Nonnegativity, Sparsity and Polynomial Optimization

Jie Wang

Joint work with Victor Magron and Jean B. Lasserre

University of Hong Kong

21 April, 2022

Jie Wang (AMSS-CAS)

Nonnegativity, Sparsity, Optimization

Background on polynomial nonnegativity

- SOS decomposition
- SONC decomposition

Sparsity in the moment-SOS hierarchy

- Correlative sparsity (CS)
- Term sparsity (TS)

3 SONC decomposition and second order cone representation

4 Numerical experiments

Background on polynomial nonnegativity

- SOS decomposition
- SONC decomposition
- 2 Sparsity in the moment-SOS hierarchy
 - Correlative sparsity (CS)
 - Term sparsity (TS)

3 SONC decomposition and second order cone representation

4 Numerical experiments

Background on polynomial nonnegativity

- SOS decomposition
- SONC decomposition
- 2 Sparsity in the moment-SOS hierarchy
 - Correlative sparsity (CS)
 - Term sparsity (TS)

3 SONC decomposition and second order cone representation

4 Numerical experiments

Background on polynomial nonnegativity

- SOS decomposition
- SONC decomposition
- 2 Sparsity in the moment-SOS hierarchy
 - Correlative sparsity (CS)
 - Term sparsity (TS)
- 3 SONC decomposition and second order cone representation
- 4 Numerical experiments

Given a multivariate polynomial f, decide if it is nonnegative and if so,

provide a certificate of nonnegativity.

- > A central problem in real algebraic geometry
- Widely appear in numerous fields
- Closely related to polynomial optimization

Given a multivariate polynomial f, decide if it is nonnegative and if so,

provide a certificate of nonnegativity.

A central problem in real algebraic geometry

Widely appear in numerous fields

Closely related to polynomial optimization

Given a multivariate polynomial f, decide if it is nonnegative and if so,

provide a certificate of nonnegativity.

- A central problem in real algebraic geometry
- > Widely appear in numerous fields
- Closely related to polynomial optimization

Given a multivariate polynomial f, decide if it is nonnegative and if so,

provide a certificate of nonnegativity.

- A central problem in real algebraic geometry
- > Widely appear in numerous fields
- Closely related to polynomial optimization

Given a multivariate polynomial f, decide if it is nonnegative and if so,

provide a certificate of nonnegativity.

- A central problem in real algebraic geometry
- > Widely appear in numerous fields
- Closely related to polynomial optimization
- ► NP-hard in general

 $f = f_1^2 + \dots + f_t^2 \quad \rightsquigarrow \quad f \text{ is nonnegative}$ Example: $f = 1 + 2x + 2x^2 + 2xy + y^2 = (1+x)^2 + (x+y)^2$ • Hilbert, 1888:

- Artin, 1927: "nonnegative polynomials = rational SOS"
- Blekherman, 2006: "nonnegative polynomials \gg SOS", $n \rightarrow \infty$
- Motzkin's polynomial: $M(x, y) = x^4y^2 + x^2y^4 + 1 3x^2y^2$

 $f = f_1^2 + \dots + f_t^2 \quad \rightsquigarrow \quad f \text{ is nonnegative}$ Example: $f = 1 + 2x + 2x^2 + 2xy + y^2 = (1+x)^2 + (x+y)^2$

• Hilbert, 1888:

- Artin, 1927: "nonnegative polynomials = rational SOS"
- Blekherman, 2006: "nonnegative polynomials \gg SOS", $n \rightarrow \infty$
- Motzkin's polynomial: $M(x, y) = x^4y^2 + x^2y^4 + 1 3x^2y^2$

 $f = f_1^2 + \dots + f_t^2 \quad \rightsquigarrow \quad f \text{ is nonnegative}$ Example: $f = 1 + 2x + 2x^2 + 2xy + y^2 = (1+x)^2 + (x+y)^2$

• Hilbert, 1888:

- Artin, 1927: "nonnegative polynomials = rational SOS"
- Blekherman, 2006: "nonnegative polynomials \gg SOS", $n \rightarrow \infty$
- Motzkin's polynomial: $M(x, y) = x^4y^2 + x^2y^4 + 1 3x^2y^2$

 $f = f_1^2 + \dots + f_t^2 \quad \rightsquigarrow \quad f \text{ is nonnegative}$ Example: $f = 1 + 2x + 2x^2 + 2xy + y^2 = (1+x)^2 + (x+y)^2$

• Hilbert, 1888:

- Artin, 1927: "nonnegative polynomials = rational SOS"
- Blekherman, 2006: "nonnegative polynomials \gg SOS", $n \rightarrow \infty$
- Motzkin's polynomial: $M(x, y) = x^4y^2 + x^2y^4 + 1 3x^2y^2$

 $f = f_1^2 + \dots + f_t^2 \quad \rightsquigarrow \quad f \text{ is nonnegative}$ Example: $f = 1 + 2x + 2x^2 + 2xy + y^2 = (1+x)^2 + (x+y)^2$

• Hilbert, 1888:

- Artin, 1927: "nonnegative polynomials = rational SOS"
- Blekherman, 2006: "nonnegative polynomials \gg SOS", $n \rightarrow \infty$
- Motzkin's polynomial: $M(x, y) = x^4y^2 + x^2y^4 + 1 3x^2y^2$

• $f: 2d, v_d = [1, x_1, \dots, x_n, x_1^d, \dots, x_n^d]$

• f admits an SOS decomposition \iff there exists a PSD matrix G s.t. $f = v_d \cdot G \cdot v_d^{\mathsf{T}} \quad \rightsquigarrow \quad \mathsf{SDP}$

• G is called a Gram matrix of f, which is of size $\binom{n+d}{n}$

- $f: 2d, v_d = [1, x_1, \dots, x_n, x_1^d, \dots, x_n^d]$
- f admits an SOS decomposition \iff there exists a PSD matrix G s.t. $f = v_d \cdot G \cdot v_d^{\mathsf{T}} \quad \rightsquigarrow \quad \mathsf{SDP}$
- G is called a Gram matrix of f, which is of size $\binom{n+d}{n}$

- $f: 2d, v_d = [1, x_1, \dots, x_n, x_1^d, \dots, x_n^d]$
- f admits an SOS decomposition \iff there exists a PSD matrix G s.t.

$$f = v_d \cdot G \cdot v_d^{\mathsf{T}} \quad \leadsto \quad \mathsf{SDP}$$

• G is called a Gram matrix of f, which is of size $\binom{n+d}{n}$

• Newton polytope: $f = \sum f_i^2 \Longrightarrow \operatorname{New}(f_i) \subseteq \frac{1}{2}\operatorname{New}(f)$

$$f = 4x_1^4x_2^6 + x_1^2 - x_1x_2^2 + x_2^2$$

• correlative sparsity

 $f(\mathbf{x}) = f_1(\mathbf{x}_1) + f_2(\mathbf{x}_2) \in SOS \rightsquigarrow f_1(\mathbf{x}_1) \in SOS, f_2(\mathbf{x}_2) \in SOS$

• term sparsity

$$\mathbf{x}^{oldsymbol{eta}}\cdot\mathbf{x}^{oldsymbol{\gamma}}
otin \mathrm{supp}(f),oldsymbol{eta}+oldsymbol{\gamma}
otin (2\mathbb{N})^n \quad imes \quad \mathcal{G}_{oldsymbol{eta}}_{oldsymbol{\gamma}}=0$$

