Polynomial Optimization and Low-Rank SDPs

Jie Wang

Academy of Mathematics and Systems Science, CAS

June 1, 2023

Jean B. Lasserre

Victor Magron

Polynomial optimization and the moment-SOS hierarchy

2 Reducing complexity by exploiting sparsity

2 Reducing complexity by exploiting sparsity

2 Reducing complexity by exploiting sparsity

Efficiently solving low-rank SDPs

• Polynomial optimization problem (POP):

$$f_{\min} := \begin{cases} \inf_{\mathbf{x} \in \mathbb{R}^n} & f(\mathbf{x}) \\ \text{s.t.} & g_i(\mathbf{x}) \ge 0, \quad i = 1, \dots, m \end{cases}$$

non-convex, NP-hard

• optimal power flow, computer vision, combinatorial optimization, neutral networks, signal processing, quantum information...

• Polynomial optimization problem (POP):

$$f_{\min} := egin{cases} \inf_{\mathbf{x} \in \mathbb{R}^n} & f(\mathbf{x}) \ ext{s.t.} & g_i(\mathbf{x}) \geq 0, \quad i = 1, \dots, m \end{cases}$$

non-convex, NP-hard

• optimal power flow, computer vision, combinatorial optimization, neutral networks, signal processing, quantum information...

• Polynomial optimization problem (POP):

$$f_{\min} := \begin{cases} \inf_{\mathbf{x} \in \mathbb{R}^n} & f(\mathbf{x}) \\ \text{s.t.} & g_i(\mathbf{x}) \ge 0, \quad i = 1, \dots, m \end{cases}$$

non-convex, NP-hard

• optimal power flow, computer vision, combinatorial optimization, neutral networks, signal processing, quantum information...

- Powerful modelling ability: QCQP, binary programs, mixed integer nonlinear programs and so on
- closely related to real algebraic geometry: the theory of positive polynomials, convex algebraic geometry
- be able to compute the globally optimal value/solutions: the Moment-SOS hierarchy
- closely related to theoretical computer science: the theory of

approximation algorithms, the theory of complexity

- Powerful modelling ability: QCQP, binary programs, mixed integer nonlinear programs and so on
- closely related to real algebraic geometry: the theory of positive polynomials, convex algebraic geometry
- be able to compute the globally optimal value/solutions: the Moment-SOS hierarchy
- closely related to theoretical computer science: the theory of

approximation algorithms, the theory of complexity

- Powerful modelling ability: QCQP, binary programs, mixed integer nonlinear programs and so on
- closely related to real algebraic geometry: the theory of positive polynomials, convex algebraic geometry
- be able to compute the globally optimal value/solutions: the Moment-SOS hierarchy
- closely related to theoretical computer science: the theory of approximation algorithms, the theory of complexity

- Powerful modelling ability: QCQP, binary programs, mixed integer nonlinear programs and so on
- closely related to real algebraic geometry: the theory of positive polynomials, convex algebraic geometry
- be able to compute the globally optimal value/solutions: the Moment-SOS hierarchy
- closely related to theoretical computer science: the theory of approximation algorithms, the theory of complexity

Polynomial optimization

Example (moment relaxation)

$$\begin{cases} \inf_{\mathbf{x}} \quad x_{1}^{2} + x_{1}x_{2} + x_{2}^{2} \\ \text{s.t.} \quad 1 - x_{1}^{2} \ge 0, 1 - x_{2}^{2} \ge 0 \end{cases} \iff \begin{cases} \inf_{\mathbf{x}} \quad x_{1}^{2} + x_{1}x_{2} + x_{2}^{2} \\ \text{s.t.} \quad \left[\begin{array}{c} 1 \quad x_{1} \quad x_{2} \\ x_{1} \quad x_{1}^{2} \quad x_{1}x_{2} \\ x_{2} \quad x_{1}x_{2} \quad x_{2}^{2} \end{array} \right] = [1, x_{1}, x_{2}] \cdot [1, x_{1}, x_{2}]^{\mathsf{T}} \succeq 0, \\ x_{1} \quad x_{1}^{2} \quad x_{1}x_{2} \quad x_{2}^{2} \end{bmatrix} = [1, x_{1}, x_{2}] \cdot [1, x_{1}, x_{2}]^{\mathsf{T}} \succeq 0, \\ x_{1} \quad x_{1}^{2} \quad x_{1}x_{2} \quad x_{2}^{2} \end{bmatrix} = \begin{bmatrix} 1, x_{1}, x_{2} \end{bmatrix} \cdot \begin{bmatrix} 1, x_{1}, x_{2} \end{bmatrix}^{\mathsf{T}} \succeq 0, \\ x_{1} \quad x_{1}^{2} \geq 0, 1 - x_{2}^{2} \ge 0 \end{cases}$$

