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© Noncommutative polynomial optimization and the moment-SOHS
hierarchy

© Exploiting sparsity for the moment-SOHS hierarchy

© Numerical experiments
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Polynomials in noncommutating variables

e X = (Xi,...,X,): atuple of noncommutating variables (letters)

@ noncommutative (nc) polynomial: f=3" ¢ xyaww, aw € R

e R(X): the ring of nc polynomials in X

e involution *: fixes RU {Xi,...,X,} and reverses words (monomials)
o SymR(X):={f € R(X Hf*:f}

e sum of Hermitian squares (SOHS): f = gfg1 + g5g2 + ... + &8
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Positivity over a semialgebraic set

Given S ={g1,...,8m} C SymR(X), the semialgebraic set Dg is

Ds:= | {A=(A1...,A) € (S)" | g(A) =0, € [m]}.
reN\{0}

The operator semialgebraic set D is the set of all bounded self-adjoint
operators A on a Hilbert space endowed with a scalar product (-, -) making
gj(A) a PSD operator, for all gj € S.

Theorem (Helton and McCullough, 2002)

Let {f}US C SymR(X) and assume that M is Archimedean. If
f(A) =0 for all A€ D, then f € Ms.
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Eigenvalue minimization and trace minimization

Given f € SymR(X) and S = {g1,...,8m} C SymR(X), the eigenvalue
minimization problem for f over the operator semialgebraic set DY is
defined by

Amin(f,S) == inf{(f(A)v,v) : Ac DT, ||v|| =1},

and the trace minimization problem for f over the semialgebraic set Dg
is defined by

trmin(f,S) :=inf{tr f(A) : A € Ds}.
(For A=[aj] €S’ trA:=1%"1 , a;)

Jie Wang Exploiting Sparsity in NCPOPs 21 June, ECM 2021 5/30



Moment matrix and localizing matrix

For d € N, let W, be the column vector of all words of degree at most d
arranged w.r.t. the lexicographic order.

> The d-th order moment matrix My(y) is defined by
[IMa(Y)]w = Yurv, Yu,v € Wy.

> Given g =, csupp(g) PwW € SymR(X), the d-th order localizing
matrix My(gy) is defined by

[Md(gy)]uv = Z bwywwy, Vu,v € Wy.
wesupp(g)
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The moment-SOHS hierarchy for eigenvalue minimization

The d-th order moment relaxation:

A(F,S) == inf Ly(f)
s.t. Ma(y) = 0,
Mqy—q,(gy) =0, j=1,....,m,
n=1

with the dual SOHS relaxation:

Ad(f,S)* == sup A
s.t. f—)\GMSQd.

(dj = [deg(g;)/2], = 1,...,m)
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The moment-SOHS hierarchy for eigenvalue minimization

Amin(fas)
/// R\
VI VI
Moment  Ag4(f,S) =" Ad(f,S)* SOHS
VI VI
Vi VI
Ad(f,S) = Ad(f,S)*

(d := max{deg(f)/2,d1,...,dm})
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The moment-SOHS hierarchy for trace minimization

The d-th order moment relaxation:
pa(f,S) = inf Ly(f)
s.t. Mq(y) = 0,
Ma—q,(gjy) = 0, j € [m],
Ma(Y)ww = Mg(¥)wz, for all u*v o w*z,
yi=1,

with the dual SOHS relaxation:

Md(fa 5)* = sup A
st. f—2A Ecyc M5’2d.
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Global convergence

Under Archimedean's condition: there exists N > 0 s.t. N — || X||?> € Ms,
we have

@ Ny(F,S) T Amin(F,S) and Ay(f,S)" T Amin(f,S) as d — oo;
@ We can verify global optimality by the so-called rank condition (flat
extension);

@ We can easily extract minimizers when the rank condition is satisfied.
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Global convergence

Under Archimedean's condition: there exists N > 0 s.t. N — || X]|? € Mg,
we have
@ Ny(F,S) T Amin(F,S) and Ay(f,S)" T Amin(f,S) as d — oo;
@ We can verify global optimality by the so-called rank condition (flat
extension);

@ We can easily extract minimizers when the rank condition is satisfied.

