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Certificates of nonnegativity

Problem

Given a multivariate polynomial f , decide whether f is (globally)
nonnegative and certify its nonnegativity if it is.

This is a core problem in real algebraic geometry and has important
applications in optimization.
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Nonnegative polynomials and polynomial optimization

The unconstrained polynomial optimization problem (POP) can be
formulated as follows:

f ∗ := inf {f (x) : x ∈ Rn}.

It is equivalent to
f ∗ = sup {λ : f (x)− λ ≥ 0}.
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Sums of squares

A classical approach for certifying nonnegativity of polynomials is the use
of sums of squares.

Sums of squares

Given a polynomial f ∈ R[x] = R[x1, . . . , xn], if there exist polynomials
f1, . . . , fm ∈ R[x] such that

f =
m∑
i=1

f 2
i ,

then we say f is a sum of squares (SOS).

Remark: The computation of SOS decompositions for a given polynomial can be

cast as a semidefinite program (SDP).
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Not every nonnegative polynomial is an SOS

Theorem (Hilbert)

Every nonnegative polynomial is an SOS only in the univariate case, the
quadratic case and the bivariate quartic case.

Except these three cases, there exist nonnegative polynomials which
cannot be decomposed as an SOS.

B Motzkin’s polynomial: x4y2 + x2y4 + 1− 3x2y2.
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Scalability issue

Assume f has n variables, 2d degree, the size of SDP:

size of PSD matrix:
(n+d

d

)
number of equality constraints:

(n+2d
2d

)
In view of the current state of SDP solvers (e.g. Mosek), tractable
polynomials are limited to n ≤ 30 when d = 2 on a standard laptop.
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Existing techniques to improve scalability

Newton polytopes (Reznick, 1978)

symmetry (Gatermann and Parrilo, 2004)

correlative sparsity (Waki et al., 2006)

sign-symmetry (Lofberg, 2009)

DSOS/SDSOS (Ahmadi and Majumdar, 2018)

term sparsity (Wang et al., 2019)
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Questions

Question 1: Can we have other nonnegativity certificates which
exactly inherit sparsity of polynomials?

SONC/SAGE decompositions

Question 2: If the answer is yes, how can we efficiently compute
such a nonnegativity certificate for a given polynomial?
Geometric/second order cone/relative entropy programming
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Circuit polynomials

B Trellis: A ⊆ (2N)n comprises the vertices of a simplex

Definition (Iliman and de Wolff, 2016)

Let A be a trellis and f ∈ R[x]. Then f is called a circuit polynomial if it
is of the form

f =
∑
α∈A

cαx
α − dxβ,

and satisfies:

(1) cα > 0 for each α ∈ A ;

(2) β ∈ conv(A )◦.
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Circuit polynomials

Example (Motzkin’s polynomial)

Motzkin’s polynomial M(x , y) = x4y2 + x2y4 + 1− 3x2y2 is a
nonnegative circuit polynomial.

1

x2y4

x4y2
x2y2
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SONC decompositions

B A polynomial decomposes as a sum of nonnegative circuit polynomials
(SONC) =⇒ it is nonnegative

SOS SONC
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SONC decompositions preserve sparsity of polynomials

For f ∈ R[x], let

Λ(f ) := {α ∈ supp(f ) | α ∈ (2N)n and cα > 0}

and
Γ(f ) := supp(f )\Λ(f )

such that we can write

f =
∑

α∈Λ(f )

cαx
α −

∑
β∈Γ(f )

dβx
β.

For each β ∈ Γ(f ), let

F (β) := {∆ | ∆ is a simplex, β ∈ ∆◦,V (∆) ⊆ Λ(f )}.
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SONC decompositions preserve sparsity of polynomials

Theorem (Wang, 2018)

Let f =
∑

α∈Λ(f ) cαx
α −

∑
β∈Γ(f ) dβx

β ∈ R[x]. If f ∈ SONC, then f
admits a SONC decomposition:

f =
∑

β∈Γ(f )

∑
∆∈F (β)

fβ∆ +
∑
α∈Ã

cαx
α,

where fβ∆ is a nonnegative circuit polynomial supported on V (∆) ∪ {β}
for each β and each ∆, and
Ã = {α ∈ Λ(f ) | α /∈

⋃
β∈Γ(f )

⋃
∆∈F (β) V (∆)}.

