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The problem

® The polynomial matrix optimization problem:

inf  Amin(F(x
A* = { X€ER7 (F(x) (PMO)

st. Gi(x)=0,...,Gn(x) =0

where F € S[x]? and Gx € S%[x], k =1,..., m are polynomial matrices

Jie Wang Polynomial Matrix Optimization ICCOPT, 07/22/2025



The problem

® The polynomial matrix optimization problem:

inf  Amin(F(x
A* = { X€ER7 (F(x) (PMO)

st. Gi(x)=0,...,Gn(x) =0

where F € S[x]? and Gx € S%[x], k =1,..., m are polynomial matrices

® Example of polynomial matrices:

2 4,2 2
X{ + X3 2+ x1x0 + X3
F(Xl,Xg) =

2+ x1x0 + X§ X2 X3
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Polynomial matrix optimization

® Generalization of (scalar) polynomial optimization problems

® Applications in control theory, topology optimization, system

verification, quantum information...
® Non-convex, NP-hard to find the global optimum

® Traditional optimization algorithms not applicable
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Previous studies

® Moment relaxations for the case where F(x) is a scalar polynomial
I¥" D. Henrion and J. B. Lasserre. “Convergent relaxations of polynomial matrix inequalities and

static output feedback.” |IEEE Transactions on Automatic Control 51.2 (2006): 192-202.
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Previous studies

® Moment relaxations for the case where F(x) is a scalar polynomial
I¥" D. Henrion and J. B. Lasserre. “Convergent relaxations of polynomial matrix inequalities and

static output feedback.” |IEEE Transactions on Automatic Control 51.2 (2006): 192-202.

® Matrix SOS relaxations for the general case where F(x) is a also matrix
polynomial

¥ C. Scherer and C. Hol. “Matrix sum-of-squares relaxations for robust semi-definite

programs.” Mathematical programming 107.1 (2006): 189-211.

The dual moment side for the general case is missing!
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A scalarization approach

® By introducing auxiliary variables y, one may scalarize the objective:

inf TF(K
KERI’P,yGJRP Y ( )y

st. Gi(K)=0,...,Gn(K) =0

Iyl =1
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A scalarization approach

® By introducing auxiliary variables y, one may scalarize the objective:

inf TF(K
KERI’P,yGJRP Y ( )y

st. Gi(K)=0,...,Gn(K) =0

Iyl =1

This increases the number of variables by p and the matrix structure of

F(x) is destroyed.
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Fill in the gap

Fill in the gap
Develop a matrix version of the Moment-SOS hierarchy designed for

general polynomial matrix optimization.

Jie Wang
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Fill in the gap

Fill in the gap
Develop a matrix version of the Moment-SOS hierarchy designed for

general polynomial matrix optimization.

IZ” scalar measure = matrix-valued measure
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Reformulation with PMIs

o let K ={xeR"|Gi(x) =0,...,Gn(x) = 0}
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Reformulation with PMIs

o let K ={xeR"|Gi(x) =0,...,Gn(x) = 0}

inf Amin(F(x)) s.t. Gi(x)>=0,...,Gn(x) =0
xeR"

0

supA st. F(x)— A, =0, VxeK
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Reformulation with PMIs

o let K ={xeR"|Gi(x) =0,...,Gn(x) = 0}

inf Amin(F(x)) s.t. Gi(x)>=0,...,Gn(x) =0
xeR"

0

supA st. F(x)— A, =0, VxeK

® Require tractable approximations for { P(x) € S[x]? | P(x) = 0, Vx € K}
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Sum-of-squares (SOS) matrices

® P(x) is an SOS matrix if P(x) = R(x)TR(x)
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Sum-of-squares (SOS) matrices

® P(x) is an SOS matrix if P(x) = R(x)TR(x)
® Define the bilinear mapping (-,-)p: S[x]P? x S[x]9 — S[x]? with

(A11,B) -+ (A1p, B)
ABp=| = .
<AplvB> <App=B>
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Matrix quadratic module

® Matrix quadratic module:

m So € S[x]P, Sk € S[x]|Pk
Q°(G) = )+ > (Sk(x), Gi(x))p
k=1 So,...,Sm are SOS matrices
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Matrix quadratic module