• Newton polytope: $f = \sum f_i^2 \Longrightarrow \operatorname{New}(f_i) \subseteq \frac{1}{2}\operatorname{New}(f)$

$$f = 4x_1^4x_2^6 + x_1^2 - x_1x_2^2 + x_2^2$$

• correlative sparsity

$$f(\mathbf{x}) = f_1(\mathbf{x}_1) + f_2(\mathbf{x}_2) \in \text{SOS} \rightsquigarrow f_1(\mathbf{x}_1) \in \text{SOS}, f_2(\mathbf{x}_2) \in \text{SOS}$$

• term sparsity

$$\mathbf{x}^{\boldsymbol{eta}} \cdot \mathbf{x}^{\boldsymbol{\gamma}} \notin \operatorname{supp}(f), \boldsymbol{eta} + \boldsymbol{\gamma} \notin (2\mathbb{N})^n \quad \leadsto \quad G_{\boldsymbol{eta}\boldsymbol{\gamma}} = 0$$

• Newton polytope: $f = \sum f_i^2 \Longrightarrow \operatorname{New}(f_i) \subseteq \frac{1}{2}\operatorname{New}(f)$

$$f = 4x_1^4x_2^6 + x_1^2 - x_1x_2^2 + x_2^2$$

• correlative sparsity

$$f(\mathbf{x}) = f_1(\mathbf{x}_1) + f_2(\mathbf{x}_2) \in \text{SOS} \rightsquigarrow f_1(\mathbf{x}_1) \in \text{SOS}, f_2(\mathbf{x}_2) \in \text{SOS}$$

• term sparsity

$$\mathbf{x}^{\boldsymbol{eta}} \cdot \mathbf{x}^{\boldsymbol{\gamma}} \notin \mathrm{supp}(f), \boldsymbol{eta} + \boldsymbol{\gamma} \notin (2\mathbb{N})^n \quad \leadsto \quad \mathcal{G}_{\boldsymbol{eta}\boldsymbol{\gamma}} = \mathbf{0}$$

• Newton polytope: $f = \sum f_i^2 \Longrightarrow \operatorname{New}(f_i) \subseteq \frac{1}{2}\operatorname{New}(f)$

$$f = 4x_1^4x_2^6 + x_1^2 - x_1x_2^2 + x_2^2$$

• correlative sparsity

$$f(\mathbf{x}) = f_1(\mathbf{x}_1) + f_2(\mathbf{x}_2) \in \text{SOS} \rightsquigarrow f_1(\mathbf{x}_1) \in \text{SOS}, f_2(\mathbf{x}_2) \in \text{SOS}$$

• term sparsity

$$\mathbf{x}^{oldsymbol{eta}}\cdot\mathbf{x}^{oldsymbol{\gamma}}\notin\mathrm{supp}(f),oldsymbol{eta}+oldsymbol{\gamma}\notin(2\mathbb{N})^n\quad\leadsto\quad G_{oldsymbol{eta}}_{oldsymbol{\gamma}}=0$$

• $M(x,y) = x^4y^2 + x^2y^4 + 1 - 3x^2y^2$ (arithmetic-geometric mean

inequality \Rightarrow nonnegativity)

• circuit polynomial: $f = \sum_{\alpha \in \mathscr{A}} c_{\alpha} \mathbf{x}^{\alpha} - d_{\beta} \mathbf{x}^{\beta}$, $\alpha \in (2\mathbb{N})^{n}$, $c_{\alpha} > 0$, \mathscr{A} the vertex set of a simplex, $\beta \in \operatorname{conv}(\mathscr{A})^{\circ}$

• SONC decomposition: $f = f_1 + \cdots + f_t$ with each f_i being a nonnegative circuit polynomial

• $M(x, y) = x^4y^2 + x^2y^4 + 1 - 3x^2y^2$ (arithmetic-geometric mean

inequality \Rightarrow nonnegativity)

• circuit polynomial: $f = \sum_{\alpha \in \mathscr{A}} c_{\alpha} \mathbf{x}^{\alpha} - d_{\beta} \mathbf{x}^{\beta}$, $\alpha \in (2\mathbb{N})^{n}$, $c_{\alpha} > 0$, \mathscr{A} the vertex set of a simplex, $\beta \in \operatorname{conv}(\mathscr{A})^{\circ}$

• SONC decomposition: $f = f_1 + \cdots + f_t$ with each f_i being a nonnegative circuit polynomial

Jie Wang (AMSS-CAS)

• $M(x, y) = x^4y^2 + x^2y^4 + 1 - 3x^2y^2$ (arithmetic-geometric mean

inequality \Rightarrow nonnegativity)

• circuit polynomial: $f = \sum_{\alpha \in \mathscr{A}} c_{\alpha} \mathbf{x}^{\alpha} - d_{\beta} \mathbf{x}^{\beta}$, $\alpha \in (2\mathbb{N})^{n}$, $c_{\alpha} > 0$, \mathscr{A} the vertex set of a simplex, $\beta \in \operatorname{conv}(\mathscr{A})^{\circ}$

• SONC decomposition: $f = f_1 + \cdots + f_t$ with each f_i being a nonnegative circuit polynomial

Theorem (Wang, 2022)

Suppose that f is a nonnegative polynomial with exactly one negative

term. Then f admits a SONC decomposition.

> $f = 1 + x^4 + y^4 + x^6y^4 + x^4y^6 - x^2y$

Theorem (Wang, 2022)

Suppose that f is a nonnegative polynomial with exactly one negative

term. Then f admits a SONC decomposition.

Theorem (Wang, 2022)

Suppose f is a SONC polynomial. Then f admits a SONC decomposition:

$$f = \sum_{\operatorname{supp}(f_i) \subseteq \operatorname{supp}(f)} f_i,$$

where each f_i is a nonnegative circuit polynomial. Moreover, we can further assume that there is no cancellation occurring in the above decomposition.

Sparsity in the moment-SOS

hierarchy

• Polynomial optimization problem:

$$f^* := egin{cases} \inf & f \ ext{s.t.} & g_j \geq 0, \quad j = 1, \dots, m \ & (h_i = 0, \quad i = 1, \dots, m') \end{cases}$$

• non-convex, NP-hard

• Optimal power flow, computer vision, neural networks, signal processing, quantum information.....

• Polynomial optimization problem:

$$f^* := egin{cases} \inf & f \ ext{s.t.} & g_j \ge 0, \quad j = 1, \dots, m \ & (h_i = 0, \quad i = 1, \dots, m') \end{cases}$$

non-convex, NP-hard

 Optimal power flow, computer vision, neural networks, signal processing, quantum information..... • Polynomial optimization problem:

$$f^* := egin{cases} \inf & f \ ext{s.t.} & g_j \ge 0, \quad j = 1, \dots, m \ & (h_i = 0, \quad i = 1, \dots, m') \end{cases}$$

• non-convex, NP-hard

• Optimal power flow, computer vision, neural networks, signal processing, quantum information.....

• Compute the global optimal value

- Certify global optimality
- Extract global optimal solutions
- Approximate the global optimal value if the exact computation is expensive/impossible/unnecessary

- Compute the global optimal value
- Certify global optimality
- Extract global optimal solutions
- Approximate the global optimal value if the exact computation is expensive/impossible/unnecessary

- Compute the global optimal value
- Certify global optimality
- Extract global optimal solutions
- Approximate the global optimal value if the exact computation is expensive/impossible/unnecessary

- Compute the global optimal value
- Certify global optimality
- Extract global optimal solutions
- Approximate the global optimal value if the exact computation is expensive/impossible/unnecessary
- Compute the global optimal value
- Certify global optimality
- Extract global optimal solutions
- Approximate the global optimal value if the exact computation is expensive/impossible/unnecessary

The moment-SOS hierarchy (also known as Lasserre's hierarchy) is a well-established tool to handle POPs and achieve the above goals.

