## Polynomial Optimization and Low-Rank SDPs

## Jie Wang

Academy of Mathematics and Systems Science, CAS

June 1, 2023


## Collaborators

Jean B. Lasserre


## Victor Magron



## Outline

(1) Polynomial optimization and the moment-SOS hierarchy

## (2) Reducing complexity by exploiting sparsity

(3) Efficiently solving low-rank SDPs

## Outline

(1) Polynomial optimization and the moment-SOS hierarchy
(2) Reducing complexity by exploiting sparsity

## (3) Efficiently solving low-rank SDPs

## Outline

(1) Polynomial optimization and the moment-SOS hierarchy
(2) Reducing complexity by exploiting sparsity
(3) Efficiently solving low-rank SDPs

## Polynomial optimization

- Polynomial optimization problem (POP):

$$
f_{\min }:=\left\{\begin{array}{cl}
\inf _{\mathbf{x} \in \mathbb{R}^{n}} & f(\mathbf{x}) \\
\text { s.t. } & g_{i}(\mathbf{x}) \geq 0, \quad i=1, \ldots, m
\end{array}\right.
$$

- non-convex, NP-hard
- optimal power flow, computer vision, combinatorial optimization, neutral
networks, signal processing, quantum information.


## Polynomial optimization

- Polynomial optimization problem (POP):

$$
f_{\min }:=\left\{\begin{array}{rl}
\inf _{\mathbf{x} \in \mathbb{R}^{n}} & f(\mathbf{x}) \\
\text { s.t. } & g_{i}(\mathbf{x}) \geq 0, \quad i=1, \ldots, m
\end{array}\right.
$$

- non-convex, NP-hard
- optimal power flow, computer vision, combinatorial optimization, neutral
networks, signal processing, quantum information..


## Polynomial optimization

- Polynomial optimization problem (POP):

$$
f_{\min }:=\left\{\begin{array}{rl}
\inf _{\mathbf{x} \in \mathbb{R}^{n}} & f(\mathbf{x}) \\
\text { s.t. } & g_{i}(\mathbf{x}) \geq 0, \quad i=1, \ldots, m
\end{array}\right.
$$

- non-convex, NP-hard
- optimal power flow, computer vision, combinatorial optimization, neutral networks, signal processing, quantum information...


## Why polynomial optimization?

- Powerful modelling ability: QCQP, binary programs, mixed integer nonlinear programs and so on
- closely related to real algebraic geometry: the theory of positive polynomials, convex algebraic geometry
- be able to compute the globally optimal value/solutions: the Moment-SOS hierarchy
- closely related to theoretical computer science: the theory of
approximation algorithms, the theory of complexity


## Why polynomial optimization?

- Powerful modelling ability: QCQP, binary programs, mixed integer nonlinear programs and so on
- closely related to real algebraic geometry: the theory of positive polynomials, convex algebraic geometry
- be able to compute the globally optimal value/solutions: the Moment-SOS hierarchy
- closely related to theoretical computer science: the theory of
approximation algorithms, the theory of complexity


## Why polynomial optimization?

- Powerful modelling ability: QCQP, binary programs, mixed integer nonlinear programs and so on
- closely related to real algebraic geometry: the theory of positive polynomials, convex algebraic geometry
- be able to compute the globally optimal value/solutions: the Moment-SOS hierarchy
- closely related to theoretical computer science: the theory of approximation algorithms, the theory of complexity


## Why polynomial optimization?

- Powerful modelling ability: QCQP, binary programs, mixed integer nonlinear programs and so on
- closely related to real algebraic geometry: the theory of positive polynomials, convex algebraic geometry
- be able to compute the globally optimal value/solutions: the Moment-SOS hierarchy
- closely related to theoretical computer science: the theory of approximation algorithms, the theory of complexity


## Polynomial optimization



## Example (moment relaxation)

## The hierarchy of moment relaxations

- The hierarchy of moment relaxations (Lasserre 2001):

$$
\theta_{r}:= \begin{cases}\inf _{y} & L_{y}(f) \\ \text { s.t. } & \mathbf{M}_{r}(\mathbf{y}) \succeq 0, \\ & \mathbf{M}_{r-d_{j}}\left(g_{\mathbf{j}}\right) \succeq 0, \quad j=1, \ldots, m, \\ & y_{0}=1 .\end{cases}
$$

## Example (SOS relaxation)

$$
\begin{aligned}
& \left\{\begin{array} { l l } 
{ \operatorname { i n f } _ { \mathrm { x } } } & { x _ { 1 } ^ { 2 } + x _ { 1 } x _ { 2 } + x _ { 2 } ^ { 2 } } \\
{ \text { s.t. } } & { 1 - x _ { 1 } ^ { 2 } \geq 0 , 1 - x _ { 2 } ^ { 2 } \geq 0 }
\end{array} \Longleftrightarrow \left\{\begin{array}{cc}
\sup _{\lambda} & \lambda \\
\text { s.t. } & x_{1}^{2}+x_{1} x_{2}+x_{2}^{2}-\lambda \geq 0, \forall \mathbf{x} \in \mathbb{R}^{2} \text { s.t. }\left(1-x_{1}^{2} \geq 0,1-x_{2}^{2} \geq 0\right)
\end{array}\right.\right.
\end{aligned}
$$

## The hierarchy of dual SOS relaxations

- The hierarchy of dual SOS relaxations (Parrilo 2000 \& Lasserre 2001):

$$
\theta_{r}^{*}= \begin{cases}\sup _{\lambda, \sigma_{j}} & \lambda \\ \text { s.t. } & f-\lambda=\sigma_{0}+\sum_{j=1}^{m} \sigma_{j} g_{j}, \\ & \sigma_{0}, \sigma_{1}, \ldots, \sigma_{m} \in \Sigma(\mathbf{x}), \\ & \operatorname{deg}\left(\sigma_{0}\right) \leq 2 r, \operatorname{deg}\left(\sigma_{j} g_{j}\right) \leq 2 r, j=1, \ldots, m\end{cases}
$$

