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The problem

• The polynomial matrix optimization problem:

λ⋆ :=


inf

x∈Rn
λmin(F (x))

s.t. G1(x) ⪰ 0, . . . ,Gm(x) ⪰ 0

(PMO)

where F ∈ S[x ]p and Gk ∈ Sqk [x ], k = 1, . . . ,m are polynomial matrices

• Example of polynomial matrices:

F (x1, x2) =

 x21 + x22 2 + x1x2 + x23

2 + x1x2 + x23 x2x3


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Polynomial matrix optimization

• Generalization of (scalar) polynomial optimization problems

• Applications in control theory, topology optimization, system

verification, quantum information...

• Non-convex, NP-hard to find the global optimum

• Traditional optimization algorithms not applicable
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Previous studies

• Moment relaxations for the case where F (x) is a scalar polynomial

� D. Henrion and J. B. Lasserre. “Convergent relaxations of polynomial matrix inequalities and

static output feedback.” IEEE Transactions on Automatic Control 51.2 (2006): 192-202.

• Matrix SOS relaxations for the general case where F (x) is a also matrix

polynomial

� C. Scherer and C. Hol. “Matrix sum-of-squares relaxations for robust semi-definite

programs.” Mathematical programming 107.1 (2006): 189-211.

But...

The dual moment side for the general case is missing!
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A scalarization approach

• By introducing auxiliary variables y , one may scalarize the objective:


inf

K∈Rn,y∈Rp
y⊺F (K)y

s.t. G1(K) ⪰ 0, . . . ,Gm(K) ⪰ 0

∥y∥2 = 1

But...

This increases the number of variables by p and the matrix structure of

F (x) is destroyed.
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Fill in the gap

Fill in the gap

Develop a matrix version of the Moment-SOS hierarchy designed for

general polynomial matrix optimization.

� scalar measure ⇒ matrix-valued measure
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Reformulation with PMIs

• Let K := {x ∈ Rn | G1(x) ⪰ 0, . . . ,Gm(x) ⪰ 0}

inf
x∈Rn

λmin(F (x)) s.t. G1(x) ⪰ 0, . . . ,Gm(x) ⪰ 0

⇕

supλ s.t. F (x)− λIp ⪰ 0, ∀x ∈ K

• Require tractable approximations for {P(x) ∈ S[x]p | P(x) ⪰ 0, ∀x ∈ K}
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Sum-of-squares (SOS) matrices

• P(x) is an SOS matrix if P(x) = R(x)⊺R(x)

• Define the bilinear mapping ⟨·, ·⟩p : S[x]pq × S[x]q → S[x]p with

⟨A,B⟩p :=


⟨A11,B⟩ · · · ⟨A1p,B⟩

...
. . .

...

⟨Ap1,B⟩ · · · ⟨App,B⟩


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Matrix quadratic module

• Matrix quadratic module:

Qp(G) :=

S0(x) +
m∑

k=1

⟨Sk(x),Gk(x)⟩p

∣∣∣∣∣∣∣
S0 ∈ S[x]p, Sk ∈ S[x]pqk

S0, . . . ,Sm are SOS matrices


• Truncated matrix quadratic module Qp

r (G):

deg(S0(x)) ≤ 2r , deg(⟨Sk(x),Gk(x)⟩p) ≤ 2r

•
Qp

1(G) ⊆ Qp
2(G) ⊆ · · · ⊆ Qp(G)
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Archimedean Positivstellensatz for polynomial matrices

• Archimedean condition: ∃N > 0 and SOS matrices Si (x) ∈ S[x]pqk s.t.

