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Commutative polynomial optimization

® commutative polynomial optimization:

xlen]lg" f(x)
st. gi(x)>0, i=1,...,m

hi(x) =0, j=1,....¢
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Commutative polynomial optimization

® commutative polynomial optimization:

inf  f(x)

x€R"
st. gi(x)>0, i=1,...,m

hi(x) =0, j=1,....¢

® cover a board class of continuous and discrete nonconvex optimization

problems
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Commutative polynomial optimization

® commutative polynomial optimization:

inf  f(x)

x€R"

st. gi(x)>0, i=1,...

i(x)=0, j=1,...

® cover a board class of continuous and discrete nonconvex optimization

problems

» optimal power flow, computer vision, combinatorial optimization,

neutral network verification, sensor network localization

Jie Wang Optimization with Polynomials

May 20, 2025



Sume-of-rational-functions optimization

® sum-of-rational-functions optimization:

H N p,'(X)
Xlen]1£n Zi:l q,-(x)
st. gi(x)>0, i=1,...,m

hi(x) =0, j=1,....¢
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Sume-of-rational-functions optimization

® sum-of-rational-functions optimization:

; N pi(x)

Xlen]1£n Zi:l q,-(x)

st. gi(x)>0, i=1,...,m
hi(x) =0, j=1,...,¢

» computer vision, signal processing
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Polynomial matrix optimization

® polynomial matrix optimization:

Xienﬂgn Amin(F(x))

st. Gi(x)=0, i=1,....m
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Polynomial matrix optimization

® polynomial matrix optimization:

Xienﬂgn Amin(F(x))

st. Gi(x)=0, i=1,....m

» control theory, program verification
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Complex polynomial optimization

® complex polynomial optimization:

s
f, 1@

st. gi(z,2)>0, i=1,...,m
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Complex polynomial optimization

® complex polynomial optimization:

i Flz3

LAY

st. gi(z,2)>0, i=1,...,m
hi(z,2) =0, j=1,...,1

» power system, signal processing
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Trigonometric polynomial optimization

® trigonometric polynomial optimization:

inf f(sinxy,...,sinx,, COSX], ..., COSXp)
x€[0,2m)"
s.t. gi(sinxy,...,sinx,,cosxy,...,cosx,) >0, i=1....m

hi(sinxi,...,sinxp,cosx,...,cosx,) =0, j=1,...,¢

Jie Wang Optimization with Polynomials May 20, 2025



Trigonometric polynomial optimization

® trigonometric polynomial optimization:

inf f(sinxy,...,sin x,, cos xi,
x€[0,2m)"
s.t. gi(sinxy,...,sinx,, cos xy,

hj(sinxi, ..., sinxp, cos xq,

» signal processing

Jie Wang

...,COSXp)
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Eigenvalue optimization with noncommutative polynomials

® cigenvalue optimization with noncommutative polynomials:

Jie Wang

inf Amin(f(x))

XeUkZl(Sk)"

s.t. gi(x)>0, i=1....,m
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Eigenvalue optimization with noncommutative polynomials

® cigenvalue optimization with noncommutative polynomials:

inf Amin(f(x))

XeUkZl(Sk)"

s.t. gi(x)>0, i=1....,m

» quantum information, ground state energy
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Trace optimization with noncommutative polynomials

® (normalized) trace optimization with noncommutative polynomials:

Jie Wang

inf  te(F(x)) (tr(A) = 13K Ap)

x€Ug>1(Sk)"
s.t. gi(x)>0, i=1....m
hj(x):0, j=1... 7
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Trace optimization with noncommutative polynomials