•
$$\mathbb{N}_r^n := \{ \boldsymbol{\beta} = (\beta_i) \in \mathbb{N}^n \mid \sum_{i=1}^n \beta_i \leq r \}$$

• *r*-th order moment matrix $M_r(\mathbf{y})$:

$$[M_r(\mathbf{y})]_{\boldsymbol{eta\gamma}} := y_{\boldsymbol{eta+\gamma}}, \quad \forall \boldsymbol{eta}, \boldsymbol{\gamma} \in \mathbb{N}_r^n$$

• Given $g = \sum_{\alpha} g_{\alpha} \mathbf{x}^{\alpha}$, *r*-th order localizing matrix $M_r(g\mathbf{y})$:

$$[M_r(g\mathbf{y})]_{oldsymbol{eta}\gamma}:=\sum_lpha g_lpha y_{lpha+eta+\gamma}, \quad oralleta,\gamma\in\mathbb{N}_r^n$$

• $\mathbf{x} = x$, $g = 1 - x^2$:

$$M_{2}(\mathbf{y}) = \begin{array}{ccc} 1 & x & x^{2} \\ 1 \\ x^{2} \\ x^{2} \end{array} \begin{pmatrix} y_{0} & y_{1} & y_{2} \\ y_{1} & y_{2} & y_{3} \\ y_{2} & y_{3} & y_{4} \end{array} \end{pmatrix}, \quad M_{1}(g\mathbf{y}) = \begin{array}{ccc} 1 & x \\ y_{0} - y_{2} & y_{1} - y_{3} \\ x \\ y_{1} - y_{3} & y_{2} - y_{4} \end{array} \end{pmatrix}$$

Jie Wang (AMSS-CAS)

•
$$\mathbb{N}_r^n := \{ \boldsymbol{\beta} = (\beta_i) \in \mathbb{N}^n \mid \sum_{i=1}^n \beta_i \leq r \}$$

• *r*-th order moment matrix $M_r(\mathbf{y})$:

$$[M_r(\mathbf{y})]_{\boldsymbol{\beta}\boldsymbol{\gamma}} := y_{\boldsymbol{\beta}+\boldsymbol{\gamma}}, \quad \forall \boldsymbol{\beta}, \boldsymbol{\gamma} \in \mathbb{N}_r^n$$

• Given $g = \sum_{\alpha} g_{\alpha} \mathbf{x}^{\alpha}$, *r*-th order localizing matrix $M_r(g\mathbf{y})$:

$$[M_r(g\mathbf{y})]_{oldsymbol{eta}\gamma} := \sum_lpha g_lpha y_{lpha+eta+\gamma}, \quad orall eta, \gamma \in \mathbb{N}_r^n$$

• $\mathbf{x} = x$, $g = 1 - x^2$:

$$M_{2}(\mathbf{y}) = \begin{array}{c} 1 & x & x^{2} \\ 1 & \begin{pmatrix} y_{0} & y_{1} & y_{2} \\ y_{1} & y_{2} & y_{3} \\ x^{2} & \begin{pmatrix} y_{0} - y_{2} & y_{1} - y_{3} \\ y_{2} & y_{3} & y_{4} \end{pmatrix}, \quad M_{1}(g\mathbf{y}) = \begin{array}{c} 1 & \begin{pmatrix} y_{0} - y_{2} & y_{1} - y_{3} \\ y_{1} - y_{3} & y_{2} - y_{4} \end{pmatrix}$$

Jie Wang (AMSS-CAS)

•
$$\mathbb{N}_r^n := \{ \boldsymbol{\beta} = (\beta_i) \in \mathbb{N}^n \mid \sum_{i=1}^n \beta_i \leq r \}$$

• *r*-th order moment matrix $M_r(\mathbf{y})$:

$$[M_r(\mathbf{y})]_{\boldsymbol{\beta}\boldsymbol{\gamma}} := y_{\boldsymbol{\beta}+\boldsymbol{\gamma}}, \quad \forall \boldsymbol{\beta}, \boldsymbol{\gamma} \in \mathbb{N}_r^n$$

• Given $g = \sum_{\alpha} g_{\alpha} \mathbf{x}^{\alpha}$, *r*-th order localizing matrix $M_r(g\mathbf{y})$:

$$[M_r(g\mathbf{y})]_{oldsymbol{eta}\gamma} := \sum_{oldsymbol{lpha}} g_{oldsymbol{lpha}} y_{oldsymbol{lpha}+oldsymbol{eta}+oldsymbol{\gamma}}, \quad orall oldsymbol{eta}, oldsymbol{\gamma} \in \mathbb{N}_r^n$$

• $\mathbf{x} = x$, $g = 1 - x^2$:

$$M_{2}(\mathbf{y}) = \begin{array}{c} 1 & x & x^{2} \\ 1 & \begin{pmatrix} y_{0} & y_{1} & y_{2} \\ y_{1} & y_{2} & y_{3} \\ x^{2} & \begin{pmatrix} y_{0} & y_{1} & y_{2} \\ y_{1} & y_{2} & y_{3} \\ y_{2} & y_{3} & y_{4} \end{pmatrix}, \quad M_{1}(g\mathbf{y}) = \begin{array}{c} 1 & \begin{pmatrix} y_{0} - y_{2} & y_{1} - y_{3} \\ x & \begin{pmatrix} y_{0} - y_{2} & y_{1} - y_{3} \\ y_{1} - y_{3} & y_{2} - y_{4} \end{pmatrix}$$

Jie Wang (AMSS-CAS)

•
$$\mathbb{N}_r^n := \{ \boldsymbol{\beta} = (\beta_i) \in \mathbb{N}^n \mid \sum_{i=1}^n \beta_i \leq r \}$$

• *r*-th order moment matrix $M_r(\mathbf{y})$:

$$[M_r(\mathbf{y})]_{\boldsymbol{\beta}\boldsymbol{\gamma}} := y_{\boldsymbol{\beta}+\boldsymbol{\gamma}}, \quad \forall \boldsymbol{\beta}, \boldsymbol{\gamma} \in \mathbb{N}_r^n$$

• Given $g = \sum_{\alpha} g_{\alpha} \mathbf{x}^{\alpha}$, *r*-th order localizing matrix $M_r(g\mathbf{y})$:

$$[M_r(g\mathbf{y})]_{oldsymbol{eta}\gamma}:=\sum_{oldsymbol{lpha}}g_{oldsymbol{lpha}}y_{oldsymbol{lpha}+oldsymbol{eta}+\gamma},\quad oralloldsymbol{eta},oldsymbol{\gamma}\in\mathbb{N}_r^n$$

• $\mathbf{x} = x$, $g = 1 - x^2$:

$$M_{2}(\mathbf{y}) = \begin{array}{c} 1 & x & x^{2} \\ 1 & \begin{pmatrix} y_{0} & y_{1} & y_{2} \\ y_{1} & y_{2} & y_{3} \\ x^{2} & \begin{pmatrix} y_{0} & y_{1} & y_{2} \\ y_{1} & y_{2} & y_{3} \\ y_{2} & y_{3} & y_{4} \end{array}\right), \quad M_{1}(g\mathbf{y}) = \begin{array}{c} 1 & x \\ x & \begin{pmatrix} y_{0} - y_{2} & y_{1} - y_{3} \\ y_{1} - y_{3} & y_{2} - y_{4} \end{pmatrix}$$