® Matrix quadratic module:
So € S[x]P, Sk € S[x]|Pk

Q°(G) = )+ > (Sk(x), Gi(x))p
k=1 So,...,Sm are SOS matrices

® Truncated matrix quadratic module QF(G):

deg(So(x)) < 2r, deg((Si(x), Gk(x)),) < 2r
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Archimedean Positivstellensatz for polynomial matrices

® Archimedean condition: 3N > 0 and SOS matrices S;(x) € S[x]P% s.t.

m

N —[Ix||* = > (Sk(x), G(x))p € Q°(G)

k=1

Theorem (Scherer & Hol, 2006)

Under Archimedean condition, if F(x) € S[x|P is positive definite on K,
then F(x) € QP(G).
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The SOS hierarchy

® The hierarchy of SOS relaxations:

sup A
A=< A
s.t. F(x) =\l € QF(G)
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The SOS hierarchy

® The hierarchy of SOS relaxations:

sup A
A=< A
s.t. F(x) =\l € QF(G)
CSAT S A S SN
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Basics for matrix-valued measures

® A p x p matrix-valued measure ®: #(K) — RP*P
O(A) = [¢;i(A)] € RP*P, VA € B(K),

where each ¢;; is a Borel measure on K
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where each ¢;; is a Borel measure on K

® & is PSD if ®(A) € S’ for all A € B(K)

® The support of ® is supp(®) = U;;_;supp(6y)
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Basics for matrix-valued measures

® A p x p matrix-valued measure ®: #(K) — RP*P
®(A) = [65(A)] € RP*P, VA € H(K),

where each ¢;; is a Borel measure on K

® & is PSD if ®(A) € S’ for all A € B(K)

® The support of ® is supp(®P) = Uﬁj:lsupp(cby)

® M (K): p x p PSD matrix-valued measures supported on K
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Reformulation with matrix-valued measures

® The moment of the matrix-valued measure ®:

/ x%do(x) = [/ x“ dqﬁ,-j(x)] € RP*P
K K ij=1,....p
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Reformulation with matrix-valued measures

® The moment of the matrix-valued measure ®:

/ x%do(x) = [/ x“ dqﬁ,-j(x)] € RP*P
K K ij=1,....p

® The integral w.r.t. a matrix-valued measure:

/K<F(x),dd>(x)>: > <Fa,/Kxo‘dd>(x)>

acsupp(F)
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Reformulation with matrix-valued measures

® The moment of the matrix-valued measure ®:

/ x%do(x) = [/ x“ dqﬁ,-j(x)] € RP*P
K K ij=1,....p

® The integral w.r.t. a matrix-valued measure:

/K<F(x),dd>(x)>: > <Fa,/Kxo‘dd>(x)>

acsupp(F)

e (PMO) is equivalent to

inf {/K (F(x), d(x)) : B(K) = /F,}

HEM’ (K)
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Reformulation with matrix-valued moments

inf {/K (F(x),dd(x)) : d(K) = /p}

pEM (K)
T

. {Sin{ Ls(F)= > (FaSa):30 € M (K)st. S~ P and So =,
TP facnn acsupp(F)
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Reformulation with matrix-valued moments

inf {/K (F(x),dd(x)) : d(K) = /p}

pEM (K)
T

inf Ls(F)= > (FaSa):30 € M (K)st. S~ P and So =,

S={Su Yeern
{Sataen acanpn(F)

The matrix-valued K-moment problem

When does a matrix-valued sequence S = {S, }aenn € SP admit a

representing measure ¢ € M~ (K)?
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The matrix-valued K-moment problem

Given S = {Sa}aenn €SP and G(x) =) G,x7 € S[x]:

~€supp(G)

® The d-th order moment matrix: My(S) = [Sa+8],, genn

® The d-th order localizing matrix:

Ma(GS)=| D Saipir® Gy

€su G
Y pp(G) a,ﬁENZ
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The matrix-valued K-moment problem

Given S = {Sa}aenn €SP and G(x) =) G,x7 € S[x]:

~€Esupp(G)

® The d-th order moment matrix: My(S) = [5a+ﬂ]aﬁeNg

® The d-th order localizing matrix:

Ma(GS)=| D Saipir® Gy

~y€supp(G) o, BeNT,

Theorem (Cimpri¢ and Zalar, 2013)

Under Archimedean condition, a matrix-valued sequence S = {Sq }aenn
admits a representing measure ® € MY (K) iff My(S) = 0, Myg(GxS) = 0
foralld >0and k=1,...,m.