® (normalized) trace optimization with noncommutative polynomials:

inf  te(F(x)) (tr(A) = 13K Ap)

x€Ug>1(Sk)"
s.t. gi(x)>0, i=1,....m

j=1,...¢

» Connes’ embedding conjecture

Jie Wang
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Trace polynomial optimization

e trace polynomial: tr(x?)xax1 + tr(xa )tr(xexix2), X1, ..., X, € B(H)
® trace polynomial optimization:

inf tr(f(x
o™ (F(x))

s.t. gi(x)>0, i=1,....m
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Trace polynomial optimization

e trace polynomial: tr(x?)xax1 + tr(xa )tr(xexix2), X1, ..., X, € B(H)

® trace polynomial optimization:

inf tr(f(x))

XeUkZl(Sk)n

s.t. gi(x)>0, i=1,....m

hi(x) =0, j=1,....¢

» quantum information, maximal entanglement states
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State polynomial optimization

e state polynomial: ¢(x?)xax1 + s(x1)s(axix2), x1,...,x, € B(H), s is a
formal state (i.e., a positive unital linear functional) on B(H)
® state polynomial optimization:
inf (f(s: x
s (fsix))

st. gi(gx)>0, i=1,....,m

hi(s;x) =0, j=1,...,¢
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State polynomial optimization

e state polynomial: ¢(x?)xax1 + s(x1)s(axix2), x1,...,x, € B(H), s is a
formal state (i.e., a positive unital linear functional) on B(H)

® state polynomial optimization:

inf f(s;
s s(f(six))

st. gi(gx)>0, i=1,....,m
hi(s;x) =0, j=1,...,¢

» quantum information, quantum states

Jie Wang
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Difficult to solve

® Non-convex

® Various natures of variables

® No classical derivatives

® NP-hard

Jie Wang Optimization with Polynomials
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Positivstellensatz and the moment-SOS hierarchy
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Various nonnegativity

» real polynomial f > 0 if f(x) > 0, ¥x € R"

» polynomial matrix F > 0 if F(x) = 0, Vx € R”

» complex polynomial f > 0 if f(z,z) > 0, Yz € C”

» noncommutative polynomial f > 0 if f(x) = 0, Vx € Ux>1(Sk)"

» noncommutative polynomial tr(f) > 0 if tr(f(x)) > 0, ¥x € Ux>1(Sk)"
» trace polynomial tr(f) > 0 if tr(f(x)) > 0, Vx € Ux>1(Sk)"

» state polynomial £ > 0 if ¢(f(s;x)) > 0, V(H, <, x)
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Sum of squares

® Sum of squares (SOS):
f=f++f2 ~ >0
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Sum of squares

® Sum of squares (SOS):

f=f++f2 ~ >0
e Hilbert, 1888: “nonnegativity = SOS" <= n=1||d=2|[n=2,d =4
® Artin, 1927: “nonnegative polynomials = rational SOS”

® Matrix sum of squares: F(x) = P(x)TP(x)
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Sum of squares

® Sum of squares (SOS):
f=f++f2 ~ >0
e Hilbert, 1888: “nonnegativity = SOS" <= n=1||d=2|[n=2,d =4
® Artin, 1927: “nonnegative polynomials = rational SOS”
e Matrix sum of squares: F(x) = P(x)TP(x)
® Hermitian sum of squares: f = |f|? + -+ |f|?

® Sum of Hermitian squares: f = f{*fi +--- 4+ ff;
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Gram matrix and semidefinite programming

o deg(f) =2d, [X|g == [1,x1, .-, Xm X, ..., x7]
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Gram matrix and semidefinite programming

o deg(f) =2d, [X|g == [1,x1, .-, Xm X, ..., x7]

® f is an SOS <= there exists a PSD matrix G s.t.

f=[xlg-G-[x]}, ~ SDP
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Gram matrix and semidefinite programming

o deg(f) =2d, [X|g == [1,x1, .-, Xm X, ..., x7]

® f is an SOS <= there exists a PSD matrix G s.t.

f=[xlg-G-[x]}, ~ SDP

® G is called a Gram matrix of f, which is of size ("Jgd)

