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Polynomial optimization

• Polynomial optimization problem (POP):

fmin :=


inf

x∈Rn
f(x)

s.t. gi(x) ≥ 0, i = 1, . . . ,m

• non-convex, NP-hard

• optimal power flow, computer vision, combinatorial optimization, neutral

networks, signal processing, quantum information...
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Why polynomial optimization?

• Powerful modelling ability: QCQP, binary programs, mixed integer

nonlinear programs and so on

• closely related to real algebraic geometry: the theory of positive

polynomials, convex algebraic geometry

• be able to compute the globally optimal value/solutions: the

Moment-SOS hierarchy

• closely related to theoretical computer science: the theory of

approximation algorithms, the theory of complexity
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Polynomial optimization
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Example (moment relaxation)


inf
x

x2
1 + x1x2 + x2

2

s.t. 1 − x2
1 ≥ 0, 1 − x2

2 ≥ 0
⇐⇒



inf
x

x2
1 + x1x2 + x2

2

s.t.


1 x1 x2

x1 x2
1 x1x2

x2 x1x2 x2
2

 = [1, x1, x2] · [1, x1, x2]
⊺ ⪰ 0,

1 − x2
1 ≥ 0, 1 − x2

2 ≥ 0

⇐⇒



inf
y

y2,0 + y1,1 + y0,2

s.t.


1 y1,0 y0,1

y1,0 y2,0 y1,1

y0,1 y1,1 y0,2

 ⪰ 0,

1 − y2,0 ≥ 0, 1 − y0,2 ≥ 0,

∃x ∈ R2 s.t. y = (x1, x2, x2
1, x1x2, x2

2)

relax
=⇒ (Moment)



inf
y

y2,0 + y1,1 + y0,2

s.t.


1 y1,0 y0,1

y1,0 y2,0 y1,1

y0,1 y1,1 y0,2

 ⪰ 0,

1 − y2,0 ≥ 0, 1 − y0,2 ≥ 0
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The hierarchy of moment relaxations

• The hierarchy of moment relaxations (Lasserre 2001):

θr :=



inf
y

Ly(f)

s.t. Mr(y) ⪰ 0,

Mr−dj(gjy) ⪰ 0, j = 1, . . . ,m,

y0 = 1.
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Example (SOS relaxation)


inf
x

x2
1 + x1x2 + x2

2

s.t. 1 − x2
1 ≥ 0, 1 − x2

2 ≥ 0
⇐⇒


sup
λ

λ

s.t. x2
1 + x1x2 + x2

2 − λ ≥ 0, ∀x ∈ R2 s.t. (1 − x2
1 ≥ 0, 1 − x2

2 ≥ 0)

relax
=⇒ (SOS)


sup
λ

λ

s.t. x2
1 + x1x2 + x2

2 − λ = σ0 + σ1(1 − x2
1) + σ2(1 − x2

2),

σ0, σ1, σ2 ∈ SOS
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The hierarchy of dual SOS relaxations

• The hierarchy of dual SOS relaxations (Parrilo 2000 & Lasserre 2001):

θ∗r =



sup
λ,σj

λ

s.t. f − λ = σ0 +
∑m

j=1 σjgj,

σ0, σ1, . . . , σm ∈ Σ(x),

deg(σ0) ≤ 2r, deg(σjgj) ≤ 2r, j = 1, . . . ,m.
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The Moment-SOS/Lasserre’s hierarchy

fmin

≤ ≤
... ...

≤ ≤

(Moment relaxation) θr “ = ” θ∗r (SOS relaxation)
≤ ≤

... ...

≤ ≤
θrmin “ = ” θ∗rmin
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Asymptotical convergence and finite convergence

• Under Archimedean’s condition (≈ compactness): there exists N > 0

s.t. N − ||x||2 ∈ Q(g)

ä θr ↑ fmin and θ∗r ↑ fmin as r → ∞ (Putinar’s Positivstellensatz,

1993)

ä Finite convergence happens generically (Nie, 2014)
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Detecting global optimality

• The moment relaxation achieves global optimality (θr = fmin) when one

of the following conditions holds:

ä (flat extension) For rmin ≤ r′ ≤ r, rank Mr′−rmin
(y) = rank Mr′(y)

⇝ Extract rank Mr′(y) globally optimal solutions

ä rank Mrmin(y) = 1

⇝ Extract one globally optimal solution
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Computational bottleneck of the Moment-SOS hierarchy

• The size of SDP corresponding to the r-th order SOS relaxation:

1 PSD constraint:
(n+r

r
)

2 #equality constraint:
(n+2r

2r
)

• r = 2, n < 30 (Mosek)

• Exploiting structure:

ä quotient ring

ä symmetry

ä sparsity
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Correlative sparsity (Waki et al. 2006)

• Correlative sparsity pattern graph Gcsp(V,E):

ä V := {x1, . . . , xn}

ä {xi, xj} ∈ E ⇐⇒ xi, xj appear in the same term of f or in the same

constraint polynomial gk

• For each maximal clique of Gcsp(V,E), do

Ik 7−→ Mr(y, Ik),Mr−dj(gjy, Ik)
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Term sparsity (Wang & Magron & Lasserre, 2021)

• Term sparsity pattern graph Gtsp(V,E):

ä V := vr = {1, x1, . . . , xn, xr
1, . . . , xr

n}

ä {xα, xβ} ∈ E ⇐⇒ xα · xβ = xα+β ∈ supp(f) ∪
∪m

j=1 supp(gj) ∪ v2
r


··· α ···

... ...

β · · · yα+β · · ·
... ...