$$\iff \begin{cases} \inf_{\mathbf{y}} \quad y_{2,0} + y_{1,1} + y_{0,2} \\ x_{1} \quad y_{1,0} \quad y_{2,0} \quad y_{1,1} \\ y_{0,1} \quad y_{1,1} \quad y_{0,2} \end{bmatrix} \succeq 0, \\ x_{1} \quad y_{2,0} \geq 0, 1 - y_{0,2} \ge 0, \\ x_{2} \quad x_{2} \quad x_{1}x_{2}, x_{1}^{2}, x_{1}x_{2}, x_{2}^{2} \end{cases} \qquad (Moment) \begin{cases} \inf_{\mathbf{y}} \quad y_{2,0} + y_{1,1} + y_{0,2} \\ x_{1} \quad y_{1,0} \quad y_{2,0} \quad y_{1,1} \\ y_{0,1} \quad y_{1,1} \quad y_{0,2} \end{bmatrix} \succeq 0, \\ x_{1} \quad y_{2,0} \geq 0, 1 - y_{0,2} \ge 0, \\ x_{2} \quad x_{2} \quad x_{1}x_{2}, x_{1}^{2}, x_{1}x_{2}, x_{2}^{2} \end{cases} \end{cases}$$

• The hierarchy of moment relaxations (Lasserre 2001):

$$\theta_r := \begin{cases} \inf_{\mathbf{y}} & L_{\mathbf{y}}(f) \\ \text{s.t.} & \mathbf{M}_r(\mathbf{y}) \succeq 0, \\ & \mathbf{M}_{r-d_j}(g_j \mathbf{y}) \succeq 0, \quad j = 1, \dots, m, \\ & y_0 = 1. \end{cases}$$

$$\begin{cases} \inf_{\mathbf{x}} \quad x_1^2 + x_1 x_2 + x_2^2 \\ \text{s.t.} \quad 1 - x_1^2 \ge 0, 1 - x_2^2 \ge 0 \end{cases} \iff \begin{cases} \sup_{\lambda} \quad \lambda \\ \text{s.t.} \quad x_1^2 + x_1 x_2 + x_2^2 - \lambda \ge 0, \forall \mathbf{x} \in \mathbb{R}^2 \text{ s.t.} (1 - x_1^2 \ge 0, 1 - x_2^2 \ge 0) \end{cases}$$
$$\xrightarrow{\text{relax}} (SOS) \begin{cases} \sup_{\lambda} \quad \lambda \\ \text{s.t.} \quad x_1^2 + x_1 x_2 + x_2^2 - \lambda \ge \sigma_0 + \sigma_1(1 - x_1^2) + \sigma_2(1 - x_2^2), \\ \sigma_0, \sigma_1, \sigma_2 \in SOS \end{cases}$$

• The hierarchy of dual SOS relaxations (Parrilo 2000 & Lasserre 2001):

$$\theta_r^* = \begin{cases} \sup_{\lambda,\sigma_j} & \lambda \\ \text{s.t.} & f - \lambda = \sigma_0 + \sum_{j=1}^m \sigma_j g_j, \\ & \sigma_0, \sigma_1, \dots, \sigma_m \in \Sigma(\mathbf{x}), \\ & \deg(\sigma_0) \le 2r, \deg(\sigma_j g_j) \le 2r, j = 1, \dots, m. \end{cases}$$

The Moment-SOS/Lasserre's hierarchy

polynomial optimization and low-rank SDPs

• Under Archimedean's condition (\approx compactness): there exists N > 0s.t. $N - ||\mathbf{x}||^2 \in \mathcal{Q}(\mathbf{g})$

> $\theta_r \uparrow f_{\min}$ and $\theta_r^* \uparrow f_{\min}$ as $r \to \infty$ (Putinar's Positivstellensatz, 1993)

Finite convergence happens generically (Nie, 2014)

Under Archimedean's condition (≈ compactness): there exists N > 0
s.t. N - ||x||² ∈ Q(g)
θ_r ↑ f_{min} and θ^{*}_r ↑ f_{min} as r → ∞ (Putinar's Positivstellensatz, 1993)