• Moment relaxation:

$$\theta_r := \begin{cases} \inf \quad L_{\mathbf{y}}(f) \\ \text{s.t.} \quad M_r(\mathbf{y}) \succeq 0, \\ \\ M_{r-d_j}(g_j \mathbf{y}) \succeq 0, \quad j = 1, \dots, m, \\ \\ y_{\mathbf{0}} = 1. \end{cases}$$

•
$$S = \{\mathbf{x} \in \mathbb{R}^n \mid g_1 \ge 0, \dots, g_m \ge 0\}$$

• Dual to the polynomial optimization problem:

$$f^* = \sup_{\lambda} \{\lambda : f(\mathbf{x}) - \lambda \geq 0, orall \mathbf{x} \in S\}$$

- $P_S(\mathbf{x}) := \{g(\mathbf{x}) \in \mathbb{R}[\mathbf{x}] \mid g(\mathbf{x}) \ge 0 \text{ over } S\} \rightsquigarrow \text{intractable}$
- Approximate $P_S(\mathbf{x})$ by more tractable subsets \rightsquigarrow SOS, SONC

- $S = {\mathbf{x} \in \mathbb{R}^n \mid g_1 \ge 0, \dots, g_m \ge 0}$
- Dual to the polynomial optimization problem:

$$f^* = \sup_{\lambda} \{\lambda : f(\mathbf{x}) - \lambda \geq 0, orall \mathbf{x} \in S\}$$

• $P_S(\mathbf{x}) := \{g(\mathbf{x}) \in \mathbb{R}[\mathbf{x}] \mid g(\mathbf{x}) \ge 0 \text{ over } S\} \rightsquigarrow \text{intractable}$

• Approximate $P_S(\mathbf{x})$ by more tractable subsets \rightsquigarrow SOS, SONC

- $S = {\mathbf{x} \in \mathbb{R}^n \mid g_1 \ge 0, \dots, g_m \ge 0}$
- Dual to the polynomial optimization problem:

$$f^* = \sup_{\lambda} \{\lambda : f(\mathbf{x}) - \lambda \geq 0, orall \mathbf{x} \in S\}$$

- $P_S(\mathbf{x}) := \{g(\mathbf{x}) \in \mathbb{R}[\mathbf{x}] \mid g(\mathbf{x}) \ge 0 \text{ over } S\} \rightsquigarrow \text{intractable}$
- Approximate $P_S(\mathbf{x})$ by more tractable subsets \rightsquigarrow SOS, SONC

•
$$\Sigma(\mathbf{x}) := \{ f \in \mathbb{R}[\mathbf{x}] \mid f = \sum_i f_i^2, f_i \in \mathbb{R}[\mathbf{x}] \}$$

• Quadratic module: Given $\mathbf{g} = \{g_j\}_{j=1}^m \subseteq \mathbb{R}[\mathbf{x}]$,

$$\mathcal{Q}(\mathbf{g}) := \left\{ \sigma_0 + \sum_{j=1}^m \sigma_j g_j \mid \sigma_j \in \Sigma(\mathbf{x}), j = 0, 1, \dots, m
ight\} \subseteq P_S(\mathbf{x})$$

• Truncated quadratic module:

$$\mathcal{Q}(\mathbf{g})_{2r} := \left\{ \sigma_0 + \sum_{j=1}^m \sigma_j g_j \mid \sigma_j \in \Sigma(\mathbf{x}), \deg(\sigma_j g_j) \le 2r, j = 0, 1, \dots, m
ight\}$$

- $\Sigma(\mathbf{x}) := \{ f \in \mathbb{R}[\mathbf{x}] \mid f = \sum_i f_i^2, f_i \in \mathbb{R}[\mathbf{x}] \}$
- Quadratic module: Given $\mathbf{g} = \{g_j\}_{j=1}^m \subseteq \mathbb{R}[\mathbf{x}]$,

$$\mathcal{Q}(\mathbf{g}) := \left\{ \sigma_0 + \sum_{j=1}^m \sigma_j g_j \mid \sigma_j \in \Sigma(\mathbf{x}), j = 0, 1, \dots, m \right\} \subseteq P_S(\mathbf{x})$$

• Truncated quadratic module:

$$\mathcal{Q}(\mathbf{g})_{2r} := \left\{ \sigma_0 + \sum_{j=1}^m \sigma_j g_j \mid \sigma_j \in \Sigma(\mathbf{x}), \deg(\sigma_j g_j) \le 2r, j = 0, 1, \dots, m
ight\}$$

- $\Sigma(\mathbf{x}) := \{ f \in \mathbb{R}[\mathbf{x}] \mid f = \sum_i f_i^2, f_i \in \mathbb{R}[\mathbf{x}] \}$
- Quadratic module: Given $\mathbf{g} = \{g_j\}_{j=1}^m \subseteq \mathbb{R}[\mathbf{x}]$,

$$\mathcal{Q}(\mathbf{g}) := \left\{ \sigma_0 + \sum_{j=1}^m \sigma_j g_j \mid \sigma_j \in \Sigma(\mathbf{x}), j = 0, 1, \dots, m \right\} \subseteq P_S(\mathbf{x})$$

• Truncated quadratic module:

$$\mathcal{Q}(\mathbf{g})_{2r} := \left\{ \sigma_0 + \sum_{j=1}^m \sigma_j g_j \mid \sigma_j \in \Sigma(\mathbf{x}), \deg(\sigma_j g_j) \leq 2r, j = 0, 1, \dots, m
ight\}$$

Dual SOS relaxation

• Dual SOS relaxation:

The moment-SOS hierarchy

Jie Wang (AMSS-CAS)

Nonnegativity, Sparsity, Optimization

21 April, 2022

- Archimedean's condition: there exists N > 0 s.t. $N ||\mathbf{x}||^2 \in \mathcal{Q}(\mathbf{g})$
 - \triangleright $\theta_r \uparrow f^*$ and $\theta_r^* \uparrow f^*$ when $r \to \infty$ (Lasserre, 2001);
 - ► Finite convergence happens generically (Nie, 2014);
 - ➤ We can verify global optimality by the so-called rank condition (flat xtension/truncation);
 - > We can easily extract minimizers when the rank condition is satisfied.

- Archimedean's condition: there exists N > 0 s.t. N − ||x||² ∈ Q(g)

 θ_r ↑ f^{*} and θ^{*}_r ↑ f^{*} when r → ∞ (Lasserre, 2001);
 - ► Finite convergence happens generically (Nie, 2014);

➤ We can verify global optimality by the so-called rank condition (flat extension/truncation);

> We can easily extract minimizers when the rank condition is satisfied.

- Archimedean's condition: there exists N > 0 s.t. $N ||\mathbf{x}||^2 \in \mathcal{Q}(\mathbf{g})$
 - ▶ $\theta_r \uparrow f^*$ and $\theta_r^* \uparrow f^*$ when $r \to \infty$ (Lasserre, 2001);
 - ► Finite convergence happens generically (Nie, 2014);
 - ➤ We can verify global optimality by the so-called rank condition (flat extension/truncation);
 - > We can easily extract minimizers when the rank condition is satisfied.

- Archimedean's condition: there exists N > 0 s.t. $N ||\mathbf{x}||^2 \in \mathcal{Q}(\mathbf{g})$
 - ▶ $\theta_r \uparrow f^*$ and $\theta_r^* \uparrow f^*$ when $r \to \infty$ (Lasserre, 2001);
 - ► Finite convergence happens generically (Nie, 2014);
- ➤ We can verify global optimality by the so-called rank condition (flat extension/truncation);
 - > We can easily extract minimizers when the rank condition is satisfied.