Jie Wang Polynomial Matrix Optimization ICCOPT, 07/22/2025 16 /28



The truncated matrix-valued K-moment problem

Theorem (Guo and Wang, 2024)
Given a truncated matrix-valued sequence S = {SQ}QGNgd C SP, the
following statements are equivalent:
@ S admits an atomic representing measure ® = Zle Wid, i) with
W; € S%, x() € K, and °1_ rank(W;) = rank(My(S))
o My(S) = 0 and S admits an extension S = {§a}aeNg( such that

d+dg)

My ae(S) = 0, Mg(GS) = 0 and rank(My(S)) = rank(My 4 (S))

Jie Wang
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The truncated matrix-valued K-moment problem

Theorem (Guo and Wang, 2024)
Given a truncated matrix-valued sequence S = {SQ}QGNgd C SP, the
following statements are equivalent:
@ S admits an atomic representing measure ® = Zle Wid, i) with
W; € S%, x() € K, and °1_ rank(W;) = rank(My(S))
o My(S) = 0 and S admits an extension S = {§a}aeNg( such that

d+dg)

My ae(S) = 0, Mg(GS) = 0 and rank(My(S)) = rank(My 4 (S))

5" There is a linear algebra procedure for extracting x() € K and W; € S’jr

Jie Wang
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The moment hierarchy

® The hierarchy of moment relaxations:

inf  (F)
st. M(S)*>=0

Mrfdk(GkS) >0, k=1

ey m

So=1p
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The moment hierarchy

® The hierarchy of moment relaxations:

inf  (F)
st. M(S)*>=0

Mrfdk(GkS) >0, k=1

ey m

So=1p

Jie Wang
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Asymptotical convergence and global optimality

® Under Archimedean condition, asymptotical convergence holds:

Ar A and AF AT as r— o0
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Asymptotical convergence and global optimality

® Under Archimedean condition, asymptotical convergence holds:

Ar A and AF AT as r— o0

® Global optimality is certified (i.e., Ay = A*) whenever

rank(M,_4.(S)) = rank(M,(S))
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Improving scalability by exploiting sparsity

® The matrix Moment-SOS hierarchy scales badly!
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Improving scalability by exploiting sparsity

® The matrix Moment-SOS hierarchy scales badly!

K& Computational burden rapidly grows with the number of polynomial

variables and the relaxation order

Jie Wang Polynomial Matrix Optimization ICCOPT, 07/22/2025

20 /28



Improving scalability by exploiting sparsity

® The matrix Moment-SOS hierarchy scales badly!

K& Computational burden rapidly grows with the number of polynomial

variables and the relaxation order

IE” Can rescue by exploiting various sparsities
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Term sparsity

® There is an iterative procedure for exploiting term sparsity of polynomial

matrices
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Term sparsity

® There is an iterative procedure for exploiting term sparsity of polynomial

matrices

® | eading to a bilevel hierarchy of lower bounds {)\ﬁs)} on \*
r,s

)

IE” Fixing a relaxation order r, {/\Ss)} is monotonically non-decreasing
S

KE” Fixing a sparse order s, {A&S)} is monotonically non-decreasing
r
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Term sparsity

® There is an iterative procedure for exploiting term sparsity of polynomial
matrices

® | eading to a bilevel hierarchy of lower bounds {)\ﬁs)} on \*
r,s

)

IE” Fixing a relaxation order r, {/\Ss)} is monotonically non-decreasing
S

KE” Fixing a sparse order s, {A&S)} is monotonically non-decreasing
r

® When the maximal chordal extension is chosen, {A@} converges to A\,
S

in finitely many steps
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PMI sign symmetries

® A PMI sign symmetry of P(x) € SP[x] is a binary vector € {—1,1}"
such that either P(0 o x) = P(x) or there exists a complete bipartite graph
G%(v, &) with V = [p] and satisfying

o [P(Oox)]y=[P(x)]jifi=jor{ij}¢&

o [P(0ox)]j=—[P(x)];if {i,j} €&
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PMI sign symmetries

® A PMI sign symmetry of P(x) € SP[x] is a binary vector € {—1,1}"
such that either P(0 o x) = P(x) or there exists a complete bipartite graph
G%(v, &) with V = [p] and satisfying

o [P(Oox)]y=[P(x)]jifi=jor{ij}¢&

o [P(0ox)]j=—[P(x)];if {i,j} €&

5" For a PMI sign symmetry 6 of P(x), P(x) = 0= P(fox) =0
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Term sparsity and PMI sign symmetries

