cross sparsity patterns, a monomial basis used for con-
structing SOS decompositions is partitioned into blocks. If each block has a small
size with respect to the size of the original monomial basis, then the corresponding
SDP matrix is block-diagonal with small blocks and this might significantly improve
the efficiency and the scalability.

The present paper can be viewed as a comprehensive extension of the idea in [39]
to the constrained case and in a more general perspective.

All the above-mentioned hierarchies require one to solve a sequence of SDP re-
laxations. However, in other convex programming frameworks, there exist alternative
classes of positivity certificates also based on term sparsity. This includes sums of non-
negative circuit (SONC) polynomials and sums of arithmetic-geometric-exponential-
means (SAGE) polynomials. A circuit polynomial is a polynomial with support con-
taining only monomial squares, except at most one term, whose exponent is a strict
convex combination of the other exponents. An AGE polynomial is a composition
of weighted sums of exponentials with linear functionals of the variables, which is
nonnegative and contains also at most one negative coefficient. Existing frameworks
[4, 8, 11] allow one to compute sums of nonnegative circuits and sums of AGEs by re-
lying on geometric programming and signomial programming, respectively. In [2], the
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32 JIE WANG, VICTOR MAGRON, AND JEAN-BERNARD LASSERRE

authors introduce alternative decompositions of nonnegative polynomials as diagonal
sum of squares (DSOS) and scaled diagonal sum of squares (SDSOS). Such decompo-
sitions can be computed via linear programming and second-order cone programming,
respectively, a potential advantage with respect to standard SOS-based decomposi-
tions. For these frameworks based on SAGE/SONC/(DSOS)SDSOS decompositions,
one can also handle constrained problems and derive a corresponding converging hier-
archy of lower bounds. However, the underlying relaxations share the same drawback,
namely their implementation, and the computation of the resulting lower bounds is
not easy in practice. Very recently, a combination of correlative sparsity and SDSOS
has been proposed in [26]. This method does not provide a guarantee of convergence
and, in its current state, is only applicable to the case of unconstrained polynomial
optimization problems.

Contributions. We provide a new sparse moment-SOS hierarchy based on term
sparsity rather than correlative sparsity. This is in deep contrast with the sparse
variant of the moment-SOS hierarchy developed in [16, 37].

In section 3, we describe an iterative procedure to exploit the term sparsity in
polynomials that describe the problem on hand. Each iteration consists of two steps,
a support-extension operation followed by a block-closure operation on certain binary
matrices. This iterative procedure is then applied to unconstrained polynomial opti-
mization in section 4 and constrained polynomial optimization in section 5. In both
cases, the iterative procedure leads to a converging moment-SOS hierarchy (called
TSSOS hierarchy) of primal-dual relaxations involving block-diagonal SDP matrices.
If the sizes of blocks are small with respect to the original SDP matrices, then the
resulting SDP relaxations yield a significant computational saving.

The TSSOS hierarchy (in the constrained case) depends on two parameters, the

relaxation order \^d and the sparse order k (corresponding to each iterative step), and

hence allows one more level of flexibility by playing with the two parameters \^d and
k. The optimal values of the TSSOS hierarchy, at fixed relaxation order \^d, yield a
nondecreasing sequence converging to the optimal value of the dense moment-SOS
hierarchy at the same relaxation order in a few steps (typically two or three). In the
unconstrained case, we prove that even at the first iterative step (k = 1), the optimal
value of the corresponding SDP relaxation is already no more worth than the one
obtained with the SDSOS-based decompositions [2].

We prove in section 6 that the block structure of the TSSOS hierarchy at each
relaxation order converges to the block structure determined by the sign-symmetries
related to the support of the input data. This also enables us to provide a new sparse
variant of Putinar's Positivstellensatz [32] for positive polynomials over basic compact
semialgebraic sets. In this representation, the supports of all SOS polynomials are
reduced according to the sign-symmetries.

In section 7, we compare the efficiency and scalability of the TSSOS hierarchy
with existing frameworks on randomly generated examples as well as on problems
arising from the networked system literature. The numerical results demonstrate that
TSSOS has a significantly better performance in terms of efficiency and scalability.
In addition, and although it is not guaranteed in theory, we observe in our numerical
results that the optimal value obtained at the first iterative step (k = 1) of the
TSSOS hierarchy is always the same as the one obtained from the dense moment-
SOS hierarchy on all tested examples, a very encouraging sign of efficiency. Last but
not least, we emphasize that in all numerical examples (except the Broyden banded
function from [37]), the usual correlative sparsity pattern is dense or almost dense
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A MOMENT-SOS HIERARCHY THAT EXPLOITS TERM SPARSITY 33

and so yields no or little computational savings (or cannot even be implemented).
As mentioned in Remark 3.2 and done in the companion paper [40], one can

replace block-closure by chordal-extension to exploit term sparsity, in order to ob-
tain an even more sparse variant of the moment-SOS hierarchy: this is the so-called
Chordal-TSSOS moment-SOS hierarchy. In the present paper, we treat general poly-
nomial optimization problems (POPs). However, as often the case, some correlative
sparsity is present in the input data (description) of large-scale POPs. Therefore, a
natural idea is to combine correlative sparsity with our current TSSOS framework of
term sparsity for solving large-scale POPs. Such an extension (called CS-TSSOS) is
considered in our recent work [41] and is nontrivial, as it requires extra care when
manipulating monomials that involve variables of different cliques that appear in the
correlative sparsity pattern. As a result, CS-TSSOS can handle large-scale POPs
(e.g., instances of the celebrated Max-Cut and optimal power flow problems) with up
to several thousands of variables.

2. Notation and preliminaries.

2.1. Notation and SOS polynomials. Let x = (x1, . . . , xn) be a tuple of
variables and \BbbR [x] = \BbbR [x1, . . . , xn] be the ring of real n-variate polynomials. For a
subset A \subseteq \BbbN n, we denote by conv(A ) the convex hull of A . A polynomial f \in \BbbR [x]
can be written as f(x) =

\sum 
\bfitalpha \in A f\bfitalpha x

\bfitalpha with f\bfitalpha \in \BbbR ,x\bfitalpha = x\alpha 1
1 \cdot \cdot \cdot x\alpha n

n . The support
of f is defined by supp(f) = \{ \bfitalpha \in A | f\bfitalpha \not = 0\} , and the Newton polytope of f is
defined as the convex hull of supp(f), i.e., New(f) = conv(\{ \bfitalpha : \bfitalpha \in supp(f)\} ). We
use | \cdot | to denote the cardinality of a set. For A1,A2 \subseteq \BbbN n, let A1+A2 := \{ \bfitalpha 1+\bfitalpha 2 | 
\bfitalpha 1 \in A1,\bfitalpha 2 \in A2\} .

For a nonempty finite set A \subseteq \BbbN n, let P(A ) be the set of polynomials in \BbbR [x]
whose supports are contained in A , i.e.,P(A ) = \{ f \in \BbbR [x] | supp(f) \subseteq A \} , and
let xA be the | A | -dimensional column vector consisting of elements x\bfitalpha ,\bfitalpha \in A (fix
any ordering on \BbbN n). For a positive integer r, the set of r \times r symmetric matrices is
denoted by \BbbS r and the set of r\times r positive semidefinite (PSD) matrices is denoted by
\BbbS r+.

Given a polynomial f(x) \in \BbbR [x], if there exist polynomials f1(x), . . . , ft(x) such
that

(2.1) f(x) =

t\sum 
i=1

fi(x)
2,

then we say that f(x) is a sum of squares (SOS) polynomial. Clearly, the existence
of an SOS decomposition of a given polynomial provides a certificate for its global
nonnegativity. For d \in \BbbN , let \BbbN n

d := \{ \bfitalpha = (\alpha i) \in \BbbN n | 
\sum n

i=1 \alpha i \leq d\} and assume that
f \in P(\BbbN n

2d). If we choose the standard monomial basis x\BbbN n
d , then the SOS condition

(2.1) is equivalent to the existence of a PSD matrix Q (which is called a Gram matrix
[5]) such that

(2.2) f(x) = (x\BbbN n
d )TQx\BbbN n

d ,

which can be formulized as a semidefinite program (SDP).
We say that a polynomial f \in P(\BbbN n

2d) is sparse if the number of elements in its
support A = supp(f) is much smaller than the number of elements in \BbbN n

2d that forms
a support of fully dense polynomials in P(\BbbN n

2d). When f(x) is a sparse polynomial
in P(\BbbN n

2d), the size of the corresponding SDP (2.2) can be reduced by computing a

D
ow

nl
oa

de
d 

03
/1

5/
22

 to
 6

5.
49

.3
8.

14
9 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

34 JIE WANG, VICTOR MAGRON, AND JEAN-BERNARD LASSERRE

smaller monomial basis. In fact, the set \BbbN n
d in (2.2) can be replaced by the integer

points in half of the Newton polytope of f , i.e., by

(2.3) B =
1

2
\cdot New(f) \cap \BbbN n \subseteq \BbbN n

d .

See [33] for a proof. We refer to this as the Newton polytope method. There are also
other methods to reduce the size of B further [14, 30]. Throughout this paper, we
will use a monomial basis, which is either the monomial basis given by the Newton
polytope method in the unconstrained case or the standard monomial basis in the
constrained case. For convenience, we abuse notation in what follows and denote the
monomial basis xB by the exponents B.

2.2. Moment matrices. With y = (y\bfitalpha )\bfitalpha \in \BbbN n being a sequence indexed by the
standard monomial basis \BbbN n of \BbbR [x], let L\bfy : \BbbR [x] \rightarrow \BbbR be the linear functional

f =
\sum 
\bfitalpha 

f\bfitalpha x
\bfitalpha \mapsto \rightarrow L\bfy (f) =

\sum 
\bfitalpha 

f\bfitalpha y\bfitalpha .

For a monomial basis B, the moment matrix MB(y) associated with B and y is the
matrix with rows and columns indexed by B such that

MB(y)\bfitbeta \bfitgamma := L\bfy (x
\bfitbeta x\bfitgamma ) = y\bfitbeta +\bfitgamma \forall \bfitbeta ,\bfitgamma \in B.

If B is the standard monomial basis \BbbN n
d , we also denote MB(y) by Md(y).

Suppose g =
\sum 

\bfitalpha g\bfitalpha x
\bfitalpha \in \BbbR [x], and let y = (y\bfitalpha )\bfitalpha \in \BbbN n be given. For a positive

integer d, the localizing matrix Md(gy) associated with g and y is the matrix with
rows and columns indexed by \BbbN n

d such that

Md(g y)\bfitbeta \bfitgamma := L\bfy (g x
\bfitbeta x\bfitgamma ) =

\sum 
\bfitalpha 

g\bfitalpha y\bfitalpha +\bfitbeta +\bfitgamma \forall \bfitbeta ,\bfitgamma \in \BbbN n
d .

3. Exploiting term sparsity in SOS decompositions. For a positive integer
r, let [r] := \{ 1, . . . , r\} . For matrices A,B \in \BbbS r, let A \circ B \in \BbbS r denote the Hadamard,
or entrywise, product of A and B, defined by the equation [A \circ B]ij = AijBij , and
let \langle A,B\rangle \in \BbbR be the trace inner-product, defined by \langle A,B\rangle = Tr(ATB). Let \BbbZ r\times r

2

(\BbbZ 2 := \{ 0, 1\} ) be the set of r \times r binary matrices. The support of a binary matrix
B \in \BbbS r \cap \BbbZ r\times r

2 is the set of locations of nonzero entries, i.e.,

supp(B) := \{ (i, j) \in [r]\times [r] | Bij = 1\} .