 = Mr(y)
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Correlative-term sparsity

1 Decompose the whole set of variables into cliques by exploiting

correlative sparsity

2 Exploit term sparsity for each subsystem
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Extensions

Complex polynomial optimization ⇝ optimal power flow

Trigonometric polynomial optimization ⇝ sigal processing

Noncommutative polynomial optimization ⇝ Bell inequality,

quantum entanglement, quantum polynomial optimization

Polynomial matrix optimization ⇝ maximal/minimal eigenvalue

Computation of joint spectral radius ⇝ stability of switched linear

system

Polynomial dynamic system ⇝ maximal controlled invariant set,

attraction region, global attractor, reachable set, optimal control
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Software

• TSSOS: based on JuMP, user-friendly, support

commutative/complex/noncommutative polynomial optimization

https://github.com/wangjie212/TSSOS
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The AC-OPF problem



inf
Vi,Sg

k∈C

∑
k∈G

(
c2kℜ(Sg

k)
2 + c1kℜ(Sg

k) + c0k
)

s.t. ∠Vr = 0,

Sgl
k ≤ Sg

k ≤ Sgu
k , ∀k ∈ G,

υl
i ≤ |Vi| ≤ υu

i , ∀i ∈ N,∑
k∈Gi

Sg
k − Sd

i − Ys
i |Vi|2 =

∑
(i,j)∈Ei∪ER

i
Sij, ∀i ∈ N,

Sij = (Y∗
ij − i bc

ij
2 ) |Vi|2

|Tij|2
− Y∗

ij
ViV∗

j
Tij

, ∀(i, j) ∈ E,

Sji = (Y∗
ij − i bc

ij
2 )|Vj|2 − Y∗

ij
V∗

i Vj
T∗

ij
, ∀(i, j) ∈ E,

|Sij| ≤ su
ij, ∀(i, j) ∈ E ∪ ER,

θ∆l
ij ≤ ∠(ViV∗

j ) ≤ θ∆u
ij , ∀(i, j) ∈ E.
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The AC-OPF problem

n m
CS (r = 2) CS+TS (r = 2, s = 1)

mb opt time (s) gap mb opt time (s) gap
12 28 28 1.1242e4 0.21 0.00% 22 1.1242e4 0.09 0.00%
20 55 28 1.7543e4 0.56 0.05% 22 1.7543e4 0.30 0.05%
72 297 45 4.9927e3 4.43 0.07% 22 4.9920e3 2.69 0.08%
114 315 120 7.6943e4 94.9 0.00% 39 7.6942e4 14.8 0.00%
344 1325 253 - - - 73 1.0470e5 169 0.50%
348 1809 253 - - - 34 1.2096e5 201 0.03%
766 3322 153 3.3072e6 585 0.68% 44 3.3042e6 33.9 0.77%
1112 4613 496 - - - 31 7.2396e4 410 0.25%
4356 18257 378 - - - 27 1.3953e6 934 0.51%
6698 29283 1326 - - - 76 5.9858e5 1886 0.47%
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Solving low-rank SDPs via manifold optimization

Degenerate: ≥ 2nd order relaxation ⇝ m � n Challenging!

Low-rank: rank Mopt � n ⇝ M = YY⊺, Y ∈ Rn×p Burer-Monteiro

ä N := {Y ∈ Rn×p}

Unital diagonal: diag(M) = 1

ä N := {Y ∈ Rn×p | ‖Y(k, :)‖ = 1, k = 1, . . . , n}

Unital trace: tr(M) = 1

ä N := {Y ∈ Rn×p | ‖Y‖F = 1}
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The augmented Lagrangian framework


inf
X⪰0

〈C,X〉

s.t. A(X) = b , B(X) = d ⇝ define a manifold M
handle with ALM

• The augmented Lagrangian function:

Lσ(X, y) = 〈C,X〉 − y⊺(A(X)− b) + σ

2 ‖A(X)− b‖2

• Need to solve the subproblem at the k-th step:

min
X∈M

Lσk(X, yk)
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Solve the subproblem by the Riemannian trust region

method

Let X = YY⊺. Solve the subproblem on the manifold N by the

Riemannian trust region method:

min
Y∈N

〈C,YY⊺〉 − (yk)⊺(A(YY⊺)− b) + σk

2 ‖A(YY⊺)− b‖2⇝ nonconvex!

Good news
We can efficiently escape from saddle points and obtain an optimal

solution of the SDP.
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Numerical experiments

Table: Binary quadratic programs minx∈{−1,1}d xQx⊺, r = 21

d n m
Mosek 10.0 SDPNAL+ STRIDE ManiSDP

ηmax time ηmax time ηmax time ηmax time

10 56 1,256 4.4e-11 0.71 1.9e-09 0.65 4.7e-13 0.79 3.2e-15 0.14

20 211 16,361 2.7e-11 49.0 3.0e-09 28.8 7.4e-13 6.12 1.2e-14 0.53

30 466 77,316 - - 1.7e-04 187 1.2e-12 65.4 2.4e-14 3.25

40 821 236,121 - - 2.1e-08 813 4.4e-13 249 4.1e-14 10.5

50 1,276 564,776 - - 1.6e-07 3058 7.8e-09 826 6.4e-14 31.1

60 1,831 1,155,281 - - ∗ ∗ 1.3e-12 2118 7.9e-14 94.3

1-: out of memory, ∗: >10000s
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Solving large-scale polynomial optimization

POP structure

Moment-SOS structure

Structured Moment-SOS

Structured SDP

Solving large-scale POP+
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Thank You!
https://wangjie212.github.io/jiewang
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