Finite convergence happens generically (Nie, 2014)

Under Archimedean's condition (≈ compactness): there exists N > 0
s.t. N - ||x||² ∈ Q(g)
θ_r ↑ f_{min} and θ^{*}_r ↑ f_{min} as r → ∞ (Putinar's Positivstellensatz, 1993)

Finite convergence happens generically (Nie, 2014)

- The moment relaxation achieves global optimality ($\theta_r = f_{\min}$) when one of the following conditions holds:
 - ► (flat extension) For $r_{\min} \le r' \le r$, $\operatorname{rank} M_{r'-r_{\min}}(\mathbf{y}) = \operatorname{rank} M_{r'}(\mathbf{y})$ \rightsquigarrow Extract $\operatorname{rank} M_{r'}(\mathbf{y})$ globally optimal solutions
 - $\succ \operatorname{rank} \mathsf{M}_{r_{\min}}(\mathsf{y}) = 1$
 - \rightsquigarrow Extract one globally optimal solution

- The moment relaxation achieves global optimality ($\theta_r = f_{\min}$) when one of the following conditions holds:
 - ▶ (flat extension) For r_{min} ≤ r' ≤ r, rank M<sub>r'-r_{min}(y) = rank M_{r'}(y)
 → Extract rank M_{r'}(y) globally optimal solutions
 ▶ rank M<sub>r_{cin}(y) = 1
 </sub></sub>

 \rightsquigarrow Extract one globally optimal solution

- The moment relaxation achieves global optimality ($\theta_r = f_{\min}$) when one of the following conditions holds:
 - ► (flat extension) For $r_{\min} \leq r' \leq r$, rank $M_{r'-r_{\min}}(\mathbf{y}) = \operatorname{rank} M_{r'}(\mathbf{y})$

 \rightsquigarrow Extract $\mathrm{rank}\,M_{r'}(y)$ globally optimal solutions

▶ rank
$$\mathbf{M}_{r_{\min}}(\mathbf{y}) = 1$$

→ Extract one globally optimal solution

- The size of SDP corresponding to the *r*-th order SOS relaxation:
 - **1** PSD constraint: $\binom{n+r}{r}$
 - 2 #equality constraint: $\binom{n+2r}{2r}$
- *r* = 2, *n* < 30 (Mosek)
- Exploiting structure:
 - quotient ring
 - symmetry

sparsity

- The size of SDP corresponding to the *r*-th order SOS relaxation:
 - **1** PSD constraint: $\binom{n+r}{r}$
 - 2 #equality constraint: $\binom{n+2r}{2r}$
- r = 2, n < 30 (Mosek)
- Exploiting structure:
 - quotient ring
 - symmetry

sparsity

- The size of SDP corresponding to the *r*-th order SOS relaxation:
 - **1** PSD constraint: $\binom{n+r}{r}$
 - 2 #equality constraint: $\binom{n+2r}{2r}$
- r = 2, n < 30 (Mosek)
- Exploiting structure:
 - quotient ring
 - > symmetry

sparsity

• Correlative sparsity pattern graph $G^{csp}(V, E)$:

$$\succ$$
 $V \coloneqq \{x_1, \ldots, x_n\}$

► $\{x_i, x_j\} \in E \iff x_i, x_j$ appear in the same term of f or in the same constraint polynomial g_k

- ------ 8x
- For each maximal clique of $G^{csp}(V, E)$, do

$$I_k \mapsto \mathbf{M}_r(\mathbf{y}, I_k), \mathbf{M}_{r-d_j}(g_j \mathbf{y}, I_k)$$

• Correlative sparsity pattern graph $G^{csp}(V, E)$:

$$\succ$$
 $V := \{x_1, \ldots, x_n\}$

► $\{x_i, x_j\} \in E \iff x_i, x_j$ appear in the same term of f or in the same

constraint polynomial g_k

• For each maximal clique of $G^{csp}(V, E)$, do

$$I_k \mapsto \mathbf{M}_r(\mathbf{y}, I_k), \mathbf{M}_{r-d_j}(g_j \mathbf{y}, I_k)$$

Term sparsity (Wang & Magron & Lasserre, 2021)