For a binary matrix B \in \BbbS r \cap \BbbZ r\times r
2 , we define the set of PSD matrices with the

sparsity pattern represented by B as

\BbbS r+(B) := \{ Q \in \BbbS r+ | B \circ Q = Q\} .

Let f(x) =
\sum 

\bfitalpha \in A f\bfitalpha x
\bfitalpha with supp(f) = A , and let B be a monomial basis with

r = | B| . For any \bfitalpha \in B + B, associate it with a binary matrix A\bfitalpha \in \BbbS r \cap \BbbZ r\times r
2

such that [A\bfitalpha ]\bfitbeta \bfitgamma = 1 if and only if \bfitbeta + \bfitgamma = \bfitalpha for all \bfitbeta ,\bfitgamma \in B. Then f(x) is an
SOS polynomial if and only if there exists Q \in \BbbS r+ such that the following coefficient
matching condition holds:

(3.1) \langle A\bfitalpha , Q\rangle = f\bfitalpha \forall \bfitalpha \in B + B,
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A MOMENT-SOS HIERARCHY THAT EXPLOITS TERM SPARSITY 35

where we set f\bfitalpha = 0 if \bfitalpha /\in A . For later use, we also define AS :=
\sum 

\bfitalpha \in S A\bfitalpha for any
subset S \subseteq B + B. For convenience, we define a block-closure operation on binary
matrices as follows.

Definition 3.1. A relation R \subseteq [r] \times [r] is called transitive if (i, j), (j, k) \in R
implies (i, k) \in R. The transitive closure of R, denoted by R, is the smallest relation
that contains R and is transitive. For a binary matrix B \in \BbbS r \cap \BbbZ r\times r

2 , let R \subseteq [r]\times [r]
be the adjacency relation of B, i.e., (i, j) \in R, if and only if Bij = 1. Then define the
block-closure B \in \BbbS r \cap \BbbZ r\times r

2 as

Bij :=

\Biggl\{ 
1, (i, j) \in R,

0 otherwise.

For a binary matrix B \in \BbbS r\cap \BbbZ r\times r
2 , the evaluation of B has a graphical description

(assume Bii = 1 for all i). Suppose that G is the adjacency graph of B. Then B is
the adjacency matrix of the graph obtained by completing the connected components
of G to complete subgraphs. Hence the evaluation of block-closure boils down to
the computation of connected components of a graph, which can be done in linear
time (in terms of the numbers of vertices and edges of the graph). Note also that
B is block-diagonal up to permutation, where each block corresponds to a connected
component of G. Figure 1 is a simple example where B has two blocks of sizes 3 and
1 corresponding to the connected components of G: \{ 1, 3, 4\} and \{ 2\} , respectively.

B =

\left[    
1 0 1 0
0 1 0 0
1 0 1 1
0 0 1 1

\right]    B =

\left[    
1 0 1 1
0 1 0 0
1 0 1 1
1 0 1 1

\right]    
1

3 4 2

G :

Fig. 1. Block-closure and connected components.

Remark 3.2. The block-closure operation B used in this paper can actually be re-
placed by a chordal-extension operation on adjacency graphs, which generally leads to
sparser graphs, and then we take maximal cliques rather than connected components
by virtue of the decomposition theorem on PSD matrices with chordal sparsity in [1].
See [39, 40] for more details. We use the block-closure in this paper since it is very
simple to determine and can guarantee the convergence to the dense moment-SOS
relaxation.

Let f(x) \in \BbbR [x] with supp(f) = A , and let B be a monomial basis with r = | B| .
Let S (0) = A \cup (2B), where 2B = \{ 2\bfitbeta | \bfitbeta \in B\} . For k \geq 1, we recursively define

binary matrices B
(k)
A \in \BbbS r \cap \BbbZ r\times r

2 indexed by B via two successive steps:

(1) Support-extension: define a binary matrix C
(k)
A = AS (k - 1) , i.e.,

[C
(k)
A ]\bfitbeta \bfitgamma :=

\Biggl\{ 
1 if \bfitbeta + \bfitgamma \in S (k - 1),

0 otherwise.

(2) Block-closure: let B
(k)
A = C

(k)
A and S (k) =

\bigcup 
[B

(k)
A ]\bfitbeta \bfitgamma =1

\{ \bfitbeta + \bfitgamma \} .

By construction, it is easy to see that supp(B
(k)
A ) \subseteq supp(B

(k+1)
A ) for all k \geq 1. Hence,
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36 JIE WANG, VICTOR MAGRON, AND JEAN-BERNARD LASSERRE

the sequence of binary matrices (B
(k)
A )k\geq 1 stabilizes after a finite number of steps. We

denote the stabilized matrix by B
(\ast )
A .

The reason why we set S (0) = A \cup (2B) rather than S (0) = A for initialization
is explained in Remark 4.1.

Let us denote the set of SOS polynomials supported on A by

\Sigma (A ) := \{ f \in P(A ) | \exists Q \in \BbbS r+ s.t. f = (xB)TQxB\} ,

and for k \geq 1, let \Sigma k(A ) be the subset of \Sigma (A ) whose member admits a Gram matrix

with the sparsity pattern represented by B
(k)
A , i.e.,

(3.2) \Sigma k(A ) := \{ f \in P(A ) | \exists Q \in \BbbS r+(B
(k)
A ) s.t. f = (xB)TQxB\} .

In addition, let

(3.3) \Sigma \ast (A ) := \{ f \in P(A ) | \exists Q \in \BbbS r+(B
(\ast )
A ) s.t. f = (xB)TQxB\} .

By construction, we have the following inclusions:

\Sigma 1(A ) \subseteq \Sigma 2(A ) \subseteq \cdot \cdot \cdot \subseteq \Sigma \ast (A ) \subseteq \Sigma (A ).

Theorem 3.3. For a finite set A \subseteq \BbbN n, one has \Sigma \ast (A ) = \Sigma (A ).

Proof. We only need to prove the inclusion \Sigma (A ) \subseteq \Sigma \ast (A ). Suppose B is a
monomial basis. For any f \in \Sigma (A ), let Q \in \BbbS r+ be a Gram matrix of f , and we

construct a matrix \~Q \in \BbbS r+ by \~Q = B
(\ast )
A \circ Q. We next show that f = (xB)T \~QxB. Let

S (\ast ) = \cup 
[B

(\ast )
A ]\bfitbeta \bfitgamma =1

\{ \bfitbeta + \bfitgamma \} . By construction, B
(\ast )
A is stabilized under the support-

extension operation and hence B
(\ast )
A = AS (\ast ) . So we have (xB)TQxB  - (xB)T \~QxB =

(xB)T (Q  - \~Q)xB = (xB)T (A(B+B) \circ Q  - AS (\ast ) \circ Q)xB = (xB)T (A(B+B)\setminus S (\ast ) \circ 
Q)xB. Note that (xB)T (A(B+B) \circ Q)xB = f and supp(f) = A . So for any \bfitalpha \in 
(B + B)\setminus A , (xB)T (A\bfitalpha \circ Q)xB = 0. It follows that (xB)T (A(B+B)\setminus S (\ast ) \circ Q)xB =\sum 

\bfitalpha \in (B+B)\setminus S (\ast )(xB)T (A\bfitalpha \circ Q)xB = 0 since one has A \subseteq S (\ast ) by construction.

Therefore, (xB)T \~QxB = (xB)TQxB = f .
Note that \~Q is block-diagonal (up to permutation) and each block of \~Q is a

principal submatrix of Q, so \~Q is PSD. Thus, f \in \Sigma \ast (A ).

Consequently, we obtain a hierarchy of inner approximations of \Sigma (A ) which
reaches \Sigma (A ) in a finite number of steps.

Remark 3.4. For each k \geq 1, Q \in \BbbS r+(B
(k)
A ) is block-diagonal (up to permutation).

Thus, checking membership in \Sigma k(A ) boils down to solving an SDP problem involving
SDP matrices of small sizes if each block has a small size with respect to the original
matrix. This might significantly reduce the overall computational cost.

The next result states that \Sigma 1(A ) = \Sigma (A ) always holds in the quadratic case.

Theorem 3.5. For a finite set A \subseteq \BbbN n, if for all \bfitalpha = (\alpha i) \in A ,
\sum n

i=1 \alpha i \leq 2,
then \Sigma 1(A ) = \Sigma (A ).

Proof. We only need to prove the inclusion \Sigma (A ) \subseteq \Sigma 1(A ). Suppose f \in \Sigma (A )
is a quadratic polynomial with supp(f) = A . Let B = \{ 0\} \cup \{ ek\} nk=1 be the standard
monomial basis and Q = [qij ]

n
i,j=0 a Gram matrix of f . To show that f \in \Sigma 1(A ),

it suffices to prove that Q \in \BbbS n+1
+ (C

(1)
A ), which holds if [C

(1)
A ]ij = 0 implies qij = 0
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A MOMENT-SOS HIERARCHY THAT EXPLOITS TERM SPARSITY 37

for all i, j. If i = 0, j > 0, from [C
(1)
A ]0j = 0 one has ej /\in A . If i > 0, j = 0, from

[C
(1)
A ]i0 = 0 one has ei /\in A . If i, j > 0, from [C

(1)
A ]ij = 0 one has ei + ej /\in A . In

any of these three cases, one has qij = 0 as desired.

4. A block SDP hierarchy for unconstrained POPs. In this section, we
consider the unconstrained polynomial optimization problem

(P) : \theta \ast := inf
\bfx 
\{ f(x) : x \in \BbbR n\} ,

with f(x) \in \BbbR [x], and exploit the sparse SOS decompositions in section 3 to establish
a block SDP hierarchy for (P).

Obviously, (P) is equivalent to

(P') : \theta \ast = sup
\lambda 
\{ \lambda | f(x) - \lambda \geq 0\} .

Replacing the nonnegativity condition by the stronger SOS condition, we obtain an
SOS relaxation of (P):

(SOS) : \theta sos := sup
\lambda 
\{ \lambda | f(x) - \lambda \in \Sigma (A )\} ,

with A = \{ 0\} \cup supp(f). If f is sparse and we replace the nonnegativity condition
in (P') by the sparse SOS conditions (3.2), then we obtain a hierarchy of sparse SOS
relaxations of (P):

(4.1) (Pk)\ast : \theta k := sup
\lambda 
\{ \lambda | f(x) - \lambda \in \Sigma k(A )\} , k = 1, 2, . . . .

For each k, (Pk)\ast corresponds to a block SDP problem. In addition, let

(4.2) (TSSOS) : \theta tssos := sup
\lambda 
\{ \lambda | f(x) - \lambda \in \Sigma \ast (A )\} .

Then we have the following hierarchy of lower bounds for the optimum of (P):

\theta \ast \geq \theta sos = \theta tssos \geq \cdot \cdot \cdot \geq \theta 2 \geq \theta 1,

where the equality \theta sos = \theta tssos follows from Theorem 3.3.
Let B be the monomial basis. For each k \geq 1, the dual of (Pk)\ast is the following

block moment problem:

(4.3) (Pk) :

\left\{     
inf L\bfy (f)

s.t. B
(k)
A \circ MB(y) \succeq 0,

y\bfzero = 1.

We call (4.1) and (4.3) the TSSOS moment-SOS hierarchy (TSSOS hierarchy in
short) for the original problem (P) and call k the sparse order.