Remark: A similar theorem on SAGE decompositions was independently
proved by Murray et al.
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SONC polynomials and sums of
binomial squares
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Circuit polynomials and sums of binomial squares

For a subset M ⊆ Nn, let
A(M) := {1

2 (u + v) | u 6= v ,u, v ∈ M ∩ (2N)n}.
For a trellis A , M is an A -mediated set if A ⊆ M ⊆ A(M) ∪A .

Theorem (Reznick, 1989; Iliman and de Wolff, 2016)

Let f =
∑

α∈A cαxα − dxβ ∈ R[x] be a nonnegative circuit polynomial
with A a trellis. Then f is a sum of binomial squares if and only if there
exists an A -mediated set containing β. More specifically, suppose that β
belongs to an A -mediated set M = {ui}si=1. For each ui ∈ M\A , let
ui = 1

2 (up(i) + uq(i)). Then f is a sum of binomial squares and

f =
∑

ui∈M\A (aix
1
2
up(i) − bix

1
2
uq(i))2, ai , bi ∈ R.
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Theorem (Reznick, 1989; Iliman and de Wolff, 2016)

Theorem (Reznick, 1989; Iliman and de Wolff, 2016) inspires us to
leverage sums of binomial squares to compute SONC decompositions.
However, there are two obstacles regarding this:

There may not exist such an A -mediated set containing a given
lattice point;

Even if such a set exists, there is no existing efficient algorithm to
compute it.
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A -rational mediated sets

• For M ⊆ Qn, let Ã(M) := {1
2 (u + v) | u 6= v ,u, v ∈ M}.

• Let A be a trellis. We say that M is an A -rational mediated set if
A ⊆ M ⊆ Ã(M) ∪A .

Theorem (Wang and Magron, 2020)

Given a trellis A and a lattice point β ∈ conv(A )◦, there is an algorithm
to compute an A -rational mediated set MA β containing β such that the
denominators of coordinates of points in MA β are odd numbers and the
numerators of coordinates of points in MA β\{β} are even numbers.
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The one dimensional case

For a sequence of natural numbers A = {0, q1, . . . , qm, p}, if every qi
is an average of two distinct numbers in A, then we say A is a
mediated sequence.

A = {0, 2, 4, 5, 8, 11} is a mediated sequence.

N(qp ): the minimum length of mediated sequences containing
0 < q < p

N(qp ) < 1
2 (log2(p) + 3

2 )2

Conjecture: N(qp ) = dlog2(p)e+ 2 for any 0 < q < p, (p, q) = 1
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Circuit polynomials and sums of binomial squares

Theorem (Wang and Magron, 2020)

Let f =
∑

α∈A cαxα − dxβ ∈ R[x] be a circuit polynomial and assume
that MA β = {ui}si=1 is an A -rational mediated set containing β such
that the denominators of coordinates of points in MA β are odd numbers
and the numerators of coordinates of points in MA β\{β} are even
numbers. For each ui ∈ MA β\A , let ui = 1

2 (up(i) + uq(i)). Then f is
nonnegative if and only if f can be written as

f =
∑

ui∈MAβ\A

(aix
1
2
up(i) − bix

1
2
uq(i))2, ai , bi ∈ R.
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An example

Example

Let f = x4y 2 + x2y 4 + 1− 3x2y 2 be Motzkin’s polynomial and
A = {α1 = (0, 0),α2 = (4, 2),α3 = (2, 4)}, β = (2, 2). Then
M = {α1,α2,α3,β,β1,β2,β3,β4} is an A -rational mediated set containing β.