- Archimedean's condition: there exists N > 0 s.t. $N ||\mathbf{x}||^2 \in \mathcal{Q}(\mathbf{g})$
 - ▶ $\theta_r \uparrow f^*$ and $\theta_r^* \uparrow f^*$ when $r \to \infty$ (Lasserre, 2001);
 - ► Finite convergence happens generically (Nie, 2014);
- ► We can verify global optimality by the so-called rank condition (flat extension/truncation);
 - > We can easily extract minimizers when the rank condition is satisfied.

- The size of SDP (considering the SOS problem) at relaxation order r:
 - maximal size of PSD matrices: $\binom{n+r}{r}$
 - 2 number of equality constraints: $\binom{n+2r}{2r}$
- r = 2, n ≤ 30 (Mosek)
- Exploiting structure:
 - quotient ring
 - symmetry

sparsity

- The size of SDP (considering the SOS problem) at relaxation order r:
 - maximal size of PSD matrices: $\binom{n+r}{r}$
 - 2 number of equality constraints: $\binom{n+2r}{2r}$
- r = 2, n ≤ 30 (Mosek)
- Exploiting structure:
 - quotient ring
 - symmetry

sparsity

- The size of SDP (considering the SOS problem) at relaxation order r:
 - maximal size of PSD matrices: $\binom{n+r}{r}$
 - 2 number of equality constraints: $\binom{n+2r}{2r}$
- r = 2, n ≤ 30 (Mosek)
- Exploiting structure:
 - quotient ring
 - symmetry

sparsity

• Correlative sparsity pattern (csp) graph $G^{csp}(V, E)$:

$$\blacktriangleright V := \{x_1, \ldots, x_n\}$$

► $\{x_i, x_j\} \in E \iff x_i, x_j$ appear in the same term of f or appear in the same constraint polynomial g_k

• For each maximal clique of the csp graph $G^{csp}(V, E)$:

$$I_k \mapsto M_r(\mathbf{y}, I_k), M_{r-d_j}(g_j \mathbf{y}, I_k)$$

• Correlative sparsity pattern (csp) graph $G^{csp}(V, E)$:

$$\blacktriangleright V := \{x_1, \ldots, x_n\}$$

► $\{x_i, x_j\} \in E \iff x_i, x_j$ appear in the same term of f or appear in the

same constraint polynomial g_k

• For each maximal clique of the csp graph $G^{csp}(V, E)$:

$$I_k \mapsto M_r(\mathbf{y}, I_k), M_{r-d_i}(g_j \mathbf{y}, I_k)$$

Example

 $f = x_1^4 + x_1 x_2^2 + x_2 x_3 + x_3^2 x_4^2$, $g_1 = 1 - x_1^2 - x_2^2 - x_3^2$, $g_2 = 1 - x_3 x_4$

There are two maximal cliques: $\{x_1, x_2, x_3\}$ and $\{x_3, x_4\}$

- If the csp graph is chordal (otherwise we need a chordal extension), then the moment-SOS hierarchy based on correlative sparsity shares the same convergence as the standard one;
- We can still verify global optimality by the (adapted) rank condition;
- We can still extract global minimizers if certain rank conditions are satisfied;
- Significantly improve scalability if the sizes of maximal cliques of the csp graph are small (e.g. \leq 10).

- If the csp graph is chordal (otherwise we need a chordal extension), then the moment-SOS hierarchy based on correlative sparsity shares the same convergence as the standard one;
- We can still verify global optimality by the (adapted) rank condition;
- We can still extract global minimizers if certain rank conditions are satisfied;
- Significantly improve scalability if the sizes of maximal cliques of the csp graph are small (e.g. \leq 10).

- If the csp graph is chordal (otherwise we need a chordal extension), then the moment-SOS hierarchy based on correlative sparsity shares the same convergence as the standard one;
- We can still verify global optimality by the (adapted) rank condition;
- We can still extract global minimizers if certain rank conditions are satisfied;
- Significantly improve scalability if the sizes of maximal cliques of the csp graph are small (e.g. \leq 10).

- If the csp graph is chordal (otherwise we need a chordal extension), then the moment-SOS hierarchy based on correlative sparsity shares the same convergence as the standard one;
- We can still verify global optimality by the (adapted) rank condition;
- We can still extract global minimizers if certain rank conditions are satisfied;
- Significantly improve scalability if the sizes of maximal cliques of the csp graph are small (e.g. \leq 10).

Term sparsity (Wang, Magron, and Lasserre, 2021)

• Term sparsity pattern (tsp) graph $G^{tsp}(V, E)$:

$$V := v_r = \{1, x_1, \dots, x_n, x_1^r, \dots, x_n^r\}$$
$$\mathbf{k}^{\alpha}, \mathbf{k}^{\beta} \in E \iff \mathbf{k}^{\alpha} \cdot \mathbf{k}^{\beta} = \mathbf{k}^{\alpha+\beta} \in \operatorname{supp}(f) \cup \bigcup_{j=1}^m \operatorname{supp}(g_j) \cup v_r^2$$

Example

$$f = x_1^4 + x_1 x_2^2 + x_2 x_3 + x_3^2 x_4^2$$
, $g_1 = 1 - x_1^2 - x_2^2 - x_3^2$, $g_2 = 1 - x_3 x_4$

• Assume $(G^{\mathrm{tsp}})'$ is a chordal extension of G^{tsp} with maximal cliques: C_1, \ldots, C_t

$$C_i \longmapsto M_{C_i}(\mathbf{y}), \quad i = 1, \dots, t$$

• Decompose the moment matrix:

$$M_r(\mathbf{y}) \succeq 0 \longrightarrow M_{C_i}(\mathbf{y}) \succeq 0, \quad i = 1, \dots, t$$

• Decompose the localizing matrix $M_{r-d_i}(\mathbf{y}), j = 1, \dots, m$

• Assume $(G^{\mathrm{tsp}})'$ is a chordal extension of G^{tsp} with maximal cliques: C_1, \ldots, C_t

$$\mathcal{C}_i\longmapsto \mathcal{M}_{\mathcal{C}_i}(\mathbf{y}), \quad i=1,\ldots,t$$

• Decompose the moment matrix:

$$M_r(\mathbf{y}) \succeq 0 \longrightarrow M_{C_i}(\mathbf{y}) \succeq 0, \quad i = 1, \dots, t$$

• Decompose the localizing matrix $M_{r-d_i}(\mathbf{y}), j = 1, \dots, m$

• Assume $(G^{\mathrm{tsp}})'$ is a chordal extension of G^{tsp} with maximal cliques: C_1, \ldots, C_t

$$\mathcal{C}_i\longmapsto \mathcal{M}_{\mathcal{C}_i}(\mathbf{y}), \quad i=1,\ldots,t$$

• Decompose the moment matrix:

$$M_r(\mathbf{y}) \succeq 0 \longrightarrow M_{C_i}(\mathbf{y}) \succeq 0, \quad i = 1, \ldots, t$$

• Decompose the localizing matrix $M_{r-d_i}(\mathbf{y}), j = 1, \dots, m$

Extending to an iterative procedure

• support extension:
$$\mathbf{x}^{\beta'}\mathbf{x}^{\gamma'} = \mathbf{x}^{\beta}\mathbf{x}^{\gamma}, \{\mathbf{x}^{\beta}, \mathbf{x}^{\gamma}\} \in E \Rightarrow \{\mathbf{x}^{\beta'}, \mathbf{x}^{\gamma'}\} \in E$$

• Iteratively perform support extension and chordal extension:

$$G^{(1)} := (G^{\operatorname{tsp}})' \subseteq \cdots \subseteq G^{(s)} \subseteq G^{(s+1)} \subseteq \cdots$$