Remark 4.1. We point out that one should set S (0) = A \cup (2B) rather than
S (0) = A for the iterative initialization in section 3 to improve the feasibility of
(P1)\ast (an extra advantage for this choice is that it might also speed up the iteration).
To see this, consider the polynomial f = 1 + x + x4 and A = supp(f) = \{ 0, 1, 4\} .
Take the monomial basis B = \{ 0, 1, 2\} . If we set S (0) = A , then B

(1)
A =

\Bigl[ 
1 1 0
1 1 0
0 0 1

\Bigr] 
. It
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38 JIE WANG, VICTOR MAGRON, AND JEAN-BERNARD LASSERRE

is clear that f  - \lambda /\in \Sigma 1(A ) for any \lambda . So the corresponding SDP (P1)\ast is infeasible

in this case. On the other hand, if we set S (0) = A \cup (2B), then B
(1)
A =

\Bigl[ 
1 1 1
1 1 1
1 1 1

\Bigr] 
and

(P1)\ast is feasible now.

Proposition 4.2. For each k \geq 1, there is no duality gap between (Pk) and
(Pk)\ast .

Proof. This easily follows from Proposition 3.1 of [15] for the dense case and the

observation that each block of B
(k)
A \circ MB(y) is a principal submatrix of MB(y).

Example 4.3. Consider the polynomial f = 1 + x4
1 + x4

2 + x4
3 + x1x2x3 + x2. A

monomial basis for f is \{ 1, x2, x
2
1, x

2
2, x1x3, x

2
3, x1, x2x3, x3, x1x2\} . Then

C
(1)
A =

\left[                

1 1 1 1 0 1 0 0 0 0
1 1 0 0 1 0 0 0 0 0
1 0 1 1 0 1 0 0 0 0
1 0 1 1 0 1 0 0 0 0
0 1 0 0 1 0 0 0 0 0
1 0 1 1 0 1 0 0 0 0
0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 1 1

\right]                
and this yields

B
(1)
A =

\left[                

1 1 1 1 1 1 0 0 0 0
1 1 1 1 1 1 0 0 0 0
1 1 1 1 1 1 0 0 0 0
1 1 1 1 1 1 0 0 0 0
1 1 1 1 1 1 0 0 0 0
1 1 1 1 1 1 0 0 0 0
0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 1 1

\right]                
.

Furthermore, we have

B
(2)
A = C

(2)
A =

\left[                

1 1 1 1 1 1 0 0 0 0
1 1 1 1 1 1 0 0 0 0
1 1 1 1 1 1 0 0 0 0
1 1 1 1 1 1 0 0 0 0
1 1 1 1 1 1 0 0 0 0
1 1 1 1 1 1 0 0 0 0
0 0 0 0 0 0 1 1 1 1
0 0 0 0 0 0 1 1 1 1
0 0 0 0 0 0 1 1 1 1
0 0 0 0 0 0 1 1 1 1

\right]                
.

Thus, (B
(k)
A )k\geq 1 stabilizes at k = 2. Then we solve the SDPs (P1), (P2) and we obtain

\theta 1 = \theta 2 = \theta tssos = \theta sos = \theta \ast \approx 0.4753.
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A MOMENT-SOS HIERARCHY THAT EXPLOITS TERM SPARSITY 39

Relationship with DSOS/SDSOS optimization. The following definitions
of DSOS and SDSOS have been introduced in [2]. For more details, the interested
reader is referred to [2].

A symmetric matrix Q \in \BbbS r is diagonally dominant if Qii \geq 
\sum 

j \not =i | Qij | for i =
1, . . . , r. We say that a polynomial f(x) \in \BbbR [x] is a diagonally dominant sum of
squares (DSOS) polynomial if it admits a Gram matrix representation (2.2) with a
diagonally dominant Gram matrix Q. We denote the set of DSOS polynomials by
DSOS.

A symmetric matrix Q \in \BbbS r is scaled diagonally dominant if there exists a positive
definite r\times r diagonal matrix D such that DAD is diagonally dominant. We say that
a polynomial f(x) \in \BbbR [x] is a scaled diagonally dominant sum of squares (SDSOS)
polynomial if it admits a Gram matrix representation (2.2) with a scaled diagonally
dominant Gram matrix Q. We denote the set of SDSOS polynomials by SDSOS.

For a finite set A \subseteq \BbbN n, let

DSOS(A ) := \Sigma (A ) \cap DSOS

and
SDSOS(A ) := \Sigma (A ) \cap SDSOS.

Clearly, it holds that DSOS(A ) \subseteq SDSOS(A ) \subseteq \Sigma (A ).

Theorem 4.4. For a finite set A \subseteq \BbbN n, one has SDSOS(A ) \subseteq \Sigma 1(A ).

Proof. Let B be a monomial basis with r = | B| . For any f \in SDSOS(A ), there
exists a scaled diagonally dominant Gram matrix Q \in \BbbS r+ indexed by B. We then

construct a matrix \~Q \in \BbbS r by \~Q = C
(1)
A \circ Q, i.e.,

\~Q\bfitbeta \bfitgamma =

\Biggl\{ 
Q\bfitbeta \bfitgamma if \bfitbeta + \bfitgamma \in A \cup 2B,

0 otherwise.

By construction, (xB)TQxB - (xB)T \~QxB = (xB)T (A(B+B)\setminus (A \cup 2B)\circ Q)xB = 0 since

(xB)T (A(B+B) \circ Q)xB = f and supp(f) = A . Thus, (xB)T \~QxB = (xB)TQxB = f .
Note that we only replace off-diagonal entries by zeros in Q and replacing off-diagonal
entries by zeros does not affect the scaled diagonal dominance of a matrix. Hence, \~Q is

also a scaled diagonally dominant matrix. Moreover, we have B
(1)
A \circ \~Q = C

(1)
A \circ \~Q = \~Q

by construction. Thus, f \in \Sigma 1(A ).

Replacing the nonnegativity condition in (P') by the DSOS (resp., SDSOS) con-
dition, we obtain the DSOS (resp., SDSOS) relaxation of (P):

(DSOS) : \theta dsos := sup
\lambda 
\{ \lambda | f(x) - \lambda \in DSOS(A )\} 

and

(SDSOS) : \theta sdsos := sup
\lambda 
\{ \lambda | f(x) - \lambda \in SDSOS(A )\} .

The above DSOS and SDSOS relaxations for polynomial optimization have been in-
troduced and studied in [2]. By Theorem 4.4, we have the following hierarchy of lower
bounds for the optimal value of (P):

\theta \ast \geq \theta sos = \theta tssos \geq \cdot \cdot \cdot \geq \theta 2 \geq \theta 1 \geq \theta sdsos \geq \theta dsos.
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5. A block moment-SOS hierarchy for constrained POPs. In this section,
we consider the constrained polynomial optimization problem

(Q) : \theta \ast := inf
\bfx 
\{ f(x) : x \in K\} ,

where f(x) \in \BbbR [x] is a polynomial and K \subseteq \BbbR n is the basic semialgebraic set

(5.1) K = \{ x \in \BbbR n : gj(x) \geq 0, j = 1, . . . ,m\} 

for some polynomials gj(x) \in \BbbR [x], j = 1, . . . ,m.
Let dj = \lceil deg(gj)/2\rceil , j = 1, . . . ,m, and d = max\{ \lceil deg(f)/2\rceil , d1, . . . , dm\} , where

g0 := 1. With \^d \geq d being a positive integer, the Lasserre hierarchy [15] of moment
semidefinite relaxations of (Q) is defined by

(5.2) (Q \^d) :

\left\{         
inf L\bfy (f)

s.t. M \^d(y) \succeq 0,

M \^d - dj
(gjy) \succeq 0, j = 1, . . . ,m,

y\bfzero = 1,

with the optimal value denoted by \theta \^d, and we call \^d the relaxation order. Let \BbbN n
2( \^d - dj)

be the standard monomial basis for j = 0, . . . ,m. The dual of (5.2) is an SDP
equivalent to the following SOS problem:

(5.3) (Q \^d)
\ast :

\left\{     
sup \lambda 

s.t. f  - \lambda = s0 +
\sum m

j=1 sjgj ,

sj \in \Sigma (\BbbN n
2( \^d - dj)

), j = 0, . . . ,m.

Let

(5.4) A = supp(f) \cup 
m\bigcup 
j=1

supp(gj).

Set S
(0)

0, \^d
= A \cup (2\BbbN n

\^d
) and S

(0)

j, \^d
= \emptyset , j = 1, . . . ,m. Let us define rj :=

\bigl( n+\^d - dj

\^d - dj

\bigr) 
. For

k \geq 1, we recursively define binary matrices B
(k)

j, \^d
\in \BbbS rj \cap \BbbZ rj\times rj

2 , indexed by \BbbN n
\^d - dj

,

j = 0, . . . ,m, via two successive steps:

(1) Support-extension: define a binary matrix C
(k)

j, \^d
\in \BbbS rj \cap \BbbZ rj\times rj

2 with rows and

columns indexed by \BbbN n
\^d - dj

by

(5.5) [C
(k)

j, \^d
]\bfitbeta \bfitgamma :=

\Biggl\{ 
1 if (supp(gj) + \bfitbeta + \bfitgamma ) \cap 

\bigcup m
j=0 S

(k - 1)

j, \^d
\not = \emptyset ,

0 otherwise.

(2) Block-closure: let B
(k)

j, \^d
= C

(k)

j, \^d
and

(5.6) S
(k)

j, \^d
:= supp(gj) +

\bigcup 
[B

(k)

j, \^d
]\bfitbeta \bfitgamma =1

\{ \bfitbeta + \bfitgamma \} .
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Therefore, with k \geq 1, we can further consider a block moment relaxation of (Q \^d)
(5.2):

(5.7) (Qk
\^d
) :

\left\{           
inf L\bfy (f)

s.t. B
(k)

0, \^d
\circ M \^d(y) \succeq 0,

B
(k)

j, \^d
\circ M \^d - dj

(gjy) \succeq 0, j = 1, . . . ,m,

y\bfzero = 1,

with the optimal value denoted by \theta 
(k)
\^d

. By construction, we then have the inclusion

supp(B
(k)

j, \^d
) \subseteq supp(B

(k+1)

j, \^d
) for all k \geq 1 and j = 0, . . . ,m. Hence, the sequence

of binary matrices (B
(k)

j, \^d
)k\geq 1 stabilizes for all j after a finite number of steps. We

denote the stabilized matrices by B
(\ast )
j, \^d

, j = 0, . . . ,m, and denote the corresponding

SDP problem (5.7) by (Q\mathrm{t}\mathrm{s}
\^d
) with optimal value \theta \ast \^d.

Remark 5.1. As for the unconstrained case (see Remark 4.1), we initialize by

letting S
(0)

0, \^d
= A \cup (2\BbbN n

\^d
) rather than S

(0)

0, \^d
= A . The setting of A = supp(f) \cup \bigcup m

j=1 supp(gj) can be understood by noting that for j = 1, . . . ,m, we have 0 \in \BbbN n
\^d - dj

(i.e., ``1"" is part of the monomial basis of the SOS multiplier sj associated to gj) and
supp(gj) + 0+ 0 = supp(gj). As we will see later, this setting is crucial for Corollary
6.8.

Theorem 5.2. For fixed \^d \geq d, the sequence (\theta 
(k)
\^d

)k\geq 1 of optimal values of (5.7)
is monotone nondecreasing and in addition, \theta \ast \^d = \theta \^d.

Proof. Since supp(B
(k)

j, \^d
) \subseteq supp(B

(k+1)

j, \^d
) and B

(k)

j, \^d
is block-diagonal (up to per-

mutation) for all j, k, (Qk
\^d
) is a relaxation of (Qk+1

\^d
) and (Q \^d). Therefore, (\theta 

(k)
\^d

)k\geq 1

is nondecreasing and \theta \ast \^d \leq \theta \^d.