N − ∥x∥2 −
m∑

k=1

⟨Sk(x),G (x)⟩p ∈ Qp(G)

Theorem (Scherer & Hol, 2006)

Under Archimedean condition, if F (x) ∈ S[x]p is positive definite on K,

then F (x) ∈ Qp(G).
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The SOS hierarchy

• The hierarchy of SOS relaxations:

λ∗
r :=


sup
λ

λ

s.t. F (x)− λIp ∈ Qp
r (G)

• · · · ≤ λ∗
r ≤ λ∗

r+1 ≤ · · · ≤ λ⋆
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Basics for matrix-valued measures

• A p × p matrix-valued measure Φ: B(K) → Rp×p

Φ(A) := [ϕij(A)] ∈ Rp×p, ∀A ∈ B(K),

where each ϕij is a Borel measure on K

• Φ is PSD if Φ(A) ∈ Sp+ for all A ∈ B(K)

• The support of Φ is supp(Φ) :=
⋃p

i ,j=1supp(ϕij)

• Mp
+(K): p × p PSD matrix-valued measures supported on K
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Reformulation with matrix-valued measures

• The moment of the matrix-valued measure Φ:∫
K

xα dΦ(x) :=

[∫
K

xα dϕij(x)

]
i ,j=1,...,p

∈ Rp×p

• The integral w.r.t. a matrix-valued measure:∫
K
⟨F (x),dΦ(x)⟩ =

∑
α∈supp(F )

〈
Fα,

∫
K
xαdΦ(x)

〉

• (PMO) is equivalent to

inf
ϕ∈Mp

+(K)

{∫
K
⟨F (x),dΦ(x)⟩ : Φ(K) = Ip

}
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Reformulation with matrix-valued moments

inf
ϕ∈Mp

+(K)

{∫
K

⟨F (x),dΦ(x)⟩ : Φ(K) = Ip

}
⇕

inf
S={Sα}α∈Nn

LS(F ) =
∑

α∈supp(F )

⟨Fα,Sα⟩ : ∃Φ ∈ Mp
+(K) s.t. S ∼ Φ and S0 = Ip


The matrix-valued K-moment problem

When does a matrix-valued sequence S = {Sα}α∈Nn ⊆ Sp admit a

representing measure Φ ∈ Mp
+(K)?
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The matrix-valued K-moment problem

Given S = {Sα}α∈Nn ⊆ Sp and G (x) =
∑

γ∈supp(G) Gγxγ ∈ S[x]q:

• The d-th order moment matrix: Md(S) = [Sα+β]α,β∈Nn
d

• The d-th order localizing matrix:

Md(GS) =

 ∑
γ∈supp(G)

Sα+β+γ ⊗ Gγ


α,β∈Nn

d

Theorem (Cimprič and Zalar, 2013)

Under Archimedean condition, a matrix-valued sequence S = {Sα}α∈Nn

admits a representing measure Φ ∈ Mp
+(K) iff Md(S) ⪰ 0,Md(GkS) ⪰ 0

for all d ≥ 0 and k = 1, . . . ,m.
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The truncated matrix-valued K-moment problem

Theorem (Guo and Wang, 2024)

Given a truncated matrix-valued sequence S = {Sα}α∈Nn
2d

⊆ Sp, the

following statements are equivalent:

S admits an atomic representing measure Φ =
∑t

i=1Wiδx(i) with

Wi ∈ Sp+, x(i) ∈ K, and
∑t

i=1rank(Wi ) = rank(Md(S))

Md(S) ⪰ 0 and S admits an extension S̃ = {S̃α}α∈Nn
2(d+dG)

such that

Md+dG(S̃) ⪰ 0, Md(G S̃) ⪰ 0 and rank(Md(S)) = rank(Md+dG(S̃))

� There is a linear algebra procedure for extracting x(i) ∈ K and Wi ∈ Sp+
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The moment hierarchy

• The hierarchy of moment relaxations:

λr :=



inf
S

LS(F )

s.t. Mr (S) ⪰ 0

Mr−dk (GkS) ⪰ 0, k = 1, . . . ,m

S0 = Ip

• · · · ≤ λr ≤ λr+1 ≤ · · · ≤ λ⋆
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Asymptotical convergence and global optimality

• Under Archimedean condition, asymptotical convergence holds:

λr ↗ λ⋆ and λ∗
r ↗ λ⋆ as r → ∞

• Global optimality is certified (i.e., λr = λ⋆) whenever

rank(Mr−dG(S)) = rank(Mr (S))
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Improving scalability by exploiting sparsity

• The matrix Moment-SOS hierarchy scales badly!