α1

α3

α2β

β2

β1β4

β3

By a simple computation, we obtain

f = 3
2
(x

2
3 y

4
3 −x

4
3 y

2
3 )2 +(xy 2−x

1
3 y

2
3 )2 + 1

2
(x

2
3 y

4
3 −1)2 +(x2y −x

2
3 y

1
3 )2 + 1

2
(x

4
3 y

2
3 −1)2.
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SONC polynomials and sums of binomial squares

Theorem (Wang and Magron, 2020)

Let f =
∑

α∈Λ(f ) cαx
α −

∑
β∈Γ(f ) dβx

β ∈ R[x]. For every β ∈ Γ(f ) and
every ∆ ∈ F (β), let Mβ∆ be a V (∆)-rational mediated set containing β
such that the denominators of coordinates of points in Mβ∆ are odd
numbers and the numerators of coordinates of points in Mβ∆\{β} are
even numbers. Let M =

⋃
β∈Γ(f )

⋃
∆∈F (β) Mβ∆. For each u ∈ M\Λ(f ),

let u = 1
2 (vu + wu), vu 6= wu ∈ M. Let

Ã = {α ∈ Λ(f ) | α /∈
⋃

β∈Γ(f )

⋃
∆∈F (β) V (∆)}. Then f ∈ SONC if and

only if f can be written as

f =
∑

u∈M\Λ(f )

(aux
1
2
vu − bux

1
2
wu)2 +

∑
α∈Ã

cαx
α, au, bu ∈ R.
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Second order cones

An n-dimensional (rotated) second order cone (SOC) is defined by

Q := {x ∈ Rm : ||Ax + b||2 ≤ cTx + d},

where A ∈ R(n−1)×m,b ∈ Rn−1, c ∈ Rm, d ∈ R.

Example

S2
+ := {

[
a b
b c

]
∈ R2×2 |

[
a b
b c

]
is positive semidefinite}

is a 3-dimensional second order cone.

Remark: The optimization problem over second order cones can be solved
more efficiently than semidefinite programming.
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Second order cone lifts of convex cones

Qk = Q× · · · × Q: the Cartesian product of k copies of a second order
cone Q

Definition

A convex cone C ⊆ Rm has a second order cone lift of size k (or simply a
Qk -lift) if it can be written as the projection of a slice of Qk , that is, there
is a subspace L of Qk and a linear map π : Qk → Rm such that
C = π(Qk ∩ L).

Theorem (Fawzi, 2018)

The cone SOSn,2d does not admit any second order cone lift except in the
case (n, 2d) = (1, 2).
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(S2
+)k-lifts of SONC cones

Given A ⊆ (2N)n, B1 ⊆ conv(A ) ∩ (2N)n and
B2 ⊆ conv(A ) ∩ (Nn\(2N)n) with A ∩B1 = ∅, define the SONC cone
supported on A ,B1,B2 as

SONCA ,B1,B2 :={(cA ,dB1 ,dB2) ∈ R|A |+ × R|B1|
+ × R|B2|

|
∑
α∈A

cαx
α −

∑
β∈B1∪B2

dβx
β ∈ SONC}.

Theorem (Wang and Magron, 2020)

For A ⊆ (2N)n, B1 ⊆ conv(A ) ∩ (2N)n and
B2 ⊆ conv(A ) ∩ (Nn\(2N)n) with A ∩B1 = ∅, the SONC cone
SONCA ,B1,B2 admits an (S2

+)k -lift for some k ∈ N.
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SONC optimization via second
order cone programming
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SONC optimization

Consider the unconstrained polynomial optimization problem:

f ∗ :=

{
sup λ

s.t. f (x)− λ ≥ 0.

Replacing the nonnegativity condition by SONC to obtain:

fsonc :=

{
sup λ

s.t. f (x)− λ ∈ SONC.
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PN-polynomials

Suppose f =
∑

α∈Λ(f ) cαx
α −

∑
β∈Γ(f ) dβx

β ∈ R[x]. If dβ > 0 for all
β ∈ Γ(f ), then we call f a PN-polynomial.