Let S
(\ast )
\^d

= \cup m
j=0(supp(gj) + \cup 

[B
(\ast )
j, \^d

]\bfitbeta \bfitgamma =1
\{ \bfitbeta + \bfitgamma \} ). Suppose that y = (y\bfitalpha )\bfitalpha \in S

(\ast )
\^d

is any feasible solution of (Q\mathrm{t}\mathrm{s}
\^d
). Then define a sequence y = (y\bfitalpha )\bfitalpha \in \BbbN n

2 \^d
by

y\bfitalpha =

\Biggl\{ 
y\bfitalpha if \bfitalpha \in S

(\ast )
\^d

,

0 otherwise.

Because B
(\ast )
j, \^d

is stabilized under the support-extension operation, by (5.5), one has

(supp(gj) + \bfitbeta + \bfitgamma ) \cap S
(\ast )
\^d

= \emptyset for all (\bfitbeta ,\bfitgamma ) /\in supp(B
(\ast )
j, \^d

) for j = 0, . . . ,m. Thus,

we have M \^d - dj
(gjy) = B

(\ast )
j, \^d

\circ M \^d - dj
(gjy) for j = 0, . . . ,m. Therefore, y is also a

feasible solution of (Q \^d) and hence L\bfy (f) = L\bfy (f) \geq \theta \^d. Hence, \theta \ast \^d \geq \theta \^d since y is an

arbitrary feasible solution of (Q\mathrm{t}\mathrm{s}
\^d
). It follows that \theta \ast \^d = \theta \^d.

Theorem 5.3. For fixed k \geq 1, the sequence (\theta 
(k)
\^d

) \^d\geq d of optimal values of (5.7)
is monotone nondecreasing.

Proof. We only need to show that supp(B
(k)

j, \^d
) \subseteq supp(B

(k)

j, \^d+1
) for all j, k since

this together with the fact that B
(k)

j, \^d
, B

(k)

j, \^d+1
are block-diagonal (up to permutation)

implies that (Qk
\^d
) is a relaxation of (Qk

\^d+1
) and hence \theta 

(k)
\^d

\leq \theta 
(k)
\^d+1

. Let us prove this
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conclusion by induction on k. For k = 1, by (5.5), we have supp(C
(1)

j, \^d
) \subseteq supp(C

(1)

j, \^d+1
)

for j = 0, . . . ,m, which implies that supp(B
(1)

j, \^d
) \subseteq supp(B

(1)

j, \^d+1
) for j = 0, . . . ,m. Now

assume that supp(B
(k)

j, \^d
) \subseteq supp(B

(k)

j, \^d+1
), j = 0, . . . ,m, hold for a given k \geq 1. By (5.6)

and by the induction hypothesis, we have S
(k)

j, \^d
\subseteq S

(k)

j, \^d+1
for all j. Again by (5.5), we

have supp(C
(k+1)

j, \^d
) \subseteq supp(C

(k+1)

j, \^d+1
), which implies supp(B

(k+1)

j, \^d
) \subseteq supp(B

(k+1)

j, \^d+1
) for

j = 0, . . . ,m. Thus, we complete the induction.

Consequently, combining Theorem 5.2 with Theorem 5.3, we obtain the following
two-level hierarchy of lower bounds for the optimal value of (Q):

(5.8)

\theta 
(1)
d \leq \theta 

(2)
d \leq \cdot \cdot \cdot \leq \theta \ast d = \theta d

\geq \geq \geq 

\theta 
(1)
d+1 \leq \theta 

(2)
d+1 \leq \cdot \cdot \cdot \leq \theta \ast d+1 = \theta d+1

\geq \geq \geq 

...
...

...
...

\geq \geq \geq 
\theta 
(1)
\^d

\leq \theta 
(2)
\^d

\leq \cdot \cdot \cdot \leq \theta \ast \^d = \theta \^d

\geq \geq \geq 

...
...

...
...

For each j = 1, . . . ,m, writing M \^d - dj
(gjy) =

\sum 
\bfitalpha Dj

\bfitalpha y\bfitalpha for appropriate symmet-

ric matrices \{ Dj
\bfitalpha \} , then the dual of (Qk

\^d
) reads as

(5.9) (Qk
\^d
)\ast :

\left\{     
sup \lambda 

s.t. \langle Q0, A\bfitalpha \rangle +
\sum m

j=1\langle Qj , D
j
\bfitalpha \rangle + \lambda \delta \bfzero \bfitalpha = f\bfitalpha \forall \bfitalpha \in S

(k)
\^d

,

Qj \in \BbbS rj+ (B
(k)

j, \^d
), j = 0, . . . ,m,

where S
(k)
\^d

= \cup m
j=0(supp(gj) + \cup 

[B
(k)

j, \^d
]\bfitbeta \bfitgamma =1

\{ \bfitbeta + \bfitgamma \} ), A\bfitalpha is defined in section 3, and

\delta \bfzero \bfitalpha is the usual Kronecker symbol.
We call (5.7) and (5.9) the TSSOS moment-SOS hierarchy (TSSOS hierarchy in

short) for the original problem (Q) and call k the sparse order.

Proposition 5.4. Let f \in \BbbR [x], and let K be as in (5.1). Assume that K has
a nonempty interior. Then there is no duality gap between (Qk

\^d
) and (Qk

\^d
)\ast for any

\^d \geq d and k \geq 1.

Proof. By the duality theory of convex programming, this easily follows from

Theorem 4.2 of [15] for the dense case and the observation that each block of B
(k)

j, \^d
\circ 

M \^d - dj
(gjy) is a principal submatrix of M \^d - dj

(gjy) for all j, k.

For any feasible solution of (Qk
\^d
)\ast , multiplying each side of the constraint in (5.9)

by x\bfitalpha for all \bfitalpha \in \BbbN n
2 \^d

and summing up yields

(5.10)

\Biggl\langle 
Q0,

\sum 
\bfitalpha \in \BbbN n

2 \^d

A\bfitalpha x
\bfitalpha 

\Biggr\rangle 
+

m\sum 
j=1

\Biggl\langle 
Qj ,

\sum 
\bfitalpha \in \BbbN n

2 \^d

Dj
\bfitalpha x

\bfitalpha 

\Biggr\rangle 
= f  - \lambda .
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Note that
\sum 

\bfitalpha \in \BbbN n
2 \^d

A\bfitalpha x
\bfitalpha = x\BbbN n

\^d \cdot (x\BbbN n
\^d )T and

\sum 
\bfitalpha \in \BbbN n

2 \^d

Dj
\bfitalpha x

\bfitalpha = gjx
\BbbN n

\^d - dj \cdot (x\BbbN n
\^d - dj )T

for j = 1 . . . ,m. Hence, we can rewrite (5.10) as

(5.11) (x\BbbN n
\^d )TQ0x

\BbbN n
\^d +

m\sum 
j=1

gj(x
\BbbN n

\^d - dj )TQjx
\BbbN n

\^d - dj = f  - \lambda .

For each j, the binary matrix B
(k)

j, \^d
is block-diagonal up to permutation and B

(k)

j, \^d

induces a partition of the monomial basis \BbbN n
\^d - dj

: two vectors \bfitbeta ,\bfitgamma \in \BbbN n
\^d - dj

belong to

the same block if and only if the rows and columns indexed by \bfitbeta ,\bfitgamma belong to the same

block in B
(k)

j, \^d
. If some diagonal element of B

(k)

j, \^d
is zero, then the corresponding basis

element can be discarded. Assume that vj1(x), . . . , vjlj (x) are the resulting blocks in
this partition and Qj1, . . . , Qjlj are the corresponding principal submatrices of Qj .
Then (5.11) reads as

(5.12)

l0\sum 
i=1

vji(x)
TQjivji(x) +

m\sum 
j=1

gj

lj\sum 
i=1

vji(x)
TQjivji(x) = f  - \lambda .

For all i, j, the polynomial sji := vji(x)
TQjivji(x) is an SOS polynomial since Qji is

PSD. Then we have

(5.13)

l0\sum 
i=1

sji +

m\sum 
j=1

gj

lj\sum 
i=1

sji = f  - \lambda .

Notice that (5.13) is in fact a sparse Putinar's representation for the polynomial f - \lambda .
This representation is a certificate of positivity on K for the polynomial f - \lambda . Indeed,
(5.13) ensures that f  - \lambda is nonnegative on K and each SOS sji has an associated
Gram matrix Qji indexed in the sparse monomial basis vji(x).

Example 5.5. Let f = x4
1 + x4

2  - x1x2 and K = \{ (x1, x2) \in \BbbR 2 : g1 = 1  - 
2x2

1  - x2
2 \geq 0\} . Let A = \{ (4, 0), (0, 4), (1, 1), (0, 0), (2, 0), (0, 2)\} and \^d = 2. Take

\{ 1, x1, x2, x
2
1, x1x2, x

2
2\} as a monomial basis. Then

C
(1)
0,2 =

\left[        
1 0 0 1 1 1
0 1 1 0 0 0
0 1 1 0 0 0
1 0 0 1 0 1
1 0 0 0 1 0
1 0 0 1 0 1

\right]        and C
(1)
1,2 =

\left[  1 0 0
0 1 1
0 1 1

\right]  .

This yields

B
(1)
0,2 =

\left[        
1 0 0 1 1 1
0 1 1 0 0 0
0 1 1 0 0 0
1 0 0 1 1 1
1 0 0 1 1 1
1 0 0 1 1 1

\right]        and B
(1)
1,2 =

\left[  1 0 0
0 1 1
0 1 1

\right]  .

Furthermore, we have B
(2)
j,2 = C

(1)
j,2 = B

(1)
j,2 , j = 1, 2. Thus, (B

(k)
0,2 , B

(k)
1,2 )k\geq 1 stabilizes
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44 JIE WANG, VICTOR MAGRON, AND JEAN-BERNARD LASSERRE

at k = 1 and (Q1
2) can be read as

(Q1
2) :

\left\{                                           

inf y40 + y04  - y11

s.t.

\left[          

y00 y20 y11 y02

y20 y11

y11 y02

y20 y40 y31 y22

y11 y31 y22 y13

y02 y22 y13 y04

\right]          
\succeq 0,

\left[   y00  - 2y20  - y02

y20  - 2y40  - y22 y11  - 2y31  - y13

y11  - 2y31  - y13 y02  - 2y22  - y04

\right]   \succeq 0,

y00 = 1.

We have \theta 
(1)
2 = \theta \ast 2 = \theta 2 = \theta \ast =  - 0.125.

6. Sign-symmetries and a sparse representation theorem for positive

polynomials. Suppose that the binary matrix B
(\ast )
0, \^d

is not an all-one matrix. Then

as was already noted in section 5, the block-diagonal (up to permutation) matrix

B
(\ast )
0, \^d

induces a partition of the monomial basis \BbbN n
\^d
: two vectors \bfitbeta ,\bfitgamma \in \BbbN n

\^d
belong to

the same block if and only if the rows and columns indexed by \bfitbeta ,\bfitgamma belong to the

same block in B
(\ast )
0, \^d

. We next provide an interpretation of this partition in terms of

sign-symmetries, a tool introduced in [20] to characterize block-diagonal SOS decom-
positions for nonnegative polynomials.

Definition 6.1. Given a finite set A \subseteq \BbbN n, the sign-symmetries of A are defined
by all vectors r \in \BbbZ n

2 such that rT\bfitalpha \equiv 0 (mod 2) for all \bfitalpha \in A .

For any \bfitalpha \in \BbbN n, we define (\bfitalpha )2 := (\alpha 1(mod 2), . . . , \alpha n(mod 2)) \in \BbbZ n
2 . We also

use the same notation for any subset A \subseteq \BbbN n, i.e., (A )2 := \{ (\bfitalpha )2 | \bfitalpha \in A \} \subseteq \BbbZ n
2 .