Jie Wang

Optimization with Polynomials

— ("39)
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Quadratic module

o ¥(x) ={feR[x|f=3,f2 fcR[x]}
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Quadratic module

o ¥(x) ={feR[x|f=3,f2 fcR[x]}

® Quadratic module: Given g = {g;}"; C R[x],

Qg) = {Cfo + Zdigi

i=1

G;EZ(X),i:O,l,...,m}
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Quadratic module

® X(x)={f eR[x] | f =372 f € R[x]}
® Quadratic module: Given g = {g;}"; C R[x],

Qg) = {Cfo + Zdigi

i=1

G;EZ(X),i:O,l,...,m}

® Truncated quadratic module:

o(g)2r = {Uo + Z oigi

i=1

o; € X(x),deg(ojgi) <2r,i=0,1,..., m}
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Quadratic module

® X(x)={f eR[x] | f =372 f € R[x]}
® Quadratic module: Given g = {g;}"; C R[x],

Qg) = {Cfo + Zdigi

i=1

G;EZ(X),i:O,l,...,m}

® Truncated quadratic module:

o(g)2r = {Uo + Z oigi

i=1

o; € X(x),deg(ojgi) <2r,i=0,1,..., m}

® Archimedean’s condition (~ compactness): there exists N > 0 s.t.

N — [x||* € Q(g) + Z(h)
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Commutative Positivstellensatz

oS ={xeR"|gi(x)>0,...,8m(x) >0,hi1(x) =0,...,h(x) =0}

Theorem (Putinar’s Positivstellensatz, 1993)
Assume Q(g) + Z(h) satisfies Archimedean’s condition. If f is positive on

S, then
f=00+0181+  +0mgm+711h1 + -+ 7hy,

where og,...,0m are SOS, and T, ..., 7Ty are polynomials.
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Matrix Positivstellensatz

e S = {xcR"|G(x) > 0}

Theorem (Scherer and Hol, 2006)
Assume that Q(G) satisfies Archimedean’s condition and F(x) € S[x]P is

positive definite on S. Then there exist SOS polynomial matrices

Yo(x) € S[x]P and X1(x) € S[x|P9 such that

F(x) = Zo(x) + (X1(x), G(x))p-
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Complex Positivstellensatz

*S5={z2€C"|g(z2.2) 20,....8m(2.2) 2 0,|21]* + - + |z4|* = R}

Theorem (D'Angelo and Putinar, 2009)

If f is positive on S, then

f:0'0+0'1g1+"‘+O-mgm+7—(|zl|2+"'+|Zn‘2*R)a

where oy, . ..,0m are Hermitian SOS, and 7 is a self-conjugate complex

polynomial.
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Noncommutative Positivstellensatz

oS ={xeB(H)"|g(x)>0,...,gm(x) >0}

Theorem (Helton and McCullough, 2004)
Assume that {g;}7 , satisfies Archimedean’s condition. If f is positive on

S, then

f= Z 5¢85g, for some {sz}y C R(x).
ge{1}{ai},
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Reformulate POPs with nonnegative polynomials

e S={xeR"|g(x)>0,...,8m(x) >0,h1(x) =0,...,h(x) =0}

fonin =sup{A: f(x) —A>0,Vx e S}
A
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Reformulate POPs with nonnegative polynomials

e S={xeR"|g(x)>0,...,8m(x) >0,h1(x) =0,...,h(x) =0}

fonin =sup{A: f(x) —A>0,Vx e S}
A

® Ps(x) ={g €R[x] | g >0on S} ~ intractable
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Reformulate POPs with nonnegative polynomials

e S={xeR"|g(x)>0,...,8m(x) >0,h1(x) =0,...,h(x) =0}

fonin =sup{A: f(x) —A>0,Vx e S}
A

® Ps(x) ={g €R[x] | g >0on S} ~ intractable

® Replace Ps(x) by tractable subsets ~~ Q(g)2, + Z(h)2,
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The hierarchy of dual SOS relaxations