Extending to an iterative procedure

• support extension: $\mathbf{x}^{\beta'}\mathbf{x}^{\gamma'} = \mathbf{x}^{\beta}\mathbf{x}^{\gamma}, \ \{\mathbf{x}^{\beta}, \mathbf{x}^{\gamma}\} \in E \Rightarrow \{\mathbf{x}^{\beta'}, \mathbf{x}^{\gamma'}\} \in E$

• Iteratively perform support extension and chordal extension:

$$G^{(1)} := (G^{\operatorname{tsp}})' \subseteq \cdots \subseteq G^{(s)} \subseteq G^{(s+1)} \subseteq \cdots$$
The moment-SOS hierarchy based on term sparsity

The maximal cliques of G_j^(s): C_{j,1}^(s),..., C<sub>j,t_{j,s}^(s)
TSSOS hierarchy:
</sub>

$$\theta_r^{(s)} := \begin{cases} \inf \quad L_{\mathbf{y}}(f) \\ \text{s.t.} \quad M_{C_{0,i}^{(s)}}(\mathbf{y}) \succeq 0, \quad i = 1, \dots, t_{0,s}, \\ M_{C_{j,i}^{(s)}}(g_j \mathbf{y}) \succeq 0, \quad i = 1, \dots, t_{j,s}, j = 1, \dots, m, \\ y_0 = 1. \end{cases}$$

The moment-SOS hierarchy based on term sparsity

• The maximal cliques of $G_j^{(s)}$: $C_{j,1}^{(s)}, \ldots, C_{j,t_{j,s}}^{(s)}$

• TSSOS hierarchy:

$$\theta_r^{(s)} := \begin{cases} \inf & L_{\mathbf{y}}(f) \\ \text{s.t.} & M_{C_{0,i}^{(s)}}(\mathbf{y}) \succeq 0, \quad i = 1, \dots, t_{0,s}, \\ & M_{C_{j,i}^{(s)}}(g_j \mathbf{y}) \succeq 0, \quad i = 1, \dots, t_{j,s}, j = 1, \dots, m, \\ & y_{\mathbf{0}} = 1. \end{cases}$$

A two-level hierarchy of lower bounds

$\theta_{\underline{r}}^{(1)}$	\leq	$\theta_{\underline{r}}^{(2)}$	\leq	•••	\leq	θ <u>r</u>
\wedge		\wedge I				\wedge
$ heta_{\underline{r}+1}^{(1)}$	\leq	$ heta_{\underline{r}+1}^{(2)}$	\leq		\leq	$\theta_{\underline{r}+1}$
\wedge		\wedge I				\wedge
÷		÷		÷		÷
\wedge		\wedge I				\wedge
$\theta_r^{(1)}$	\leq	$\theta_r^{(2)}$	\leq		\leq	θ_r
\wedge		\wedge I				\wedge
÷		÷		÷		÷

Jie Wang (AMSS-CAS)

21 April, 2022

Different choices of chordal extensions

• chordal extension:

- maximal chordal extension
- (approximately) smallest chordal extension

• Fixing a relaxation order r, $(\theta_r^{(s)})_{s\geq 1}$ converges to θ_r in finitely many steps if the maximal chordal extension is chosen.

Jie Wang (AMSS-CAS)

Nonnegativity, Sparsity, Optimization

Different choices of chordal extensions

• chordal extension:

- maximal chordal extension
- (approximately) smallest chordal extension

• Fixing a relaxation order r, $(\theta_r^{(s)})_{s\geq 1}$ converges to θ_r in finitely many steps if the maximal chordal extension is chosen.

• Sign symmetries: $f = x^4y^2 + 2x^2y^4 + xy + 1$, f(x, y) = f(-x, -y)

• The sign symmetries induce a partition of monomial bases: $\mathbf{x}^{\alpha}, \mathbf{x}^{\beta}$ belong to the same block $\iff \mathbf{x}^{\alpha+\beta}$ is invariant under the sign symmetries

Theorem (Wang, Magron, and Lasserre, 2021)

Fix a relaxation order r and assume the maximal chordal extension is

chosen. The block structures arising from the TSSOS hierarchy converge

to the one induced by the sign symmetries of the system.

The connection to sign symmetries

- Sign symmetries: $f = x^4y^2 + 2x^2y^4 + xy + 1$, f(x, y) = f(-x, -y)
- The sign symmetries induce a partition of monomial bases: $\mathbf{x}^{\alpha}, \mathbf{x}^{\beta}$ belong to the same block $\iff \mathbf{x}^{\alpha+\beta}$ is invariant under the sign symmetries

Theorem (Wang, Magron, and Lasserre, 2021)

Fix a relaxation order r and assume the maximal chordal extension is

chosen. The block structures arising from the TSSOS hierarchy converge

to the one induced by the sign symmetries of the system.

The connection to sign symmetries

- Sign symmetries: $f = x^4y^2 + 2x^2y^4 + xy + 1$, f(x, y) = f(-x, -y)
- The sign symmetries induce a partition of monomial bases: $\mathbf{x}^{\alpha}, \mathbf{x}^{\beta}$ belong to the same block $\iff \mathbf{x}^{\alpha+\beta}$ is invariant under the sign symmetries

Theorem (Wang, Magron, and Lasserre, 2021)

Fix a relaxation order r and assume the maximal chordal extension is chosen. The block structures arising from the TSSOS hierarchy converge to the one induced by the sign symmetries of the system.

Combining correlative sparsity with term sparsity

- The CS-TSSOS hierarchy:
 - Decomposing the variables with respect to the maximal cliques of the csp graph;
 - Por each subsystem involving variables from one maximal clique, applying the above iterative procedure to exploit term sparsity.

Combining correlative sparsity with term sparsity

- The CS-TSSOS hierarchy:
 - Decomposing the variables with respect to the maximal cliques of the csp graph;
 - For each subsystem involving variables from one maximal clique, applying the above iterative procedure to exploit term sparsity.

SONC decomposition and second

order cone representation

• Second order cone: $\mathbb{S}^2_+ := \{(a, b, c) \in \mathbb{R}^3 \mid \begin{bmatrix} a & b \\ b & c \end{bmatrix} \succeq 0\}$

• SONC cone: Given $\mathscr{A}, \mathscr{B}_1 \subseteq (2\mathbb{N})^n$ and $\mathscr{B}_2 \subseteq \mathbb{N}^n \setminus (2\mathbb{N})^n$,

$$\begin{split} \mathrm{SONC}_{\mathscr{A},\mathscr{B}_{1},\mathscr{B}_{2}} &:= \{ (\mathbf{c}_{\mathscr{A}}, \mathbf{d}_{\mathscr{B}_{1}}, \mathbf{d}_{\mathscr{B}_{2}}) \in \mathbb{R}_{+}^{|\mathscr{A}|} \times \mathbb{R}_{+}^{|\mathscr{B}_{1}|} \times \mathbb{R}^{|\mathscr{B}_{2}|} \\ & | \sum_{\alpha \in \mathscr{A}} c_{\alpha} \mathbf{x}^{\alpha} - \sum_{\beta \in \mathscr{B}_{1} \cup \mathscr{B}_{2}} d_{\beta} \mathbf{x}^{\beta} \in \mathrm{SONC} \} \end{split}$$

Theorem (Wang and Magron, 2020)

Any SONC cone admits a second order cone representation.