� Computational burden rapidly grows with the number of polynomial

variables and the relaxation order

� Can rescue by exploiting various sparsities
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Term sparsity

• There is an iterative procedure for exploiting term sparsity of polynomial

matrices

• Leading to a bilevel hierarchy of lower bounds
{
λ
(s)
r

}
r ,s

on λ⋆

� Fixing a relaxation order r ,
{
λ
(s)
r

}
s
is monotonically non-decreasing

� Fixing a sparse order s,
{
λ
(s)
r

}
r
is monotonically non-decreasing

• When the maximal chordal extension is chosen,
{
λ
(s)
r

}
s
converges to λr

in finitely many steps
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PMI sign symmetries

• A PMI sign symmetry of P(x) ∈ Sp[x ] is a binary vector θ ∈ {−1, 1}n

such that either P(θ ◦ x) = P(x) or there exists a complete bipartite graph

Gθ(V, E) with V = [p] and satisfying

[P(θ ◦ x)]ij = [P(x)]ij if i = j or {i , j} /∈ E

[P(θ ◦ x)]ij = −[P(x)]ij if {i , j} ∈ E

� For a PMI sign symmetry θ of P(x), P(x) ⪰ 0 ⇒ P(θ ◦ x) ⪰ 0
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Term sparsity and PMI sign symmetries

Theorem (Miller, Wang, and Guo, 2024)

The block structures produced by the term sparsity iterations with

maximal chordal extensions converge to the one determined by the

common PMI sign symmetries of F (x),G1(x), . . . ,Gm(x).

• Consider the example inf
x∈R2

λmin(F (x)) s.t. 1− x21 − x22 ≥ 0 with

F (x) =

 x21 x1 + x2

x1 + x2 x22


� F (x) has a PMI sign symmetry θ = (−1,−1), giving rise to two blocks
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The correlative sparsity hierarchy not necessarily converge!

• A counterexample:

F (x) =

2(x1 − 1)2 + (x2 − 1)2 + (x2 − 2)2 3− 2x2

3− 2x2 2(x1 − 2)2 + (x2 − 1)2 + (x2 − 2)2


and

K =
{
(x1, x2) ∈ R2 : 4− x21 ≥ 0, 4− x22 ≥ 0

}
• The correlative sparsity hierarchy terminates at a lower bound 0

• But infx∈K λmin(F (x)) = 1
2 !
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Objective matrix sparsity

Theorem (Zheng-Fantuzzi 23’, Jared-Wang-Guo 24’)

Let F (x) be a polynomial matrix whose sparsity graph is chordal and has

maximal cliques C1, . . . , Ct . If F (x) is strictly positive definite on K, then

there exist SOS matrices Sk,i (x) of size qk |Ci | × qk |Ci | such that

F (x) =
t∑

i=1

E⊺
Ci

(
S0,i (x) +

m∑
k=1

⟨Sk,i (x),Gk(x)⟩p

)
ECi .
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Constraint matrix sparsity

• Consider the PMI constraint

G (x) =


1− x21 − x22 − x23 x1x2x3 0

x1x2x3 x3 x3x4x5

0 x3x4x5 1− x23 − x24 − x25

 ⪰ 0

• By introducing a new variable y , G (x) ⪰ 0 splits as

G1(x1, x2, x3, y) =

1− x21 − x22 − x23 x1x2x3

x1x2x3 y2

 ⪰ 0

G2(x3, x4, x5, y) =

x3 − y2 x3x4x5

x3x4x5 1− x23 − x24 − x25

 ⪰ 0
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Software and papers

� Fully implemented in TSSOS:

https://github.com/wangjie212/TSSOS

� F. Guo and J. Wang, A Moment-SOS Hierarchy for Robust

Polynomial Matrix Inequality Optimization with SOS-Convexity,

Mathematics of Operations Research, 2024.

� J. Miller, J. Wang, and F. Guo, Sparse Polynomial Matrix

Optimization, arXiv:2411.15479, 2024.
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Thank You!

https://wangjie212.github.io/jiewang
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