Key Message: The moment-SOHS hierarchy allows us to
approximate/retrieve the global optimum /optimizers via solving a
sequence of SDPs with increasing sizes.
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Scalability issue

The size of SDP (considering the SOHS problem for eigenvalue
minimization) at relaxation order d:

: . . d+1_
@ maximal size of PSD matrices: ™ — L

. . 2d+1_
@ Fequality constraint: %
In view of the current state of SDP solvers (e.g. Mosek), solvable

problems are limited to modest size.

Jie Wang
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Scalability issue

The size of SDP (considering the SOHS problem for eigenvalue
minimization) at relaxation order d:

: . . d+1_
@ maximal size of PSD matrices: ™ — L

. . i n2d+171
@ Ffequality constraint: " ——

In view of the current state of SDP solvers (e.g. Mosek), solvable
problems are limited to modest size.

Exploiting structure:
@ symmetry

@ sparsity

Jie Wang
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Correlative sparsity (Klep, Magron and Povh, 2021)

The basic idea is to partition the variables into cliques according to the
correlations between variables.

Correlative sparsity pattern (csp) graph G*P(V, E):

Vi ={Xy,..., Xs}

{Xi,X;} € E <= X;, X; appear in the same term of f or appear in the
same constraint polynomial g
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Correlative sparsity (Klep, Magron and Povh, 2021)

The basic idea is to partition the variables into cliques according to the
correlations between variables.

Correlative sparsity pattern (csp) graph G*P(V, E):

Vi ={Xy,..., Xs}

{Xi,X;} € E <= X;, X; appear in the same term of f or appear in the
same constraint polynomial g

We then construct moment/localizing matrices with respect to the
variables involved in each maximal clique of the csp graph:

I — Ma(y, Ik), Ma—d.(g5y; Ik)
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Correlative sparsity

Example

Consider f = X{ + X1 X2 + X3 X1 4+ Xo X3 + X3Xo + X3 X2 + XZX2 and
81 — 1—X12—X22—X32, 82 — 1—X3X4—X4X3.

Figure: The csp graph for f and {g1, 8}

:’@ )

Two maximal cliques: {X1, X2, X3} and {X3, Xa}
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The correlative sparsity adapted moment-SOHS hierarchy

o If the csp graph is chordal (otherwise we need a chordal extension),
then the correlative sparsity adapted moment-SOHS hierarchy shares
the same convergence as the dense one;

e We can verify global optimality by the (adapted) rank condition;

@ We can extract global minimizers if the rank condition is satisfied;

@ Significantly improve scalability if the sizes of maximal cliques of the
csp graph are small (e.g. < 10).

Jie Wang Exploiting Sparsity in NCPOPs 21 June, ECM 2021 14 /30



Term sparsity (Wang and Magron, 2021)

In contrast with correlative sparsity concerning variables, term sparsity
treats sparsity at the term/monomial level.
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Term sparsity (Wang and Magron, 2021)

In contrast with correlative sparsity concerning variables, term sparsity
treats sparsity at the term/monomial level.

Term sparsity pattern (tsp) graph G®P(V/, E) (with relaxation order d):
Vi =Wy

{u,v} € E <= u*v € supp(f) U, supp(gj) U {w*w [ w € Wy}

(For f =3 e(xy aww € R(X), supp(f) := {w | aw # 0})
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Term sparsity

Let
f=2—X24+XY2X = Y2+ XYXY + YXYX +X3Y + YX3+ XY3 4+ Y3X
and S = {1—-X21- Y2}

Figure: The tsp graph for f and S with d =2
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Suppose (G™P) is a chordal extension of G*™P with maximal cliques:
C.]_7 ey Ctr
C,-r—>MC,.(y), i=1,...,t.
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Suppose (G™P) is a chordal extension of G*™P with maximal cliques:
C.]_7 ey Ctr

C,"—)MC,.(y), i=1,...,t.