- Second order cone: $\mathbb{S}^2_+ := \{(a, b, c) \in \mathbb{R}^3 \mid \begin{bmatrix} a & b \\ b & c \end{bmatrix} \succeq 0\}$
- SONC cone: Given $\mathscr{A}, \mathscr{B}_1 \subseteq (2\mathbb{N})^n$ and $\mathscr{B}_2 \subseteq \mathbb{N}^n \setminus (2\mathbb{N})^n$,

$$\begin{aligned} \mathrm{SONC}_{\mathscr{A},\mathscr{B}_{1},\mathscr{B}_{2}} &:= \{ (\mathbf{c}_{\mathscr{A}}, \mathbf{d}_{\mathscr{B}_{1}}, \mathbf{d}_{\mathscr{B}_{2}}) \in \mathbb{R}_{+}^{|\mathscr{A}|} \times \mathbb{R}_{+}^{|\mathscr{B}_{1}|} \times \mathbb{R}^{|\mathscr{B}_{2}|} \\ &\mid \sum_{\boldsymbol{\alpha} \in \mathscr{A}} c_{\boldsymbol{\alpha}} \mathbf{x}^{\boldsymbol{\alpha}} - \sum_{\boldsymbol{\beta} \in \mathscr{B}_{1} \cup \mathscr{B}_{2}} d_{\boldsymbol{\beta}} \mathbf{x}^{\boldsymbol{\beta}} \in \mathrm{SONC} \} \end{aligned}$$

Theorem (Wang and Magron, 2020)

Any SONC cone admits a second order cone representation.

- Second order cone: $\mathbb{S}^2_+ := \{(a, b, c) \in \mathbb{R}^3 \mid \begin{bmatrix} a & b \\ b & c \end{bmatrix} \succeq 0\}$
- SONC cone: Given $\mathscr{A}, \mathscr{B}_1 \subseteq (2\mathbb{N})^n$ and $\mathscr{B}_2 \subseteq \mathbb{N}^n \setminus (2\mathbb{N})^n$,

$$\begin{aligned} \mathrm{SONC}_{\mathscr{A},\mathscr{B}_{1},\mathscr{B}_{2}} &:= \{ (\mathbf{c}_{\mathscr{A}}, \mathbf{d}_{\mathscr{B}_{1}}, \mathbf{d}_{\mathscr{B}_{2}}) \in \mathbb{R}_{+}^{|\mathscr{A}|} \times \mathbb{R}_{+}^{|\mathscr{B}_{1}|} \times \mathbb{R}^{|\mathscr{B}_{2}|} \\ &\mid \sum_{\boldsymbol{\alpha} \in \mathscr{A}} c_{\boldsymbol{\alpha}} \mathbf{x}^{\boldsymbol{\alpha}} - \sum_{\boldsymbol{\beta} \in \mathscr{B}_{1} \cup \mathscr{B}_{2}} d_{\boldsymbol{\beta}} \mathbf{x}^{\boldsymbol{\beta}} \in \mathrm{SONC} \} \end{aligned}$$

Theorem (Wang and Magron, 2020)

Any SONC cone admits a second order cone representation.

• $f = \sum_{\alpha \in \mathscr{A}} c_{\alpha} \mathbf{x}^{\alpha} - d_{\beta} \mathbf{x}^{\beta} \ (d_{\beta} > 0)$ a circuit polynomial

• There exist unique barycentric coordinates $(\lambda_{\alpha})_{\alpha \in \mathscr{A}} \subseteq \mathbb{R}^+$ s.t.

$$\sum_{oldsymbollpha\in\mathscr{A}}\lambda_{oldsymbollpha}=1, ext{ and } oldsymboleta}=\sum_{oldsymbollpha\in\mathscr{A}}\lambda_{oldsymbollpha}oldsymbollpha$$

• Then,

$$f \ge 0 \iff \prod_{\alpha \in \mathscr{A}} \left(\frac{c_{\alpha}}{\lambda_{\alpha}}\right)^{\lambda_{\alpha}} \ge d_{\beta} \iff \prod_{\alpha \in \mathscr{A}} c_{\alpha}^{\lambda_{\alpha}} \ge \prod_{\alpha \in \mathscr{A}} \lambda_{\alpha}^{\lambda_{\alpha}} d_{\beta}$$

- $f = \sum_{\alpha \in \mathscr{A}} c_{\alpha} \mathbf{x}^{\alpha} d_{\beta} \mathbf{x}^{\beta} \ (d_{\beta} > 0)$ a circuit polynomial
- There exist unique barycentric coordinates $(\lambda_{\alpha})_{\alpha \in \mathscr{A}} \subseteq \mathbb{R}^+$ s.t.

$$\sum_{\boldsymbol{\alpha} \in \mathscr{A}} \lambda_{\boldsymbol{\alpha}} = 1, \text{ and } \boldsymbol{\beta} = \sum_{\boldsymbol{\alpha} \in \mathscr{A}} \lambda_{\boldsymbol{\alpha}} \boldsymbol{\alpha}$$

• Then,

$$f \ge 0 \iff \prod_{\alpha \in \mathscr{A}} \left(\frac{c_{\alpha}}{\lambda_{\alpha}}\right)^{\lambda_{\alpha}} \ge d_{\beta} \iff \prod_{\alpha \in \mathscr{A}} c_{\alpha}^{\lambda_{\alpha}} \ge \prod_{\alpha \in \mathscr{A}} \lambda_{\alpha}^{\lambda_{\alpha}} d_{\beta}$$

- $f = \sum_{\alpha \in \mathscr{A}} c_{\alpha} \mathbf{x}^{\alpha} d_{\beta} \mathbf{x}^{\beta} \ (d_{\beta} > 0)$ a circuit polynomial
- There exist unique barycentric coordinates $(\lambda_{\alpha})_{\alpha \in \mathscr{A}} \subseteq \mathbb{R}^+$ s.t.

$$\sum_{oldsymbollpha\in\mathscr{A}}\lambda_{oldsymbollpha}=1, ext{ and } oldsymboleta}=\sum_{oldsymbollpha\in\mathscr{A}}\lambda_{oldsymbollpha}oldsymbollpha$$

Then,

$$f \geq 0 \iff \prod_{oldsymbol{lpha} \in \mathscr{A}} \left(rac{c_{oldsymbol{lpha}}}{\lambda_{oldsymbol{lpha}}}
ight)^{\lambda_{oldsymbol{lpha}}} \geq d_{oldsymbol{eta}} \iff \prod_{oldsymbol{lpha} \in \mathscr{A}} c_{oldsymbol{lpha}}^{\lambda_{oldsymbol{lpha}}} \geq \prod_{oldsymbol{lpha} \in \mathscr{A}} \lambda_{oldsymbol{lpha}}^{\lambda_{oldsymbol{lpha}}} d_{oldsymbol{eta}}$$

• \mathscr{A} -mediated set: $M \subseteq \mathbb{Q}^n$, for each $\mathbf{w} \in M$,

$$\exists \mathbf{u} \neq \mathbf{v} \in M \cup \mathscr{A}, \text{ s.t. } \mathbf{w} = \frac{1}{2}(\mathbf{u} + \mathbf{v})$$

Theorem (Wang and Magron, 2020)

A circuit polynomial $f = \sum_{\alpha \in \mathscr{A}} c_{\alpha} \mathbf{x}^{\alpha} - d_{\beta} \mathbf{x}^{\beta} \in \mathbb{R}[\mathbf{x}] \ (d_{\beta} > 0)$ is nonnegative if and only if $f = \sum_{\mathbf{w}_i \in M} (a_i \mathbf{x}^{\frac{1}{2}\mathbf{u}_i} - b_i \mathbf{x}^{\frac{1}{2}\mathbf{v}_i})^2$, $a_i, b_i \in \mathbb{R}$ for any \mathscr{A} -mediated set M containing β . • \mathscr{A} -mediated set: $M \subseteq \mathbb{Q}^n$, for each $\mathbf{w} \in M$,

$$\exists \mathbf{u} \neq \mathbf{v} \in M \cup \mathscr{A}, \text{ s.t. } \mathbf{w} = \frac{1}{2}(\mathbf{u} + \mathbf{v})$$