For a subset S \subseteq \BbbZ n
2 , the subspace spanned by S in \BbbZ n

2 , denoted by S, is the set
\{ (
\sum 

i si)2 | si \in S\} and the orthogonal complement space of S in \BbbZ n
2 , denoted by S\bot ,

is the set \{ \bfitalpha \in \BbbZ n
2 | \bfitalpha T s \equiv 0 (mod 2)\forall s \in S\} .

Remark 6.2. By definition, the set of sign-symmetries of A is just the orthogonal
complement space (A )\bot 2 in \BbbZ n

2 . Hence, the sign-symmetries of A can be essentially
represented by a basis of the subspace (A )\bot 2 in \BbbZ n

2 .

Lemma 6.3. Let S \subseteq \BbbZ n
2 . Then (S\bot )\bot = S.

Proof. It is immediate from the definitions.

For an (undirected) graph G(V,E) with V \subseteq \BbbN n, we define supp(G) := \{ \bfitbeta + \bfitgamma | 
\{ \bfitbeta ,\bfitgamma \} \in E\} , and we also use E(G) to indicate the edge set of G.

Lemma 6.4. Suppose B is a \{ 0, 1\} -binary matrix with rows and columns indexed
by B \subseteq \BbbN n and G is its adjacency graph. Let G be the adjacency graph of B. Then
(supp(G))2 \subseteq (supp(G))2.

Proof. By definition, for any \{ \bfitbeta ,\bfitgamma \} \in E(G), we need to show that (\bfitbeta + \bfitgamma )2 \in 
(supp(G))2. By virtue of the graphical description of block-closure, \bfitbeta ,\bfitgamma belong to the
same connected component of G. Therefore, there is a path connecting \bfitbeta and \bfitgamma in G:
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\{ \bfitbeta ,\bfitupsilon 1, . . . ,\bfitupsilon r,\bfitgamma \} with \{ \bfitbeta ,\bfitupsilon 1\} , \{ \bfitupsilon r,\bfitgamma \} \in E(G) and \{ \bfitupsilon i,\bfitupsilon i+1\} \in E(G), i = 1, . . . , r - 
1. From (\bfitbeta +\bfitupsilon 1)2, (\bfitupsilon 1 +\bfitupsilon 2)2 \in (supp(G))2, we deduce that (\bfitbeta +\bfitupsilon 2)2 \in (supp(G))2.
Likewise, we can prove that (\bfitbeta +\bfitupsilon i)2 \in (supp(G))2 for i = 3, . . . , r+1 with \bfitupsilon r+1 := \bfitgamma .
Hence, (\bfitbeta + \bfitgamma )2 \in (supp(G))2 as desired.

Theorem 6.5. For a positive integer \^d, let A \subseteq \BbbN n
2 \^d

be defined as in (5.4) and
assume that the sign-symmetries of A are given by the columns of the binary matrix

R. Let B
(\ast )
0, \^d

be defined as in section 5. Then \bfitbeta ,\bfitgamma belong to the same block in the

partition of \BbbN n
\^d
induced by B

(\ast )
0, \^d

if and only if RT (\bfitbeta + \bfitgamma ) \equiv 0 (mod 2).

Proof. LetG(V,E) be the adjacency graph ofB
(\ast )
0, \^d

with vertices V = \BbbN n
\^d
and edges

E = \{ \{ \bfitbeta ,\bfitgamma \} | [B(\ast )
0, \^d

]\bfitbeta \bfitgamma = 1\} . Then the partition of \BbbN n
\^d
induced by B

(\ast )
0, \^d

corresponds

to the connected components of G. Note that every connected component of G is a
complete subgraph.

Claim I. If \bfitalpha \in supp(G), then for any \bfitalpha \prime \in \BbbN n
2 \^d

with (\bfitalpha \prime )2 = (\bfitalpha )2, one has

\bfitalpha \prime \in supp(G).

Proof of Claim I. Suppose \bfitalpha \in supp(G). If (\bfitalpha )2 = (\bfitalpha \prime )2 = 0, assume \bfitalpha \prime = \bfitbeta +\bfitgamma 
for some \bfitbeta ,\bfitgamma \in \BbbN n

\^d
. Then \bfitbeta + \bfitgamma \in (2\BbbN )n. Hence, \{ \bfitbeta ,\bfitgamma \} \in E(G) and it follows

that \bfitalpha \prime \in supp(G). Now assume (\bfitalpha )2 \not = 0. For s = (si), s
\prime = (s\prime i) \in \BbbZ n

2 , let \tau (s) :=\sum n
i=1 si, and we use s \bot s\prime to indicate that si = s\prime i = 1 holds for no i. If \tau ((\bfitalpha )2) is odd,

let s1, s2 \in \BbbZ n
2 \cap \BbbN n

\^d
such that (\bfitalpha )2 = s1+s2 and s1 \bot s2. If \tau ((\bfitalpha )2) is even, we further

require that \tau (s1), \tau (s2) have the same parity as \^d. It is easy to check that such s1, s2
always exist. Then there must exist \bfitbeta 1,\bfitbeta 2 \in (2\BbbN )n such that s1 + \bfitbeta 1, s2 + \bfitbeta 2 \in \BbbN n

\^d
and \bfitalpha = (s1 + \bfitbeta 1) + (s2 + \bfitbeta 2). It follows that \{ s1 + \bfitbeta 1, s2 + \bfitbeta 2\} \in E(G) since

\bfitalpha \in supp(G) and B
(\ast )
0, \^d

is stabilized under the support-extension operation. Because

(\bfitalpha \prime )2 = (\bfitalpha )2, there must exist \bfitbeta \prime 
1,\bfitbeta 

\prime 
2 \in (2\BbbN )n such that s1 + \bfitbeta \prime 

1, s2 + \bfitbeta \prime 
2 \in \BbbN n

\^d

and \bfitalpha \prime = (s1 + \bfitbeta \prime 
1) + (s2 + \bfitbeta \prime 

2). Note that (s1 + \bfitbeta 1) + (s1 + \bfitbeta \prime 
1) \in (2\BbbN )n and

(s2 + \bfitbeta 2) + (s2 + \bfitbeta \prime 
2) \in (2\BbbN )n. Hence, \{ s1 + \bfitbeta 1, s1 + \bfitbeta \prime 

1\} , \{ s2 + \bfitbeta 2, s2 + \bfitbeta \prime 
2\} \in E(G),

which together with \{ s1 +\bfitbeta 1, s2 +\bfitbeta 2\} \in E(G) implies that s1 +\bfitbeta 1, s1 +\bfitbeta \prime 
1, s2 +\bfitbeta 2,

s2 +\bfitbeta \prime 
2 belong to the same connected component of G. So \{ s1 +\bfitbeta \prime 

1, s2 +\bfitbeta \prime 
2\} \in E(G)

and \bfitalpha \prime \in supp(G). The proof of Claim I is finished.

Claim II. Let S = (A )2. The edge set of G is

E = \{ \{ \bfitbeta ,\bfitgamma \} \in V 2 | (\bfitbeta + \bfitgamma )2 \in S\} ,

which is equivalent to (by Claim I and the fact that B
(\ast )
0, \^d

is stabilized under the support-

extension operation)

supp(G) = \{ \bfitalpha \in \BbbN n
2 \^d

| (\bfitalpha )2 \in S\} .

Proof of Claim II. First we prove that supp(G) \subseteq \{ \bfitalpha \in \BbbN n
2 \^d

| (\bfitalpha )2 \in S\} . For

j = 0, . . . ,m, let S
(k)

j, \^d
, C

(k)

j, \^d
, B

(k)

j, \^d
be defined as in section 5 and let Hk

j , G
k
j be the

adjacency graphs of C
(k)

j, \^d
, B

(k)

j, \^d
, respectively. By construction, one has supp(G) =
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k\geq 0

\bigcup m
j=0 S

(k)

j, \^d
. It suffices to prove

(6.1)

m\bigcup 
j=0

S
(k)

j, \^d
\subseteq \{ \bfitalpha \in \BbbN n

2 \^d
| (\bfitalpha )2 \in S\} 

for all k. Let us do induction on k \geq 0. It is obvious that (6.1) is valid for k = 0.
Now assume that (6.1) holds for a given k \geq 0. For 0 \leq j \leq m and for any \bfitalpha \prime \in 
supp(Hk+1

j ), by (5.5) we have (supp(gj) + \bfitalpha \prime ) \cap 
\bigcup m

j=0 S
(k)

j, \^d
\not = \emptyset , which implies that

(supp(gj) + \bfitalpha \prime ) \cap \{ \bfitalpha \in \BbbN n
2 \^d

| (\bfitalpha )2 \in S\} \not = \emptyset by the induction hypothesis. It follows

that (\bfitalpha \prime )2 \in S. Thus, supp(Hk+1
j ) \subseteq \{ \bfitalpha \in \BbbN n

2 \^d
| (\bfitalpha )2 \in S\} . Then by Lemma 6.4,

supp(Gk+1
j ) \subseteq \{ \bfitalpha \in \BbbN n

2 \^d
| (\bfitalpha )2 \in S\} . By (5.6), S

(k+1)

j, \^d
= supp(gj) + supp(Gk+1

j ).

Hence, S
(k+1)

j, \^d
\subseteq \{ \bfitalpha \in \BbbN n

2 \^d
| (\bfitalpha )2 \in S\} for all j. This completes the induction.

Next we need to prove that \{ \bfitalpha \in \BbbN n
2 \^d

| (\bfitalpha )2 \in S\} \subseteq supp(G), or equivalently

(6.2) S \cap \BbbN n
2 \^d

\subseteq (supp(G))2.

For any s \in S\cap \BbbN n
2 \^d
, we can write s = (

\sum l
i=1 si)2 for some \{ si\} i \subseteq S. Let us prove (6.2)

by induction on l. The case of l = 1 follows from s1 \in S \subseteq (supp(G))2. Now assume

that (
\sum l

i=1 si)2 \in (supp(G))2. Suppose (
\sum l

i=1 si)2 = (ps)
n
s=1 and sl+1 = (qs)

n
s=1. Let

J1 = \{ s | ps = 1, qs = 0\} , J2 = \{ s | ps = qs = 1\} , and J3 = \{ s | ps = 0, qs = 1\} . If

| J1| , | J2| , | J3| \leq \^d, let I = J2; if | J2| > \^d, let I be any \^d-subset of J2; if | J1| > \^d, let

K be any \^d-subset of J1 and I = J1\setminus K; if | J3| > \^d, let K be any \^d-subset of J3 and
I = J3\setminus K. Then define u = (us) \in \BbbZ n

2 \cap \BbbN n
\^d
by

us =

\Biggl\{ 
1, s \in I,

0 otherwise,

and let \bfitv = (
\sum l

i=1 si + u)2, \bfitomega = (sl+1 + u)2. Then (
\sum l

i=1 si)2 = (u + \bfitv )2 and

(sl+1)2 = (u + \bfitomega )2. In the case of | J1| , | J2| , | J3| \leq \^d, one has \tau (\bfitv ) = | J1| \leq \^d and

\tau (\bfitomega ) = | J3| \leq \^d; in the case of | J2| > \^d, one has \tau (\bfitv ) = | J1| + | J2|  - \^d \leq \^d and

\tau (\bfitomega ) = | J3| + | J2|  - \^d \leq \^d because (
\sum l

i=1 si)2, sl+1 \in \BbbN n
2 \^d
; in the case of | J1| > \^d, one

has \tau (\bfitv ) = | J1| + | J2|  - \^d \leq \^d and \tau (\bfitomega ) = | J3| + | J1|  - \^d \leq \^d because (
\sum l

i=1 si)2, s =

(
\sum l+1

i=1 si)2 \in \BbbN n
2 \^d
; in the case of | J3| > \^d, one has \tau (\bfitv ) = | J1| + | J3|  - \^d \leq \^d

and \tau (\bfitomega ) = | J3| + | J2|  - \^d \leq \^d because s = (
\sum l+1

i=1 si)2, sl+1 \in \BbbN n
2 \^d
. Consequently,

\bfitv ,\bfitomega \in \BbbN n
\^d
. By the induction hypothesis, (u + \bfitv )2 \in (supp(G))2, which implies

u + \bfitv \in supp(G) by Claim I and hence \{ u,\bfitv \} \in E (because B
(\ast )
0, \^d

is stabilized under

the support-extension operation). We also have (u + \bfitomega )2 \in S \subseteq (supp(G))2, which
implies u+\bfitomega \in supp(G) by Claim I and hence \{ u,\bfitomega \} \in E. It follows that \{ \bfitv ,\bfitomega \} \in E

and \bfitv + \bfitomega \in supp(G). Thus, (
\sum l+1

i=1 si)2 = (\bfitv + \bfitomega )2 \in (supp(G))2, which completes
the induction and also completes the proof of Claim II.