• Term sparsity pattern graph $G^{tsp}(V, E)$:

$$V := v_r = \{1, x_1, \dots, x_n, x_1^r, \dots, x_n^r\}$$
$$\mathbf{k}^{\alpha}, \mathbf{k}^{\beta} \in E \iff \mathbf{k}^{\alpha} \cdot \mathbf{k}^{\beta} = \mathbf{k}^{\alpha+\beta} \in \operatorname{supp}(f) \cup \bigcup_{j=1}^m \operatorname{supp}(g_j) \cup v_r^2$$

$$\begin{array}{ccc} & & & & & & \\ \vdots & & & \\ \beta & & & \\ \vdots & & & \\ \vdots & & & \\ \end{array} \begin{array}{c} & & & & \\ \vdots & & \\ \end{array} \end{array} = \mathbf{M}_r(\mathbf{y})$$

Decompose the whole set of variables into cliques by exploiting correlative sparsity

Exploit term sparsity for each subsystem

- Decompose the whole set of variables into cliques by exploiting correlative sparsity
- Exploit term sparsity for each subsystem

Extensions

- Complex polynomial optimization \rightsquigarrow optimal power flow
- Trigonometric polynomial optimization \rightsquigarrow sigal processing
- Polynomial matrix optimization \rightsquigarrow maximal/minimal eigenvalue
- Computation of joint spectral radius

 stability of switched linear
 system
- Polynomial dynamic system ~> maximal controlled invariant set, attraction region, global attractor, reachable set, optimal control

• TSSOS: based on JuMP, user-friendly, support commutative/complex/noncommutative polynomial optimization

https://github.com/wangjie212/TSSOS

The AC-OPF problem

$$\begin{split} \inf_{V_i, S_k^g \in \mathbb{C}} & \sum_{k \in G} \left(\mathbf{c}_{2k} \Re(S_k^g)^2 + \mathbf{c}_{1k} \Re(S_k^g) + \mathbf{c}_{0k} \right) \\ \text{s.t.} & \angle V_r = 0, \\ & \mathbf{S}_k^{gl} \leq S_k^g \leq \mathbf{S}_k^{gu}, \quad \forall k \in G, \\ & \upsilon_i^l \leq |V_i| \leq \upsilon_i^u, \quad \forall i \in N, \\ & \sum_{k \in G_i} S_k^g - \mathbf{S}_i^d - \mathbf{Y}_i^s |V_i|^2 = \sum_{(i,j) \in E_i \cup E_i^R} S_{ij}, \quad \forall i \in N, \\ & S_{ij} = (\mathbf{Y}_{ij}^s - \mathbf{i} \frac{\mathbf{b}_{ij}^c}{2}) \frac{|V_i|^2}{|\mathbf{T}_{ij}|^2} - \mathbf{Y}_{ij}^s \frac{V_i V_j^s}{\mathbf{T}_{ij}^s}, \quad \forall (i,j) \in E, \\ & S_{ji} = (\mathbf{Y}_{ij}^s - \mathbf{i} \frac{\mathbf{b}_{ij}^c}{2}) |V_j|^2 - \mathbf{Y}_{ij}^s \frac{V_i^s V_j}{\mathbf{T}_{ij}^s}, \quad \forall (i,j) \in E, \\ & |S_{ij}| \leq \mathbf{s}_{ij}^u, \quad \forall (i,j) \in E \cup E^R, \\ & \boldsymbol{\theta}_{ij}^{\Delta l} \leq \angle (V_i V_j^s) \leq \boldsymbol{\theta}_{ij}^{\Delta u}, \quad \forall (i,j) \in E. \end{split}$$

n	m	CS (r = 2)				CS+TS (r = 2, s = 1)			
		mb	opt	time (s)	gap	mb	opt	time (s)	gap
12	28	28	1.1242e4	0.21	0.00%	22	1.1242e4	0.09	0.00%
20	55	28	1.7543e4	0.56	0.05%	22	1.7543e4	0.30	0.05%
72	297	45	4.9927e3	4.43	0.07%	22	4.9920e3	2.69	0.08%
114	315	120	7.6943e4	94.9	0.00%	39	7.6942e4	14.8	0.00%
344	1325	253	-	-	-	73	1.0470e5	169	0.50%
348	1809	253	-	-	-	34	1.2096e5	201	0.03%
766	3322	153	3.3072e6	585	0.68%	44	3.3042e6	33.9	0.77%
1112	4613	496	-	-	-	31	7.2396e4	410	0.25%
4356	18257	378	-	-	-	27	1.3953e6	934	0.51%
6698	29283	1326	-	-	-	76	5.9858e5	1886	0.47%