For a PN-polynomial f , we have

f (x) ≥ 0 for all x ∈ Rn ⇐⇒ f (x) ≥ 0 for all x ∈ Rn
+

B To represent a SONC PN-polynomial as a sum of binomial squares, we
do not require the denominators of coordinates of points in rational
mediated sets to be odd. This allows us to decrease the number of
binomial squares.
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PN-polynomials

An example

Let f = x4y 2 + x2y 4 + 1− 3x2y 2 be Motzkin’s polynomial and
A = {α1 = (4, 2),α2 = (2, 4),α3 = (0, 0)}, β = (2, 2). Then
β = 1

3
α1 +

1
3
α2 +

1
3
α3 = 1

3
α1 +

2
3
( 1

2
α2 +

1
2
α3). Let β1 = 1

2
α2 +

1
2
α3 such that

β = 1
3
α1 +

2
3
β1. Let β2 = 2

3
α1 +

1
3
β1. It is easy to check that

M = {α1,α2,α3,β,β1,β2} is an A -rational mediated set containing β.

α3

α2

α1ββ1 β2

By a simple computation, we obtain f = (1− xy 2)2 + 2(x
1
2 y − x

3
2 y)2 + (xy − x2y)2.

Here we represent f as a sum of three binomial squares with rational exponents.
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Converting to PN-polynomials

Let f =
∑

α∈Λ(f ) cαx
α −

∑
β∈Γ(f ) dβx

β and let

f̃ =
∑

α∈Λ(f ) cαx
α −

∑
β∈Γ(f ) |dβ|xβ be its associated PN-polynomial.

Fact: f ∈ SONC ⇐⇒ f̃ ∈ SONC.

We can replace f by f̃ without changing the optimum:

fsonc =

{
sup λ

s.t. f̃ (x)− λ ∈ SONC.
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SONC optimization via second order cone programming

Suppose f =
∑

α∈Λ(f ) cαx
α −

∑
β∈Γ(f ) dβx

β ∈ R[x]. Let {(Ak ,βk)}lk=1

be a circuit cover with Ak ⊆ Λ(f ), ∀k and Γ(f ) ⊆ {βk}lk=1.

For each k, let Mk be an Ak -rational mediated set containing βk and
sk = #Mk\Ak . For each uki ∈ Mk\Ak , let us write uki = 1

2 (vk
i + wk

i ).
Then we can relax the SONC optimization problem to a second order cone
program (SOCP):

fsocp :=


sup λ

s.t. f̃ (x)− λ =
∑l

k=1

∑sk
i=1(2aki x

v k
i + bki x

wk
i − 2cki x

uki ) +
∑

α∈Ã cαxα,

(aki , b
k
i , c

k
i ) ∈ Q, ∀i , k ,

where Q is a 3-dimensional second order cone.
Fact: fsocp ≤ fsonc ≤ f ∗
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Experimental settings

SONCSOCP: our tool for SONC optimization via SOCP with Mosek as
an SOCP solver

POEM: Seidler and de Wolff’s tool for SONC optimization with ECOS
as a geometric programming solver

Benchmarks: Random polynomials generated by Seidler and de Wolff

Relative optimality gap:
|fup−flb|
|fup | , where fup is a local minimum

provided by a local solver and flb is the lower bound given by
SONCSOCP or POEM
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Results for random polynomials with standard simplex
Newton polytopes

Take N = 10 polynomials
Number of variables: 10 ∼ 40, degree: 40 ∼ 60, number of terms:
20 ∼ 100
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Results for random polynomials with general simplex
Newton polytopes

Take N = 10 polynomials
Number of variables: 10, degree: 20 ∼ 60, number of terms: 20 ∼ 30
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Results for random polynomials with arbitrary Newton
polytopes

Take N = 20 polynomials
Number of variables: 10, degree: 20 ∼ 50, number of terms: 30 ∼ 300
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Summary

SONC decompositions provide a new way for certifying nonnegativity
of sparse polynomials and for (unconstrained) sparse polynomial
optimization.

Each SONC cone admits a second order cone representation.

We are able to solve SONC optimization via SOCP.
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Thank you for your attention!
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