By Lemma 6.3, we have S = R\bot . Thus, \bfitbeta ,\bfitgamma belong to the same connected
component of G if and only if (\bfitbeta + \bfitgamma )2 \in S by Claim II, which is equivalent to
RT (\bfitbeta + \bfitgamma ) \equiv 0 (mod 2).

Remark 6.6. Note that Theorem 6.5 is applied for the standard monomial basis
\BbbN n

\^d
. If a smaller monomial basis is chosen, then we only have the ``only if"" part of

the conclusion in Theorem 6.5. See Example 6.7.
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Example 6.7. Let f = 1+x2y4+x4y2+x4y4 - xy2 - 3x2y2 and A = supp(f). The
monomial basis given by the Newton polytope method is B = \{ 1, xy, xy2, x2y, x2y2\} .
The sign-symmetries of A consist of two elements: (0, 0) and (0, 1). According to the
sign-symmetries, B is partitioned into \{ 1, xy2, x2y2\} and \{ xy, x2y\} (recall that \bfitbeta ,\bfitgamma 
belong to the same block in the partition induced by the sign-symmetries R if and only
if RT (\bfitbeta + \bfitgamma ) \equiv 0 (mod 2). On the other hand, we have

C
(1)
A =

\left[      
1 0 1 0 1
0 1 0 0 0
1 0 1 0 0
0 0 0 1 0
1 0 0 0 1

\right]      and B
(\ast )
A = B

(1)
A =

\left[      
1 0 1 0 1
0 1 0 0 0
1 0 1 0 1
0 0 0 1 0
1 0 1 0 1

\right]      .

Thus, the partition of B induced by B
(\ast )
A is \{ 1, xy2, x2y2\} , \{ xy\} and \{ x2y\} , which is

a refinement of the partition determined by the sign-symmetries.

By virtue of Theorem 6.5, the partition of the monomial basis \BbbN n
\^d - dj

induced by

B
(\ast )
j, \^d

, j = 1 . . . ,m, can also be characterized using sign-symmetries.

Corollary 6.8. Notations are as in Theorem 6.5, and assume A = supp(f) \cup \bigcup m
j=1 supp(gj). Let B

(\ast )
j, \^d

be defined as in section 5. Then \bfitbeta ,\bfitgamma belong to the same

block in the partition of \BbbN n
\^d - dj

induced by B
(\ast )
j, \^d

if and only if RT (\bfitbeta + \bfitgamma ) \equiv 0 (mod 2),

j = 1 . . . ,m.

Proof. Let Gj(Vj , Ej) be the adjacency graph of B
(\ast )
j, \^d

with vertices Vj = \BbbN n
\^d - dj

and edges Ej = \{ \{ \bfitbeta ,\bfitgamma \} | [B(\ast )
j, \^d

]\bfitbeta \bfitgamma = 1\} , j = 1, . . . ,m. Then the partition of \BbbN n
\^d - dj

induced by B
(\ast )
j, \^d

corresponds to the connected components of Gj . Note also that every

connected component of Gj is a complete subgraph.
If \bfitbeta ,\bfitgamma belong to the same connected component of Gj , then \{ \bfitbeta ,\bfitgamma \} \in Ej . So

\bfitbeta + \bfitgamma + supp(gj) \subseteq supp(G), which implies (\bfitbeta + \bfitgamma + supp(gj))2 \subseteq (supp(G))2 \subseteq S
by Claim II in the proof of Theorem 6.5. Since (supp(gj))2 \subseteq (A )2 \subseteq S, we have
(\bfitbeta + \bfitgamma )2 \in S and it follows that RT (\bfitbeta + \bfitgamma ) \equiv 0 (mod 2).

If \bfitbeta ,\bfitgamma don't belong to the same connected component of Gj , then \{ \bfitbeta ,\bfitgamma \} /\in Ej .
So \bfitbeta + \bfitgamma + supp(gj) \not \subseteq supp(G), which implies (\bfitbeta + \bfitgamma )2 /\in S by Claim II in the proof
of Theorem 6.5. Thus, RT (\bfitbeta + \bfitgamma ) \not \equiv 0 (mod 2).

Remark 6.9. The assumption that A = supp(f)\cup 
\bigcup m

j=1 supp(gj) in Corollary 6.8

relies on the fact that ``1"" is part of the monomial basis x
\BbbN n

\^d - dj of the SOS multiplier
sj associated to gj ; see Remark 5.1.

Theorem 6.5 together with Corollary 6.8 implies that the block structure of the
TSSOS hierarchy at each relaxation order converges to the block structure determined
by the sign-symmetries related to the support of the input data, under the assumption
that the standard monomial bases are used.

Remark 6.10. Though it is guaranteed that at the final step of the TSSOS hier-
archy an equivalent SDP (with block structure determined by sign-symmetries if the
standard monomial bases are used) is retrieved, in practice it frequently happens that
the same optimal value as the dense moment-SOS relaxation is achieved at an earlier
step, even at the first step, but with a much cheaper computational cost, as we can
see in section 7.
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For a family of polynomials g = (g1, . . . , gm) \subseteq \BbbR [x], the associated quadratic
module \scrQ (g) = \scrQ (g1, . . . , gm) \subseteq \BbbR [x] is defined by

(6.3) \scrQ (g) :=

\Biggl\{ 
s0 +

m\sum 
j=1

sjgj | sj is an SOS, j = 0, . . . ,m

\Biggr\} 
.

The quadratic module \scrQ (g) associated with K in (5.1) is said to be Archimedean if
there exists N > 0 such that the quadratic polynomial x \mapsto \rightarrow N  - \| x\| 2 belongs to
\scrQ (g).

As a corollary of Theorem 6.5 and Corollary 6.8, we obtain the following sparse
representation theorem for positive polynomials over basic compact semialgebraic sets.

Theorem 6.11. Let f \in \BbbR [x], and let K be as in (5.1). Assume that the qua-
dratic module \scrQ (g) is Archimedean and that f is positive on K. Let A = supp(f) \cup \bigcup m

j=1 supp(gj), and let us define the sign-symmetries of A with the columns of the
binary matrix R. Then f can be represented as

f = s0 +

m\sum 
j=1

sjgj

for some SOS polynomials s0, s1, . . . , sm satisfying RT\bfitalpha \equiv 0 (mod 2) for any \bfitalpha \in 
supp(sj), j = 0, . . . ,m.

Proof. By Putinar's Positivstellensatz [32], there exist SOS polynomials t0, t1, . . . ,
tm such that

(6.4) f = t0 +

m\sum 
j=1

tjgj .

Let dj = \lceil deg(gj)/2\rceil , j = 0, . . . ,m, and \^d = max\{ \lceil deg(tjgj)/2\rceil : j = 0, 1, . . . ,m\} ,
with g0 = 1. Let Qj be a Gram matrix associated with tj and indexed by the

monomial basis \BbbN n
\^d - dj

, j = 0, . . . ,m. Then set sj = (x
\BbbN n

\^d - dj )T (B
(\ast )
j, \^d

\circ Qj)x
\BbbN n

\^d - dj for

j = 0, . . . ,m, where B
(\ast )
j, \^d

is defined as in section 5. For all j = 0, . . . ,m, B
(\ast )
j, \^d

\circ Qj is

block-diagonal up to permutation and Qj is positive semidefinite, and thus sj is an
SOS polynomial.

Following the notation from Theorem 6.5 and Corollary 6.8, letG be the adjacency

graph of B
(\ast )
0, \^d

. By construction, supp(s0) \subseteq supp(G). For j = 1, . . . ,m, let B
(k)

j, \^d
, B

(\ast )
j, \^d

be defined as in section 5 and let Gk
j , Gj be the adjacency graphs of B

(k)

j, \^d
, B

(\ast )
j, \^d

, re-

spectively. By construction, supp(Gj) =
\bigcup 

k\geq 1 supp(G
k
j ). By the proof of Claim II in

Theorem 6.5, supp(Gk
j ) \subseteq supp(G) for all k \geq 1. It follows that supp(Gj) \subseteq supp(G)

for j = 1, . . . ,m. Therefore, we have supp(sj) \subseteq supp(Gj) \subseteq supp(G) for 1 \leq j \leq m.
Hence, for any j and any \bfitalpha \in supp(sj), one has (\bfitalpha )2 \in S by Claim II in the proof of
Theorem 6.5, which implies RT\bfitalpha \equiv 0 (mod 2). Moreover, for any \bfitalpha \prime \in supp(gj), we
have (\bfitalpha + \bfitalpha \prime )2 \in S and for any \bfitalpha \prime \prime \in \BbbN n

2 \^d
\setminus supp(G), we have (\bfitalpha \prime \prime )2 /\in S by Claim II

in the proof of Theorem 6.5 and hence (\bfitalpha \prime \prime + \bfitalpha \prime )2 /\in S. From these facts we deduce
that substituting ti by si in (6.4) is just removing the terms whose exponents modulo
2 are not in S from the right-hand side of (6.4). Doing so, one does not change the
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match of coefficients on both sides of the equality. Thus, we have

f = s0 +

m\sum 
j=1

sjgj

with the desired property.

7. Numerical experiments. In this section, we present numerical results of
the proposed primal-dual hierarchies (4.1)--(4.3) and (5.7)--(5.9) of block SDP relax-
ations for both unconstrained and constrained polynomial optimization problems,
respectively. Our algorithm, named TSSOS, is implemented in Julia for constructing
instances of the dual SDP problems (4.1) and (5.9) and then relies on MOSEK [27] to
solve them. TSSOS utilizes the Julia packages LightGraphs [3] to handle graphs and
JuMP [6] to model SDP. In the following subsections, we compare the performance
of TSSOS with that of GloptiPoly [10] and Yalmip [19]. As for TSSOS, GloptiPoly
and Yalmip also rely on MOSEK to solve SDP problems.

Our TSSOS tool can be downloaded at https://github.com/wangjie212/TSSOS.
All numerical examples were computed on an Intel Core i5-8265U@1.60GHz CPU
with 8GB RAM memory and the WINDOWS 10 system. The timing includes the
time for preprocessing (to get the block structure in TSSOS), the time for modeling
SDP, and the time for solving SDP. Although the modeling part in Julia is usually
faster than the one in MATLAB, typically the time for solving SDP is dominant on the
tested examples in this paper and exceeds the preprocessing time and the modeling
time by one order of magnitude.

The notations that we use are listed in Table 1.