Solving low-rank SDPs via manifold optimization

- Degenerate: \geq 2nd order relaxation $\rightsquigarrow m \gg n$ Challenging!
- Low-rank: rank M^{opt} ≪ n → M = YY^T, Y ∈ ℝ^{n×p} Burer-Monteiro
 N := {Y ∈ ℝ^{n×p}}
- Unital diagonal: diag(M) = 1

 \triangleright $\mathcal{N} := \{ Y \in \mathbb{R}^{n \times p} \mid ||Y(k,:)|| = 1, k = 1, ..., n \}$

• Unital trace: tr(M) = 1

 $\succ \mathcal{N} := \{ Y \in \mathbb{R}^{n \times p} \mid ||Y||_F = 1 \}$

- Degenerate: \geq 2nd order relaxation $\rightsquigarrow m \gg n$ Challenging!
- Low-rank: rank M^{opt} ≪ n → M = YY^T, Y ∈ ℝ^{n×p} Burer-Monteiro
 N := {Y ∈ ℝ^{n×p}}
- Unital diagonal: diag(M) = 1

 \triangleright $\mathcal{N} := \{ Y \in \mathbb{R}^{n \times p} \mid ||Y(k,:)|| = 1, k = 1, ..., n \}$

• Unital trace: tr(M) = 1

 $\succ \mathcal{N} := \{ Y \in \mathbb{R}^{n \times p} \mid ||Y||_F = 1 \}$

- Degenerate: \geq 2nd order relaxation $\rightsquigarrow m \gg n$ Challenging!
- Low-rank: rank M^{opt} ≪ n → M = YY^T, Y ∈ ℝ^{n×p} Burer-Monteiro
 N := {Y ∈ ℝ^{n×p}}
- Unital diagonal: diag(M) = 1

$$\succ \mathcal{N} := \{ Y \in \mathbb{R}^{n \times p} \mid ||Y(k,:)|| = 1, k = 1, \dots, n \}$$

• Unital trace: tr(M) = 1

$$\succ \mathcal{N} := \{ Y \in \mathbb{R}^{n \times p} \mid ||Y||_F = 1 \}$$

- Degenerate: \geq 2nd order relaxation $\rightsquigarrow m \gg n$ Challenging!
- Low-rank: rank M^{opt} ≪ n → M = YY^T, Y ∈ ℝ^{n×p} Burer-Monteiro
 N := {Y ∈ ℝ^{n×p}}
- Unital diagonal: diag(M) = 1

$$\succ \mathcal{N} := \{ Y \in \mathbb{R}^{n \times p} \mid ||Y(k,:)|| = 1, k = 1, \dots, n \}$$

• Unital trace: tr(M) = 1

$$\succ \mathcal{N} \coloneqq \{ Y \in \mathbb{R}^{n \times p} \mid ||Y||_F = 1 \}$$

The augmented Lagrangian framework

$$\begin{cases} \inf_{\substack{X \succeq 0}} & \langle C, X \rangle \\ \text{s.t.} & \mathcal{A}(X) = b, \ \mathcal{B}(X) = d \\ \end{cases} \text{ with ALM}$$

• The augmented Lagrangian function:

$$L_{\sigma}(X, y) = \langle C, X \rangle - y^{\mathsf{T}}(\mathcal{A}(X) - b) + \frac{\sigma}{2} \|\mathcal{A}(X) - b\|^2$$

• Need to solve the subproblem at the *k*-th step:

$$\min_{X\in\mathcal{M}} L_{\sigma^k}(X, y^k)$$

The augmented Lagrangian framework

$$\begin{cases} \inf_{\substack{X \succeq 0}} & \langle C, X \rangle \\ \text{s.t.} & \mathcal{A}(X) = b, \ \mathcal{B}(X) = d \\ \end{cases} \text{ with ALM}$$

• The augmented Lagrangian function:

$$L_{\sigma}(X,y) = \langle C,X
angle - y^{\intercal}(\mathcal{A}(X) - b) + rac{\sigma}{2} \|\mathcal{A}(X) - b\|^2$$

• Need to solve the subproblem at the *k*-th step:

$$\min_{X\in\mathcal{M}} L_{\sigma^k}(X, y^k)$$

$$\begin{cases} \inf_{\substack{X \succeq 0}} & \langle C, X \rangle \\ \text{s.t.} & \mathcal{A}(X) = b, \ \mathcal{B}(X) = d \\ \end{cases} \text{ with ALM}$$