Theorem (Wang and Magron, 2020)

A circuit polynomial $f = \sum_{\alpha \in \mathscr{A}} c_{\alpha} \mathbf{x}^{\alpha} - d_{\beta} \mathbf{x}^{\beta} \in \mathbb{R}[\mathbf{x}] \ (d_{\beta} > 0)$ is nonnegative if and only if $f = \sum_{\mathbf{w}_i \in M} (a_i \mathbf{x}^{\frac{1}{2}\mathbf{u}_i} - b_i \mathbf{x}^{\frac{1}{2}\mathbf{v}_i})^2$, $a_i, b_i \in \mathbb{R}$ for any \mathscr{A} -mediated set M containing β .

construct a second order cone representation for a SONC cone $\ensuremath{\mathcal{S}}$

↕

rewrite any circuit polynomial $f \in \mathcal{S}$ as a sum of binomial squares

 $\$

for any lattice point β , find an \mathscr{A} -mediated set M containing β

$$\text{rewrite } \prod_{\alpha \in \mathscr{A}} c_{\alpha}^{\lambda_{\alpha}} \geq \prod_{\alpha \in \mathscr{A}} \lambda_{\alpha}^{\lambda_{\alpha}} d_{\beta} \text{ as a set of quadratic inequalities}$$

Optimal second order cone representations for geometric mean inequalities

Question

Given an inequality $x_1^{s_1} \cdots x_m^{s_m} \ge x_{m+1}^{\sum_{i=1}^m s_i}$ $(x_i \in \mathbb{R}^+, s_i \in \mathbb{N}^*)$, construct an equivalent representation using as few quadratic inequalities as possible.

Example: $x_1^3 x_2^8 \ge x_3^{11} \iff x_2 x_4 \ge x_3^2, x_5 x_6 \ge x_4^2, x_1 x_3 \ge x_5^2, x_3 x_5 \ge x_6^2$

• $L(s_1, \ldots, s_m)$: minimum number of quadratic inequalities

$$\succ L(s_1, s_2) = \lceil \log_2(s_1 + s_2) \rceil$$

 $\succ L(s_1,\ldots,s_m) \geq \lceil \log_2\left(\sum_{i=1}^m s_i\right) \rceil$

Optimal second order cone representations for geometric mean inequalities

Question

Given an inequality $x_1^{s_1} \cdots x_m^{s_m} \ge x_{m+1}^{\sum_{i=1}^m s_i}$ ($x_i \in \mathbb{R}^+, s_i \in \mathbb{N}^*$), construct an equivalent representation using as few quadratic inequalities as possible.

Example:
$$x_1^3 x_2^8 \ge x_3^{11} \iff x_2 x_4 \ge x_3^2, x_5 x_6 \ge x_4^2, x_1 x_3 \ge x_5^2, x_3 x_5 \ge x_6^2$$

• $L(s_1, \ldots, s_m)$: minimum number of quadratic inequalities

$$\blacktriangleright L(s_1, s_2) = \lceil \log_2(s_1 + s_2) \rceil$$

 $\blacktriangleright L(s_1,\ldots,s_m) \geq \lceil \log_2\left(\sum_{i=1}^m s_i\right) \rceil$

Optimal second order cone representations for geometric mean inequalities

Question

Given an inequality $x_1^{s_1} \cdots x_m^{s_m} \ge x_{m+1}^{\sum_{i=1}^m s_i}$ $(x_i \in \mathbb{R}^+, s_i \in \mathbb{N}^*)$, construct an equivalent representation using as few quadratic inequalities as possible.

Example:
$$x_1^3 x_2^8 \ge x_3^{11} \iff x_2 x_4 \ge x_3^2, x_5 x_6 \ge x_4^2, x_1 x_3 \ge x_5^2, x_3 x_5 \ge x_6^2$$

• $L(s_1, \ldots, s_m)$: minimum number of quadratic inequalities

$$\succ L(s_1, s_2) = \lceil \log_2 (s_1 + s_2) \rceil$$

►
$$L(s_1, \ldots, s_m) \ge \lceil \log_2(\sum_{i=1}^m s_i) \rceil$$

A heuristic algorithm for (nearly) optimal second order cone representations

• TSSOS:

https://github.com/wangjie212/TSSOS

• SONCSOCP:

https://github.com/wangjie212/SONCSOCP

n	m+m'	CS (r = 2)				CS+TS ($r = 2, s = 1$)			
		mb	opt	time (s)	gap	mb	opt	time (s)	gap
12	28	28	1.1242e4	0.21	0.00%	22	1.1242e4	0.09	0.00%
20	55	28	1.7543e4	0.56	0.05%	22	1.7543e4	0.30	0.05%
72	297	45	4.9927e3	4.43	0.07%	22	4.9920e3	2.69	0.08%
114	315	120	7.6943e4	94.9	0.00%	39	7.6942e4	14.8	0.00%
344	1325	253	_	-	-	73	1.0470e5	169	0.50%
348	1809	253	_	-	-	34	1.2096e5	201	0.03%
766	3322	153	3.3072e6	585	0.68%	44	3.3042e6	33.9	0.77%
1112	4613	496	_	-	-	31	7.2396e4	410	0.25%
4356	18257	378	_	_	_	27	1.3953e6	934	0.51%
6698	29283	1326	_	-	-	76	5.9858e5	1886	0.47%

number of variables: 10, degree: 20 \sim 50, number of terms: 30 \sim 300

- Term sparsity opens a new window for exploiting sparsity in polynomial optimization
- When appropriate sparsity patterns are accessible, significantly improve the scalability of the moment-SOS hierarchy
- SONC decompositions work for sparse polynomials of high degree
- Further investigations on $L(s_1, \ldots, s_m)$

- Term sparsity opens a new window for exploiting sparsity in polynomial optimization
- When appropriate sparsity patterns are accessible, significantly improve the scalability of the moment-SOS hierarchy
- SONC decompositions work for sparse polynomials of high degree
- Further investigations on $L(s_1, \ldots, s_m)$

- Term sparsity opens a new window for exploiting sparsity in polynomial optimization
- When appropriate sparsity patterns are accessible, significantly improve the scalability of the moment-SOS hierarchy
- SONC decompositions work for sparse polynomials of high degree

• Further investigations on $L(s_1, \ldots, s_m)$

- Term sparsity opens a new window for exploiting sparsity in polynomial optimization
- When appropriate sparsity patterns are accessible, significantly improve the scalability of the moment-SOS hierarchy
- SONC decompositions work for sparse polynomials of high degree
- Further investigations on $L(s_1, \ldots, s_m)$

- Jie Wang, Nonnegative Polynomials and Circuit Polynomials, SIAM Journal on Applied Algebra and Geometry, 2022.
- Jie Wang, Victor Magron and Jean B. Lasserre, *TSSOS: A Moment-SOS hierarchy that exploits term sparsity*, SIAM Journal on Optimization, 2021.
- Jie Wang, Victor Magron and Jean B. Lasserre, *Chordal-TSSOS: a moment-SOS hierarchy that exploits term sparsity with chordal extension*, SIAM Journal on Optimization, 2021.
- Jie Wang, Victor Magron, Jean B. Lasserre and Ngoc H. A. Mai, *CS-TSSOS: Correlative and term sparsity for large-scale polynomial optimization*, arXiv:2005.02828, 2020.

Thanks for your attention!

https://wangjie212.github.io/jiewang