® The hierarchy of dual SOS relaxations (Parrilo 2000 & Lasserre 2001)

sup A
0y =< A
st. f—Xe€ 9(g)ar +Z(h)a
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The hierarchy of dual SOS relaxations

® The hierarchy of dual SOS relaxations (Parrilo 2000 & Lasserre 2001)

sup A
0y =< A
st. f—Xe€ 9(g)ar +Z(h)a
< 9* < 0r+1 S fmin
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Measures and moments

® For a finite Borel measure p, yo = fs x*dy ~» moment
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Measures and moments

® For a finite Borel measure p, yo = fs x*dy ~» moment

® Reformulation using measures and moments:
inf f(x)dp: u(S)=1
AR ACURTORY
)

inf ¢ Ly(f) = Z faYo : I € M(S)4+ s.t. y~pand yp =1
Y aesupp(f)
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Measures and moments

® For a finite Borel measure p, yo = fs x*dy ~» moment

® Reformulation using measures and moments:

ity { [ o)
)

inf ¢ Ly(f) = Z faYo : I € M(S)4+ s.t. y~pand yp =1
Y aesupp(f)

Question: When does a sequence y = (Yo )aecnr admits a finite Borel

measure representation with support contained in S?
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Moment matrix and localizing matrix

o Ny ={B=(8) N | L0, 5 <1}
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Moment matrix and localizing matrix

o Ny ={B=(8) N | L0, 5 <1}

® r-th order moment matrix M, (y):

[Mr(Y)]B’Y = YB4s VB, € N?
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Moment matrix and localizing matrix

o Ny ={B=(8) N | L0, 5 <1}

® r-th order moment matrix M, (y):

[Mr(Y)]B’Y = YB4s VB, € N?

® Given g = ), 8aXx®, r-th order localizing matrix M,(gy):

[M.(gY)lgy = ) _ 8aYa+pry, VB, ¥ EN!
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Moment matrix and localizing matrix

o Ny ={B=(8) N | L0, 5 <1}

® r-th order moment matrix M,(y):
[Mr(Y)]B’Y = YBiy, VB,YE N7
® Given g = ), 8aXx®, r-th order localizing matrix M,(gy):

[M.(gY)lgy = ) _ 8aYa+pry, VB, ¥ EN!

ex=x,g=1-x*
1 X X2
1 X
1 Yo y1 y2
1 Yo—Y2 Y1—)3
Ma(y) = « yvi y2 ys |» Mi(gy)=
) x Yi—Y3 Y2— Y4
X Y2 y3 ya
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Sequences admitting a Borel representing measure

Theorem (The dual to Putinar's Positivstellensatz)

Assume that Archimedean’s condition holds. The sequence y = (Yo )aenn
admits a finite Borel representing measure with support contained in S if
and only if M(y) = 0,M,_4.(giy) = 0, Ly(x*h;) =0 for all i, j, r and

a e N,

® d; = [deg(gi)/2],i=1,....,m
® Riesz linear functional Ly : R[x] = R, f =3 fax* = > faYa
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The hierarchy of moment relaxations

® The hierarchy of moment relaxations (Lasserre, 2001)

Jie Wang

inf  Ly(f)
y
st. M. (y)>=0
Mg (gy) =0, i=1,...,m
Ly(x*hy) =0, |a| < 2r — deg(hy), j =1

=1

Optimization with Polynomials
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The hierarchy of moment relaxations

® The hierarchy of moment relaxations (Lasserre, 2001)

Jie Wang

inf  Ly(f)
y
st. M. (y)>=0
Mg (gy) =0, i=1,...,m
Ly(x*h;) =0, |o| <2r —deg(hy), j=1,....¢

=1
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The Moment-SOS/Lasserre’s hierarchy

(Moment relaxation)