• The augmented Lagrangian function:

$$L_{\sigma}(X,y) = \langle \mathcal{C},X
angle - y^{\intercal}(\mathcal{A}(X) - b) + rac{\sigma}{2} \|\mathcal{A}(X) - b\|^2$$

• Need to solve the subproblem at the *k*-th step:

$$\min_{X\in\mathcal{M}} L_{\sigma^k}(X, y^k)$$

Solve the subproblem by the Riemannian trust region method

Let $X = YY^{T}$. Solve the subproblem on the manifold \mathcal{N} by the Riemannian trust region method:

$$\min_{Y \in \mathcal{N}} \langle \mathcal{C}, YY^{\mathsf{T}} \rangle - (y^k)^{\mathsf{T}} (\mathcal{A}(YY^{\mathsf{T}}) - b) + \frac{\sigma^k}{2} \|\mathcal{A}(YY^{\mathsf{T}}) - b\|^2 \! \rightsquigarrow \mathsf{nonconvex!}$$

Good news

We can efficiently escape from saddle points and obtain an optimal

solution of the SDP.

Solve the subproblem by the Riemannian trust region method

Let $X = YY^{T}$. Solve the subproblem on the manifold N by the Riemannian trust region method:

$$\min_{Y \in \mathcal{N}} \langle \mathcal{C}, YY^{\mathsf{T}} \rangle - (y^k)^{\mathsf{T}} (\mathcal{A}(YY^{\mathsf{T}}) - b) + \frac{\sigma^k}{2} \|\mathcal{A}(YY^{\mathsf{T}}) - b\|^2 \rightsquigarrow \mathsf{nonconvex!}$$

Good news

We can efficiently escape from saddle points and obtain an optimal solution of the SDP.

Table: Binary quadratic programs $\min_{\mathbf{x} \in \{-1,1\}^d} \mathbf{x} Q \mathbf{x}^{\intercal}$, $r = 2^1$

d	n	т	Mosek 10.0		SDPNAL+		STRIDE		ManiSDP	
			η_{max}	time	η_{max}	time	η_{max}	time	η_{max}	time
10	56	1,256	4.4e-11	0.71	1.9e-09	0.65	4.7e-13	0.79	3.2e-15	0.14
20	211	16,361	2.7e-11	49.0	3.0e-09	28.8	7.4e-13	6.12	1.2e-14	0.53
30	466	77,316	-	-	1.7e-04	187	1.2e-12	65.4	2.4e-14	3.25
40	821	236,121	-	-	2.1e-08	813	4.4e-13	249	4.1e-14	10.5
50	1,276	564,776	-	-	1.6e-07	3058	7.8e-09	826	6.4e-14	31.1
60	1,831	1,155,281	-	-	*	*	1.3e-12	2118	7.9e-14	94.3

¹-: out of memory, *: >10000s

Jie Wang

Solving large-scale polynomial optimization

- Jie Wang, Victor Magron and Jean B. Lasserre, *TSSOS: A Moment-SOS hierarchy that* exploits term sparsity, SIAM Journal on Optimization, 2021.
- Jie Wang, Victor Magron and Jean B. Lasserre, *Chordal-TSSOS: a moment-SOS hierarchy that exploits term sparsity with chordal extension*, SIAM Journal on Optimization, 2021.
- Jie Wang and Victor Magron, Exploiting Sparsity in Complex Polynomial Optimization, Journal of Optimization Theory and Applications, 2021.
- Jie Wang, Victor Magron, Jean B. Lasserre and Ngoc H. A. Mai, CS-TSSOS: Correlative and term sparsity for large-scale polynomial optimization, ACM Transactions on Mathematical Software, 2022.

- Jie Wang and Victor Magron, Exploiting Term Sparsity in Noncommutative Polynomial Optimization, Computational Optimization and Applications, 2021.
- Igor Klep, Victor Magron, Jurij Volčič and Jie Wang, State Polynomials: Positivity, Optimization and Nonlinear Bell Inequalities, arXiv, 2023.
- Jie Wang and Liangbing Hu, Solving Low-Rank Semidefinite Programs via Manifold Optimization, arXiv, 2023.

Thank You!

https://wangjie212.github.io/jiewang