Table 1
Notations.

n the number of variables
2d the degree
s the number of terms
\^d the relaxation order of the Lasserre hierarchy
k the sparse order of the TSSOS hierarchy
bs the size of monomial bases

mb
the maximal size of blocks (or a vector whose

kth entry is the maximal size of blocks obtained from the
TSSOS hierarchy at sparse order k in Tables 2 and 4)

Opt
the optimal value (or a vector

whose kth entry is the optimal value obtained from the
TSSOS hierarchy at sparse order k in Tables 2 and 4)

Time
running time in seconds

(or a vector whose kth entry is the time for computing the
TSSOS hierarchy at sparse order k in Tables 2 and 4)

0 a number whose absolute value is less than 1 \times 10 - 5

\#block the size of blocks
i\times j j blocks of size i

- out of memory

7.1. Unconstrained polynomial optimization problems. For the uncon-
strained case, let us first look at an illustrative example.
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Example 7.1. Let

f =4

\Biggl( 
4\sum 

i=1

p2i

\Biggr) 4 4\sum 
i=1

p2i a
10
i  - 

\Biggl( 
4\sum 

i=1

p2i

\Biggr) 3 4\sum 
i=1

p2i a
8
i

4\sum 
i=1

p2i a
2
i  - 

\Biggl( 
4\sum 

i=1

p2i a
2
i

\Biggr) 5

+ 2

\Biggl( 
4\sum 

i=1

p2i

\Biggr) 2 4\sum 
i=1

p2i a
6
i

\Biggl( 
4\sum 

i=1

p2i a
2
i

\Biggr) 2

 - 3

\Biggl( 
4\sum 

i=1

p2i

\Biggr) 2\Biggl( 4\sum 
i=1

p2i a
4
i

\Biggr) 2 4\sum 
i=1

p2i a
2
i

+ 3

4\sum 
i=1

p2i

4\sum 
i=1

p2i a
4
i

\Biggl( 
4\sum 

i=1

p2i a
2
i

\Biggr) 3

 - 4

\Biggl( 
4\sum 

i=1

p2i

\Biggr) 3 4\sum 
i=1

p2i a
6
i

4\sum 
i=1

p2i a
4
i .

The polynomial f has 8 variables and is of degree 20. We compute a basis by the
Newton polytope method (2.3) which has 1284 monomials. The first step of the TSSOS
hierarchy gives us a block structure as follows:

Size 1 2 3 4 10 11 14 19 20 31 42
Number 1 6 36 18 5 6 4 1 18 12 4

where the first line is the size of the blocks and the second line is the number of blocks
of the corresponding size. We obtain the optimal value  - 2.1617\times 10 - 6 at the first
step of the TSSOS hierarchy. The whole computation takes only 12s! It turns out that
the hierarchy converges at the first iteration for this polynomial.

Randomly generated examples. Now we present the numerical results for
randomly generated polynomials of two types. The first type is of the SOS form.
More concretely, we consider the polynomial

f =

t\sum 
i=1

f2
i \in randpoly1(n, 2d, t, p) ,

constructed as follows: first randomly choose a subset of monomials M from x\BbbN n
d with

probability p, and then randomly assign the elements of M to f1, . . . , ft with random
coefficients between  - 1 and 1. We generate 18 random polynomials F1, . . . , F18 from
6 different classes,1 where

F1, F2, F3 \in randpoly1(8, 8, 30, 0.1),

F4, F5, F6 \in randpoly1(8, 10, 25, 0.04),

F7, F8, F9 \in randpoly1(9, 10, 30, 0.03),

F10, F11, F12 \in randpoly1(10, 12, 20, 0.01),

F13, F14, F15 \in randpoly1(10, 16, 30, 0.003),

F16, F17, F18 \in randpoly1(12, 12, 50, 0.01).

For these polynomials, the sign-symmetry is always trivial. We compute a monomial
basis using the Newton polytope method (2.3). Table 2 displays the numerical results
on these polynomials. Note that the time for computing a monomial basis is included
in the time of the first step of the TSSOS hierarchy. In Table 3, we compare the
performance of TSSOS (k = 1), GloptiPoly, and Yalmip on these polynomials. In

1The polynomials can be downloaded from https://wangjie212.github.io/jiewang/code.html.
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Yalmip, we turn the option ``sos.newton"" on to compute a monomial basis also by the
Newton polytope method.

For these examples, TSSOS always provides a nice block structure at sparse order
k = 1 and retrieves the same optimum as the dense moment-SOS relaxation in much
less time. TSSOS is also significantly faster than Yalmip. Due to the memory limit,
GloptiPoly (resp., Yalmip) cannot handle polynomials with more than 8 (resp., 10)
variables, while TSSOS can solve problems involving up to 12 variables.

Table 2
The results for randomly generated polynomials of type I.

n 2d s bs mb Opt Time
F1 8 8 64 106 [31, 105, 106] [0, 0, 0] [1.7, 3.8, 3.9]
F2 8 8 102 122 [71, 122] [0, 0] [4.6, 11]
F3 8 8 104 150 [102, 150] [0, 0] [8.8, 15]
F4 8 10 103 202 [64, 202] [0, 0] [4.8, 83]
F5 8 10 85 201 [66, 201] [0, 0] [4.2, 68]
F6 8 10 111 128 [76, 128] [0, 0] [5.2, 20]
F7 9 10 101 145 [35, 142, 145] [0, 0, 0] [3.2, 38, 42]
F8 9 10 166 178 [67, 178] [0, 0] [6.5, 96]
F9 9 10 161 171 [62, 170, 171] [0, 0, 0] [5.9, 89, 101]
F10 10 12 271 223 [75, 220, 223] [0, 0, 0] [12, 403, 435]
F11 10 12 253 176 [60, 167, 176] [0, 0, 0] [9.2, 98, 122]
F12 10 12 261 204 [73, 204] [0, 0] [12, 324]
F13 10 16 370 1098 [99, 1098] [0, -] [36, -]
F14 10 16 412 800 [195, 800] [0, -] [305, -]
F15 10 16 436 618 [186, 617, 618] [0, -, -] [207, -, -]
F16 12 12 488 330 [129, 324, 330] [0, -, -] [61, -, -]
F17 12 12 351 264 [26, 42, 151, 263, 264] [0, 0, 0, -, -] [17, 0.45, 76, -, -]
F18 12 12 464 316 [45, 274, 316] [0, -, -] [22, -, -]

Table 3
Comparison with GloptiPoly and Yalmip for randomly generated polynomials of type I.

Time Time
TSSOS GloptiPoly Yalmip TSSOS GloptiPoly Yalmip

F1 1.7 306 4.9 F10 12 - 474
F2 4.6 348 13 F11 9.2 - 147
F3 8.8 326 19 F12 12 - 350
F4 4.8 - 92 F13 36 - -
F5 4.2 - 72 F14 305 - -
F6 5.2 - 22 F15 207 - -
F7 3.2 - 44 F16 61 - -
F8 6.5 - 143 F17 17 - -
F9 5.9 - 109 F18 22 - -

The second type of randomly generated problems are polynomials whose Newton
polytopes are scaled standard simplices. More concretely, we consider polynomials
defined by

f = c0 +

n\sum 
i=1

cix
2d
i +

s - n - 1\sum 
j=1

c\prime jx
\bfitalpha j \in randpoly2(n, 2d, s) ,

constructed as follows: we randomly choose coefficients ci between 0 and 1, as well
as s - n - 1 vectors \bfitalpha j in \BbbN n

2d - 1\setminus \{ 0\} with random coefficients c\prime j between  - 1 and 1.
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We generate 18 random polynomials G1, . . . , G18 from 6 different classes,2 where

G1, G2, G3 \in randpoly2(8, 8, 15),

G4, G5, G6 \in randpoly2(9, 8, 20),

G7, G8, G9 \in randpoly2(9, 10, 15),

G10, G11, G12 \in randpoly2(10, 8, 20),

G13, G14, G15 \in randpoly2(11, 8, 20),

G16, G17, G18 \in randpoly2(12, 8, 25).

Table 4 displays the numerical results on these polynomials. Table 5 indicates sim-
ilar efficiency and accuracy results on the comparison with GloptiPoly and Yalmip
as for randomly generated polynomials of type I. In Yalmip, we turn the option
``sos.congruence"" on to take sign-symmetries into account, which allows one to handle
slightly more polynomials than GloptiPoly.

Table 4
The results for randomly generated polynomials of type II.

n 2d s bs mb Opt Time
G1 8 8 15 495 [126, 219] [ - 0.5758, - 0.5758] [8.5, 26]
G2 8 8 15 495 [86, 169] [ - 34.6897, - 34.6897] [2.6, 21]
G3 8 8 15 495 [59, 75] [0.7073, 0.7073] [1.0, 3.3]
G4 9 8 20 715 [170, 715] [ - 801.6920, -] [40, -]
G5 9 8 20 715 [160, 365] [ - 0.8064, - 0.8064] [24, 322]
G6 9 8 20 715 [186, 331] [ - 1.6981, - 1.6981] [31, 126]
G7 9 10 15 2002 [122, 224] [ - 1.2945, - 1.2945] [24, 303]
G8 9 10 15 2002 [143, 170] [ - 0.6622, - 0.6622] [28, 195]
G9 9 10 15 2002 [154, 208] [0.5180, 0.5180] [21, 180]
G10 10 8 20 1001 [133, 525] [ - 0.4895, -] [13, -]
G11 10 8 20 1001 [223, 403] [0.1867, 0.1867] [86, 481]
G12 10 8 20 1001 [208, 511] [0.4943, -] [66, -]
G13 11 8 20 1365 [110, 296] [ - 3.9625, - 3.9625] [13, 580]
G14 11 8 20 1365 [128, 436] [ - 2.1835, -] [37, -]
G15 11 8 20 1365 [174, 272] [0.0588, 0.0588] [36, 310]
G16 12 8 25 1820 [263, 924] [ - 688.0269, -] [693, -]
G17 12 8 25 1820 [256, 924] [ - 40.2178, -] [333, -]
G18 12 8 25 1820 [275, 924] [ - 14.2693, -] [393, -]

Examples from networked systems. Next we consider Lyapunov functions
emerging from some networked systems. In [9], the authors propose a structured SOS
decomposition for those systems, which allows them to handle structured Lyapunov
function candidates up to 50 variables.

The following polynomial is from Example 2 in [9]:

f =

N\sum 
i=1

ai(x
2
i + x4

i ) - 
N\sum 
i=1

N\sum 
k=1

bikx
2
ix

2
k,

where ai are randomly chosen from [1, 2] and bik are randomly chosen from [ 0.5N , 1.5
N ].

Here, N is the number of nodes in the network. The task is to determine whether
f is globally nonnegative. Here we solve again SDP (4.1) at k = 1 with TSSOS for
N = 10, 20, 30, 40, 50, 60, 70, 80. The results are listed in Table 6.

2The polynomials can be downloaded from https://wangjie212.github.io/jiewang/code.html.
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Table 5
Comparison with GloptiPoly and Yalmip for randomly generated polynomials of type II.

TSSOS GloptiPoly Yalmip
Opt Time Opt Time (s) Opt Time

G1  - 0.5758 8.5  - 0.5758 346  - 0.5758 31
G2  - 34.6897 2.6  - 34.690 447  - 34.6897 24
G3 0.7073 1.0 0.7073 257 0.7073 6.0
G4  - 801.692 40 - - - -
G5  - 0.8064 24 - -  - 0.8064 363
G6  - 1.6981 31 - -  - 1.6981 141
G7  - 1.2945 24 - -  - 1.2945 322
G8  - 0.6622 28 - -  - 0.6622 233
G9 0.5180 21 - - 0.5180 249
G10  - 0.4895 13 - - - -
G11 0.1867 86 - - 0.1867 536
G12 0.4943 66 - - - -
G13  - 3.9625 13 - -  - 3.9625 655
G14  - 2.1835 37 - - - -
G15 0.0588 36 - - 0.0588 340
G16  - 688.0269 693 - - - -
G17  - 40.2178 333 - - - -
G18  - 14.2693 393 - - - -

Table 6
The results for network problem I.