Theorem (Miller, Wang, and Guo, 2024)
The block structures produced by the term sparsity iterations with
maximal chordal extensions converge to the one determined by the

common PMI sign symmetries of F(x), Gi(x), ..., Gn(x).
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Term sparsity and PMI sign symmetries

Theorem (Miller, Wang, and Guo, 2024)

The block structures produced by the term sparsity iterations with
maximal chordal extensions converge to the one determined by the

common PMI sign symmetries of F(x), Gi(x), ..., Gn(x).

e Consider the example inf Amin(F(x)) s:t. 1 —x§ —x3 > 0 with
xeR

2
X X1 + X
1 1 2
F(x) = )
X1 + X2 X5
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Term sparsity and PMI sign symmetries

Theorem (Miller, Wang, and Guo, 2024)

The block structures produced by the term sparsity iterations with
maximal chordal extensions converge to the one determined by the

common PMI sign symmetries of F(x), Gi(x), ..., Gn(x).

e Consider the example inf Amin(F(x)) s:t. 1 —x§ —x3 > 0 with
xeR

2
X X1 + X
1 1 2
F(x) = )
X1 + X2 X5

5" F(x) has a PMI sign symmetry § = (—1, —1), giving rise to two blocks
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The correlative sparsity hierarchy not necessarily converge!

® A counterexample:

20 — 12+ (0 — 1)2 + (2 — 2)? 3-2x

F(x) =
3—2x 2(X1 — 2)2 + (X2 — 1)2 + (X2 — 2)2

K:{(Xl,x2)€R2:4—X1220,4—X2220}
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The correlative sparsity hierarchy not necessarily converge!

® A counterexample:

20 — 12+ (0 — 1)2 + (2 — 2)? 3-2x

F(x) =
3—2x 2(X1 — 2)2 + (X2 — 1)2 + (X2 — 2)2

K:{(Xl,x2)€R2:4—X1220,4—X2220}

® The correlative sparsity hierarchy terminates at a lower bound 0
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The correlative sparsity hierarchy not necessarily converge!

® A counterexample:

20 — 12+ (0 — 1)2 + (2 — 2)? 3-2x

F(x) =
3—2x 2(X1 — 2)2 + (X2 — 1)2 + (X2 — 2)2

K:{(Xl,x2)€R2:4—X1220,4—X2220}

® The correlative sparsity hierarchy terminates at a lower bound 0

® But infxek Amin(F(x)) = %!
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Objective matrix sparsity

Theorem (Zheng-Fantuzzi 23', Jared-Wang-Guo 24")

Let F(x) be a polynomial matrix whose sparsity graph is chordal and has
maximal cliques Ci,...,Cs. If F(x) is strictly positive definite on K, then

there exist SOS matrices Sy j(x) of size qx|Ci| % qk|C;| such that

ZE (50, +Z<5k1( )> Gk(x)) )EC:"

Jie Wang
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Constraint matrix sparsity

® Consider the PMI constraint

1-— X12 — x22 — X32 X1X2X3 0
G(x) = X1X2X3 X3 X3X4 X5 =0
0 X3XgXs 1 — x§ —xZ — xg
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Constraint matrix sparsity

® Consider the PMI constraint

1-— X12 — x22 — X32 X1X2X3 0
G(x) = X1X2X3 X3 X3X4 X5 =0
0 X3XgXs 1 — x§ —xZ — xg

® By introducing a new variable y, G(x) = 0 splits as

1—x2—x3 — X2 x1x0%3
Gl(X17X27X37y): 5 EO
X1X2X3 y
X3 — }/2 X3X4 X5
Go(x3, X4, X5,y) = =0

X3XaXs 1 — X32 — Xf — X52
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Software and papers

5" Fully implemented in TSSOS:

https://github.com/wangjie212/TSSOS

5" F. Guo and J. Wang, A Moment-SOS Hierarchy for Robust
Polynomial Matrix Inequality Optimization with SOS-Convexity,

Mathematics of Operations Research, 2024.

5" J. Miller, J. Wang, and F. Guo, Sparse Polynomial Matrix
Optimization, arXiv:2411.15479, 2024.

Jie Wang Polynomial Matrix Optimization ICCOPT, 07/22/2025



Thank Youl

https://wangjie212.github.io/jiewang
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