Jie Wang

fmin

Q\

VI

6%  (dual SOS relaxation)
VI

VI

*
Imin
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Asymptotical convergence and finite convergence

e Under Archimedean's condition (&~ compactness)
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Asymptotical convergence and finite convergence

e Under Archimedean's condition (&~ compactness)

» 0, 7 fnin and 07 7 fin as r — oo (Putinar’s Positivstellensatz)
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Asymptotical convergence and finite convergence

e Under Archimedean's condition (&~ compactness)
» 0, 7 fnin and 07 7 fin as r — oo (Putinar’s Positivstellensatz)

» Finite convergence happens generically (Nie, 2014)
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Detecting global optimality

® Global optimality certified (6, = f,in) when one of the following

conditions holds:
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Detecting global optimality

® Global optimality certified (6, = f,in) when one of the following
conditions holds:
» There exists r’ with rp < r’ < r, rank M, _, (y) = rank M,/ (y)

~~ A simple algorithm for extracting rank M, (y) optimal solutions
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Detecting global optimality

® Global optimality certified (6, = f,in) when one of the following
conditions holds:
» There exists r’ with rp < r’ < r, rank M, _, (y) = rank M,/ (y)

~~ A simple algorithm for extracting rank M, (y) optimal solutions

» rankM,  (y)=1

~> Extract one optimal solution

Jie Wang Optimization with Polynomials May 20, 2025



Improve scalability by exploiting structures
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Rapidly growing size of the moment-SOS hierarchy

® The size of SDP corresponding to the r-th SOS relaxation:

@ Size of PSD constraints: (”fr)

n+2r)

@ Number of equality constraints: ("}
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Rapidly growing size of the moment-SOS hierarchy

® The size of SDP corresponding to the r-th SOS relaxation:

@ Size of PSD constraints: (”fr)

n+2r)

@ Number of equality constraints: ("}

® r =2, n< 30 (Mosek)
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Rapidly growing size of the moment-SOS hierarchy

® The size of SDP corresponding to the r-th SOS relaxation:

@ Size of PSD constraints: (”fr)

@ Number of equality constraints: ("5?")

® r =2, n< 30 (Mosek)
® Exploiting structures:
>» POP
» SDP

Jie Wang Optimization with Polynomials

May 20, 2025



Quotient ring

® Equality constraints: hj(x) =0, j=1,...,¢
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Quotient ring

® Equality constraints: hj(x) =0, j=1,...,¢
® Build the moment-SOS hierarchy in the quotient ring

R[x]/(h1(x), ..., he(x))

~> Reduce SDP sizes by using Grobner basis
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Symmetries

® permutation symmetry: (x1,...,Xn) = (Xr(1),- - > Xr(n))
® translation symmetry: (x1,...,Xn) = (X147, -+ s Xnti)y Xnti = Xi
® sign symmetry: (Xi,...,X;) = (=Xi, ..., —Xi,)

® conjugate symmetry: (zj,...,z,) = (Zij,- .., Zi,)
o T-symmetry: (z,...,2,) — (eYz,...,e"%z)
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Symmetries

® permutation symmetry: (x1,...,Xn) = (Xr(1),- - > Xr(n))
® translation symmetry: (x1,...,Xn) = (X147, -+ s Xnti)y Xnti = Xi
® sign symmetry: (Xi,...,X;) = (=Xi, ..., —Xi,)

® conjugate symmetry: (zj,...,z,) = (Zij,- .., Zi,)
o T-symmetry: (z,...,2,) — (eYz,...,e"%z)

» Use group theory to derive block-diagonal moment-SOS relaxations
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Correlative sparsity (Waki et al. 2006)

® Correlative sparsity pattern graph G*P(V E):
» Vi={xq,...,xn}
» {xj,x;j} € E <= x;, x;j appear in the same term of f or in the same

constraint polynomial gx
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Correlative sparsity (Waki et al. 2006)

® Correlative sparsity pattern graph G*P(V E):