N 10 20 30 40 50 60 70 80
mb 11 31 31 41 51 61 71 81

Time 0.006 0.03 0.10 0.34 0.92 1.9 4.7 12

For this example, the size of systems that can be handled in [9] is up to N = 50
nodes, while our approach can easily handle systems with up to N = 80 nodes.

The following polynomial is from Example 3 in [9]:

(7.1) V =

N\sum 
i=1

ai

\biggl( 
1

2
x2
i  - 

1

4
x4
i

\biggr) 
+

1

2

N\sum 
i=1

N\sum 
k=1

bik
1

4
(xi  - xk)

4,

where ai are randomly chosen from [0.5, 1.5] and bik are randomly chosen from
[ 0.5N , 1.5

N ]. The task is to analyze the domain on which the Hamiltonian function V for
a network of Duffing oscillators is positive definite. We use the following condition to
establish an inner approximation of the domain on which V is positive definite:

(7.2) f = V  - 
N\sum 
i=1

\lambda ix
2
i (g  - x2

i ) \geq 0 ,

where \lambda i > 0 are scalar decision variables and g is a fixed positive scalar. Clearly,
the condition (7.2) ensures that V is positive definite when x2

i < g. Here we solve
SDP (4.1) at k = 1 with TSSOS for N = 10, 20, 30, 40, 50. For this example, graphs
arising in the TSSOS hierarchy are naturally chordal, so we simply exploit chordal
decompositions. This example was also examined in [23] to demonstrate the advantage
of SDSOS programming compared to dense SOS programming. The method based
on SDSOS programming was executed in SPOT [25] with MOSEK as a second-order
cone programming solver. The results are listed in Table 7. The row ``\#var"" in Table
7 indicates the number of decision variables.
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Table 7
The results for network problem II.

N 10 20 30 40 50

\#block
TSSOS

3 \times 45, 3 \times 190, 3 \times 435, 3 \times 780, 3 \times 1225,
1 \times 10, 1 \times 20, 1 \times 30, 1 \times 40, 1 \times 50,
11 \times 1 21 \times 1 31 \times 1 41 \times 1 51 \times 1

SDSOS 2 \times 2145 2 \times 26565 2 \times 122760 2 \times 370230 2 \times 878475

\#var
TSSOS 346 1391 3136 5581 8726
SDSOS 6435 79695 368280 1110690 2635425

Time
TSSOS 0.01 0.06 0.17 0.50 0.89
SDSOS 0.47 1.14 5.47 20 70

For this example, TSSOS uses many fewer decision variables than SDSOS pro-
gramming and hence spends less time compared to SDSOS programming. On the
other hand, TSSOS computes a positive definite form V after selecting a value for g
up to 2 (which is the same as the maximal value obtained by the dense SOS), while
the method in [9] can select g up to 1.8 and the one based on SDSOS programming
only works out for a maximal value of g up to around 1.5.

Broyden banded functions. The Broyden banded function [37] is defined by

f\mathrm{B}\mathrm{b}(x) =

n\sum 
i=1

\biggl( 
xi(2 + 5x2

i ) + 1 - 
\sum 
j\in Ji

(1 + xj)xj

\biggr) 2

,

where Ji = \{ j | j \not = i, max(1, i  - 5) \leq j \leq min(n, i + 1)\} . We prove that f\mathrm{B}\mathrm{b} is
nonnegative by solving SDP (4.1) at k = 1 with TSSOS for n = 6, 7, 8, 9, 10. We
make a comparison between TSSOS and SparsePOP [38] which exploits correlative
sparsity and uses SeDuMi [35] as an SDP solver. For this example, since TSSOS and
SparsePOP use different SDP solvers, the running time is not comparable directly.
We thereby also provide the number of decision variables involved in TSSOS and
SparsePOP, respectively. The results are displayed in Table 8. The row ``\#var"" in
Table 8 indicates the number of decision variables.

Table 8
The results for Broyden banded functions.

n 6 7 8 9 10

\#block
TSSOS

64 \times 1, 85 \times 1, 108 \times 1, 133 \times 1, 160 \times 1,
1 \times 20 1 \times 35 1 \times 57 1 \times 87 1 \times 126

SparsePOP 84 \times 1 120 \times 1 120 \times 2 120 \times 3 120 \times 4

\#var
TSSOS 2100 3690 5943 8998 13006

SparsePOP 3570 7260 14520 21780 29040

Time
TSSOS 0.27 0.76 1.9 5.3 13

SparsePOP 2.0 9.0 20 30 42

7.2. Constrained polynomial optimization problems. For the constrained
case, we also begin with an illustrative example.

Example 7.2. Consider the following problem:\left\{         
min f = 27 - ((x1  - x2)

2 + (y1  - y2)
2)((x1  - x3)

2 + (y1  - y3)
2)

((x2  - x3)
2 + (y2  - y3)

2)

s.t. g1 = ((x2
1 + y21) + (x2

2 + y22) + (x2
3 + y23)) - 3 \geq 0,

g2 = 3 - ((x2
1 + y21) + (x2

2 + y22) + (x2
3 + y23)) \geq 0.
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We consider the TSSOS hierarchy with \^d = 3 and \^d = 4. For \^d = 3 and k = 1, we
obtain the block structure

M3(y) 31\times 2, 7\times 1, 1\times 15
M2(g1y) 13\times 1, 9\times 1, 1\times 6
M2(g2y) 13\times 1, 9\times 1, 1\times 6

and we obtain an optimal value  - 5.0324\times 10 - 8. For \^d = 3 and k = 2, we have

M3(y) 31\times 2, 13\times 1, 9\times 1
M2(g1y) 13\times 1, 9\times 1, 3\times 2
M2(g2y) 13\times 1, 9\times 1, 3\times 2

and an optimal value  - 1.6016\times 10 - 7. For \^d = 3, the hierarchy converges at k = 2.
For \^d = 4, the hierarchy immediately converges at k = 1, yielding the block

structure

M4(y) 79\times 1, 69\times 1, 31\times 2
M3(g1y) 31\times 2, 13\times 1, 9\times 1
M3(g2y) 31\times 2, 13\times 1, 9\times 1

and an optimal value  - 2.5791\times 10 - 10.

Now we present the numerical results for constrained polynomial optimization
problems. We generate six randomly generated polynomials H1, . . . ,H6 of type II3 as
objective functions f and minimize f over a basic semialgebraic set K \subseteq \BbbR n for two
cases: the unit ball

K = \{ (x1, . . . , xn) \in \BbbR n | g1 = 1 - (x2
1 + \cdot \cdot \cdot + x2

n) \geq 0\} 

and the unit hypercube

K = \{ (x1, . . . , xn) \in \BbbR n | g1 = 1 - x2
1 \geq 0, . . . , gn = 1 - x2

n \geq 0\} .

We compare the performance of TSSOS and GloptiPoly in these two cases. The
related numerical results are outputted in Tables 9 and 10. As in the unconstrained
case, Tables 9 and 10 show that TSSOS performs much better than the dense moment-
SOS without compromising accuracy.

8. Conclusions. We have provided a new variant of the moment-SOS hierarchy
to handle polynomial optimization problems with term sparsity. This hierarchy shares
the same theoretical convergence guarantees with the standard one, and our numerical
benchmarks demonstrate the performance speedup which can be achieved in both the
unconstrained and the constrained cases.

One direction of further research is to investigate whether one can benefit from
the same term sparsity exploitation for other variants of the moment-SOS hierarchy,
including the ones dedicated to optimal control, approximations of sets of interest
(maximal invariant, reachable set) in dynamical systems, or the ones dedicated to
eigenvalue and trace optimization of polynomials in noncommuting variables.

3The polynomials can be downloaded from https://wangjie212.github.io/jiewang/code.html.
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Table 9
The results for minimizing randomly generated polynomials of type II over unit balls.

(n, 2d, s) \^d k mb
TSSOS GloptiPoly

Opt Time Opt Time

H1 (6,8,10) 4
1 (59, 25) 0.1362 0.67

0.1362 8.02 (59, 25) 0.1362 0.39

5
1 (113, 59) 0.1362 3.0

0.1362 802 (113, 59) 0.1362 3.1

H2 (7,8,12) 4
1 (85, 36) 0.1373 1.6

0.1373 342 (99, 40) 0.1373 1.7

5
1 (176, 85) 0.1373 11

- -2 (212, 99) 0.1373 21

H3 (8,8,15) 4
1 (69, 23) 0.1212 2.8

0.1212 2252 (135, 45) 0.1212 13

5
1 (144, 69) 0.1212 35

- -2 (333, 135) 0.1212 425

H4 (9,6,15) 3
1 (48, 17) 0.8704 1.0

0.8704 162 (50, 17) 0.8704 0.35

4
1 (131, 48) 0.8704 6.8

- -2 (140, 50) 0.8704 9.7

H5 (10,6,20) 3
1 (67, 22) 0.5966 2.1

0.5966 482 (92, 27) 0.5966 1.6

4
1 (193, 67) 0.5966 48

- -2 (274, 92) 0.5966 77

H6 (11,6,20) 3
1 (67, 19) 0.1171 2.1

0.1171 1152 (104, 28) 0.1171 4.0

4
1 (170, 67) 0.1171 40

- -2 (356, 104) 0.1171 389
In this table, the first entry of mb is the maximal size of blocks corresponding to the
moment matrix M \^d(\bfy ), and the second entry of mb is the maximal size of blocks

corresponding to the localizing matrix M \^d - d1
(g1\bfy ).

Table 10
The results for minimizing randomly generated polynomials of type II over unit hypercubes.

(n, 2d, s) \^d k mb
TSSOS GloptiPoly

Opt Time Opt Time

H1 (6,8,10) 4
1 (59, 25)  - 0.4400 1.1

 - 0.4400 192 (59, 25)  - 0.4400 0.88

5
1 (113, 59)  - 0.4400 8.0

 - 0.4400 2372 (113, 59)  - 0.4400 9.1

H2 (7,8,12) 4
1 (85, 34)  - 0.1289 3.0

 - 0.1289 1012 (99, 40)  - 0.1289 4.1

5
1 (176, 85)  - 0.1289 40

- -2 (212, 99)  - 0.1289 87

H3 (8,8,15) 4
1 (69, 23)  - 0.1465 3.9

 - 0.1465 4332 (135, 45)  - 0.1465 30

5
1 (144, 69)  - 0.1465 77

- -2 (333, 135)  - 0.1465 900

H4 (9,6,15) 3
1 (48, 10) 0.1199 1.3

0.1199 272 (50, 17) 0.1199 0.64

4
1 (131, 48) 0.1199 12

- -2 (140, 50) 0.1199 26

H5 (10,6,20) 3
1 (67, 13)  - 0.2813 2.1

 - 0.2813 692 (92, 27)  - 0.2813 2.7
3 (92, 27)  - 0.2813 2.7

4
1 (193, 67)  - 0.2813 75

- -2 (274, 92)  - 0.2813 181

H6 (11,6,20) 3
1 (67, 15)  - 0.2316 2.6

 - 0.2316 2112 (104, 28)  - 0.2316 7.5
3 ((104, 28)  - 0.2316 7.6

4
1 (170, 67)  - 0.2316 103

- -2 (356, 104)  - 0.2316 1108
In this table, the first entry of mb is the maximal size of blocks corresponding to the
moment matrix M \^d(\bfy ), and the second entry of mb is the maximal size of blocks

corresponding to the localizing matrices M \^d - dj
(gj\bfy ), j = 1, . . . ,m.
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