In the moment relaxation,
Mg(y) =0 — Mc(y) =0, i=1,... ¢t

Similarly for the localizing matrices My_4(y),j = 1,..., m.
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Extending to an iterative procedure

By iteratively performing support extension and chordal extension:

G = (") c...c G c gt ...

Figure: Support extension (wfwz = wiwy and {wq, wa} € E = {w3, ws} € E)

O B -0 ©
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The term sparsity adapted moment-SOHS hierarchy

Let Cj(sl), e Cj(stj?s be the maximal cliques of Gj(s). For each s > 1, let us
consider ’

AU(F,8) = inf Ly(f)

s.t. Mcéfi)(y) =0, i=1,..., to,s,
I\/IC'(SI)(gjy)EO, /—1,...,tj75,j:1,...,m,
!
yi=

We obtain
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A two-level hierarchy of lower bounds

Furthermore, we obtain a two-level hierarchy of lower bounds for
Amin(f,S): (d := max{deg(f)/2,d1,...,dm})

AP(r,5) < AP(FS) < o < Al S)
Al Al Al
ADL(F,8) < ADL(FS) < o < Agalf.S)
Al Al Al
A A | A
AP(F,8) < AQ(F,8) < - < Mlf,S)
Al Al Al
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Consider the nc polynomial f = X? — XY — YX +3Y2 —2XYX +
2XY?X —YZ — ZY +62Z%2 +9X?Y +9Z%2Y —Bb4ZYZ + 1427ZY?Z. The
monomial basis given by the Newton chip method is
{1,X,Y,Z,YX,YZ}. Solving the sparse moment relaxation with s =1,
we obtain A()(f) ~ —0.00355 while Amin(f) = 0.

Figure: The tsp graph and a chordal extension
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Combining correlative sparsity with term sparsity

The combination of correlative sparsity with term sparsity splits into two
steps:

@ Partitioning the variables with respect to the maximal cliques of the
csp graph;

@ For each subsystem involving variables from one maximal clique,
applying the above iterative procedure to exploit term sparsity.

In doing so, we again obtain a two-level hierarchy of lower bounds for
Amin(f, S).
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Eigenvalue minimization for the nc Broyden banded

function

Software: NCTSSOS, SDP solver : Mosek

Table: Eigenvalue minimization for the nc Broyden banded function with

d = 3,5 = 1; the symbol “-" indicates out of memory.
Sparse Dense
" mb opt time (s) mb opt time (s)
20 15 0 0.34 61 0 1.42
40 15 0 0.77 121 0 34.9
60 5 | 0 0.07 181 | 0 367
80 15 0 1.20 - - -
100 15 0 1.57 - - -
200 | 15 | O 3.14 . . 5
300 | 15 | 0 5.5 s N 5
400 15 0 7.11 - - -
500 15 0 9.42 - - -
600 | 15 | O 12.9 B 5 5
700 15 0 15.6 - - -
800 15 0 18.5 - - -
900 15 0 22.3 - - -
1000 15 0 26.2 - - -
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Eigenvalue minimization for the nc generalized Rosenbrock

function

Table: Eigenvalue minimization for the nc generalized Rosenbrock function over D
with d = 2,5 =1, where D is defined by {1 — X2,...,1— X2,
X1 —1/3,..., X, —1/3}; the symbol “-" indicates out of memory.

n Sparse Dense
mb opt time (s) mb opt time (s)
20 3 1.0000 0.14 - - -
40 3 1.0000 0.22 - - -
60 3 0.9999 0.28 - - -
80 3 0.9999 0.35 - - -
100 3 0.9999 0.46 - - -
200 3 0.9999 0.89 - - -
400 3 1.0000 2.40 - - -
600 3 1.0000 4.47 - - -
800 3 1.0000 6.95 - - -
1000 3 0.9999 10.2 - - -
2000 3 0.9999 37.2 - - -
3000 3 0.9999 87.2 - - -
4000 3 0.9998 145 - - -
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Eigenvalue minimization for randomly generated examples