» Vi={xq,...,xn}

» {xj,x;j} € E <= x;, x;j appear in the same term of f or in the same
constraint polynomial gx

® For each maximal clique of G*P(V/, E), apply

/k — Mr(y, /k)7 Mr—d,-(giy, lk)
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Correlative sparsity (Waki et al. 2006)

® Correlative sparsity pattern graph G*P(V E):

» Vi={xq,...,xn}

» {xj,x;j} € E <= x;, x;j appear in the same term of f or in the same
constraint polynomial gx

® For each maximal clique of G*P(V/, E), apply

/k — Mr(y, /k)7 Mr—d,-(giy, lk)

® Sparse Positivstellensatz: asymptotical convergence
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Term sparsity (Wang & Magron & Lasserre, 2021)

® Term sparsity pattern graph G®P(V E):

» V=[x, ={l,x1, ..., Xn, X{, ..., X}

» {x¥,xP} € E <= x* - xP = x28 ¢ supp(f) U U™, supp(g) U [x]?
® Impose a sparsity pattern on M, (y) using G*P(V, E)

a

B o Yat+B = Mr(y)a Ya+B = 0 — {Xaaxﬁ} §é E

Jie Wang Optimization with Polynomials May 20, 2025



Structures of the moment problem

o Low-rank optimal solutions: rank(M°P') < n
e Unit diagonal: diag(M) =1

e Unit trace: tr(M) =1
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Solving the moment problem via manifold optimization

@ Low-rank: rank M°P! < n ~» M = YYT, Y € R"™P Burer-Monteiro
> N = {Y € R™P}

~ Efficient manifold optimization algorithms
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Solving the moment problem via manifold optimization

@ Low-rank: rank M°P* < n ~» M = YYT, Y € R"%P Burer-Monteiro
» N ={Y e R"™P}

e Unital diagonal: diag(M) =1
> N ={YeR™||Y(k:)|=1k=1,...,n}

~ Efficient manifold optimization algorithms
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Solving the moment problem via manifold optimization

e Low-rank: rank M°P' < n ~» M = YYT, Y € R"*P Burer-Monteiro
» N ={Y e R"™P}

e Unital diagonal: diag(M) =1
> N ={YeR™||Y(k:)|=1k=1,...,n}

e Unital trace: tr(M) =1
> N = {Y €RPP[||Y]r = 1}

~ Efficient manifold optimization algorithms

Jie Wang Optimization with Polynomials May 20, 2025



Solving large-scale polynomial optimization

POP structure

Structured Moment-SOS ’

Moment-SOS structure

Structured SDP

—|— *){ Solving large-scale POP

Jie Wang
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Software

® TSSOS: based on JuMP, support commutative/complex/matrix polynomial
optimization

https: / /github.com /wangjie212/TSSOS

e NCTSSOS: based on JuMP, support noncommutative/trace/state polynomial
optimization

https://github.com/wangjie212/NCTSSOS

® ManiSDP: in MATLAB, efficiently solve low-rank SDPs via manifold
optimization

https:/ /github.com/wangjie212/ManiSDP
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Software

® TSSOS: based on JuMP, support commutative/complex/matrix polynomial
optimization

https: / /github.com /wangjie212/TSSOS

e NCTSSOS: based on JuMP, support noncommutative/trace/state polynomial
optimization

https://github.com/wangjie212/NCTSSOS

® ManiSDP: in MATLAB, efficiently solve low-rank SDPs via manifold
optimization

https:/ /github.com/wangjie212/ManiSDP

» See our papers for numerical examples and applications.
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Summary

@ The moment-SOS hierarchy provides a power tool for global
optimization of many difficult non-convex problems involving
polynomials.

@ The scalability of the moment-SOS hierarchy can be significantly

improved by exploiting various structures.

@ There are tons of applications in many different fields!
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Thank Youl

https://wangjie212.github.io/jiewang
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