Table: Eigenvalue minimization for random nc quartic polynomials over

multi-balls with d = 2; the symbol “-" indicates out of memory.
n CS+TS Cs Dense

s mb opt time (s) mb opt time (s) mb opt time (s)
1 21 —15.91 3.26

505 2 21 —15.42 7.49 241 - - - - -
3 21 —15.31 10.6
1 25 —32.58 9.71

1005 2 25 —31.91 24.5 241 - - - - -
3 25 —31.71 40.9
1 26 —48.57 18.9

1505 2 26 —47.00 47.0 241 - - - - -
3 26 —46.71 90.0
1 25 —63.58 33.7

2005 2 25 —62.05 85.8 241 - - - - -
3 25 —61.76 149
1 23 —81.07 52.9

2505 2 23 —78.75 134 241 - - - - -
3 23 —78.21 263
1 23 —95.73 74.8

3005 2 23 —93.13 212 241 - - - - -
3 23 —92.71 396
1 24 —111.2 93.4

3505 2 24 —108.3 258 241 - - - - -
3 24 —107.8 531
1 25 —131.1 122

4005 2 25 —127.5 375 241 - - - - -
3 25 —126.8 687

Jie Wang Exploiting Sparsity in NCPOPs 21 June, ECM 2021 25 /30



Trace minimization for the nc Broyden tridiagonal function

Table: Trace minimization for the nc Broyden tridiagonal function over D with
d =2,5 =1, where D is defined by {1 — X2,...,1— X2,
X1—1/3,..., X, —1/3}; the symbol “-" indicates out of memory.

n Sparse Dense
mb opt time (s) mb opt time (s)
20 6 1.1805 0.27 - - N
40 6 1.1828 0.53 - - -
60 6 1.1828 0.68 - - -
30 6 1.1828 0.82 - - N
100 6 1.1828 1.07 - - N
200 6 1.1828 2.45 - - -
400 6 1.1828 6.18 - - -
600 6 1.1828 12.2 - - N
800 6 1.1828 20.1 - - Z
1000 6 1.1828 28.6 - - -
2000 6 1.1828 104 - - -
3000 6 1.1828 204 - - -
4000 6 1.1828 363 - - -
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Trace minimization for randomly generated examples

Table: Trace minimization for random nc quartic polynomials over multi-balls

with d = 2; the symbol “-" indicates out of memory.
n CS+TS Cs Dense

s mb opt time (s) mb opt time (s) mb opt time (s)
1 16 —4.997 4.94

505 2 17 —4.983 7.40 241 - - - - -
3 17 —4.975 7.66
1 16 —10.14 14.2

1005 2 17 —10.11 21.7 241 - - - - -
3 17 —10.11 22.6
1 16 —15.72 25.2

1505 2 17 —15.68 39.8 241 - - - - -
3 17 —15.67 41.0
1 16 —20.45 40.9

2005 2 17 —20.41 67.9 241 - - - - -
3 17 —20.40 73.8
1 16 —25.95 63.1

2505 2 17 —25.90 95.6 241 - - - - -
3 18 —25.89 101
1 16 —31.09 93.5

3005 2 17 —31.03 152 241 - - - - -
3 18 —31.02 157
1 16 —35.99 119

3505 2 17 —35.93 198 241 - - - - -
3 18 —35.92 216
1 16 —41.80 145

4005 2 17 —41.72 248 241 - - - - -
3 18 —41.70 264
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Conclusion and outlook

@ When appropriate sparsity patterns are accessible, we can significantly
improve the scalability of the moment-SOHS hierarchy;

@ Possible extensions to other situations also relying on the
moment-SOHS hierarchy, e.g., problems involving trace polynomials;

© Potential applications in quantum information, condensed matter
physics and other fields.
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Thanks for your attention!
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