## The Moment-SOS/Lasserre's hierarchy



## Asymptotical convergence and finite convergence

- Under Archimedean's condition ( $\approx$ compactness): there exists $N>0$ s.t. $N-\|\mathbf{x}\|^{2} \in \mathcal{Q}(\mathbf{g})$
$>\theta_{r} \uparrow f_{\text {min }}$ and $\theta_{r}^{*} \uparrow f_{\text {min }}$ as $r \rightarrow \infty$ (Putinar's Positivstellensatz, 1993)
- Finite convergence happens generically (Nie, 2014)


## Asymptotical convergence and finite convergence

- Under Archimedean's condition ( $\approx$ compactness): there exists $N>0$ s.t. $N-\|\mathbf{x}\|^{2} \in \mathcal{Q}(\mathbf{g})$
$>\theta_{r} \uparrow f_{\min }$ and $\theta_{r}^{*} \uparrow f_{\text {min }}$ as $r \rightarrow \infty$ (Putinar's Positivstellensatz, 1993)
>Finite convergence happens generically (Nie, 2014)


## Asymptotical convergence and finite convergence

- Under Archimedean's condition ( $\approx$ compactness): there exists $N>0$ s.t. $N-\|\mathbf{x}\|^{2} \in \mathcal{Q}(\mathbf{g})$
$>\theta_{r} \uparrow f_{\text {min }}$ and $\theta_{r}^{*} \uparrow f_{\text {min }}$ as $r \rightarrow \infty$ (Putinar's Positivstellensatz, 1993)
> Finite convergence happens generically (Nie, 2014)


## Detecting global optimality

- The moment relaxation achieves global optimality $\left(\theta_{r}=f_{\text {min }}\right)$ when one of the following conditions holds:
> $>$ (flat extension) For $r_{\text {min }} \leq r^{\prime} \leq r, \operatorname{rank} \mathbf{M}_{r^{\prime}-r_{\text {min }}}(\mathbf{y})=\operatorname{rank} \mathbf{M}_{r^{\prime}}(\mathbf{y})$
> Extract $\operatorname{rank} \mathbf{M}_{r^{\prime}}(\mathbf{y})$ globally optimal solutions
> $>\operatorname{rank} M_{r_{\text {min }}}(y)=1$
> Extract one globally optimal solution


## Detecting global optimality

- The moment relaxation achieves global optimality $\left(\theta_{r}=f_{\text {min }}\right)$ when one of the following conditions holds:
$>$ (flat extension) For $r_{\text {min }} \leq r^{\prime} \leq r, \operatorname{rank} \mathbf{M}_{r^{\prime}-r_{\text {min }}}(\mathbf{y})=\operatorname{rank} \mathbf{M}_{r^{\prime}}(\mathbf{y})$
$\rightsquigarrow$ Extract $\operatorname{rank} \mathbf{M}_{r^{\prime}}(\mathbf{y})$ globally optimal solutions
$>\operatorname{rank} \mathrm{M}_{r_{\text {min }}}(\mathrm{y})=1$
Extract one globally optimal solution


## Detecting global optimality

- The moment relaxation achieves global optimality $\left(\theta_{r}=f_{\text {min }}\right)$ when one of the following conditions holds:
$>$ (flat extension) For $r_{\text {min }} \leq r^{\prime} \leq r, \operatorname{rank} \mathbf{M}_{r^{\prime}-r_{\text {min }}}(\mathbf{y})=\operatorname{rank} \mathbf{M}_{r^{\prime}}(\mathbf{y})$
$\rightsquigarrow$ Extract $\operatorname{rank} \mathbf{M}_{r^{\prime}}(\mathbf{y})$ globally optimal solutions
$>\operatorname{rank} \mathbf{M}_{r_{\text {min }}}(\mathbf{y})=1$
$\rightsquigarrow$ Extract one globally optimal solution


## Computational bottleneck of the Moment-SOS hierarchy

- The size of SDP corresponding to the $r$-th order SOS relaxation:
(1) PSD constraint: $\binom{n+r}{r}$
(2) \#equality constraint: $\binom{n+2 r}{2 r}$
- $r=2, n<30$ (Mosek)
- Exploiting structure
- quotient ring
$>$ symmetry
$>$ sparsity


## Computational bottleneck of the Moment-SOS hierarchy

- The size of SDP corresponding to the $r$-th order SOS relaxation:
(1) PSD constraint: $\binom{n+r}{r}$
(2) \#equality constraint: $\binom{n+2 r}{2 r}$
- $r=2, n<30$ (Mosek)
- Exploiting structure:
$>$ quotient ring
$>$ symmetry
> sparsity


## Computational bottleneck of the Moment-SOS hierarchy

- The size of SDP corresponding to the $r$-th order SOS relaxation:
(1) PSD constraint: $\binom{n+r}{r}$
(2) \#equality constraint: $\binom{n+2 r}{2 r}$
- $r=2, n<30$ (Mosek)
- Exploiting structure:
$>$ quotient ring
> symmetry
> sparsity


## Correlative sparsity (Waki et al. 2006)

- Correlative sparsity pattern graph $G^{\operatorname{csp}}(V, E)$ :
$>V:=\left\{x_{1}, \ldots, x_{n}\right\}$
$>\left\{x_{i}, x_{j}\right\} \in E \Longleftrightarrow x_{i}, x_{j}$ appear in the same term of $f$ or in the same constraint polynomial $g_{k}$
- For each maximal clique of $G^{\operatorname{csp}}(V, E)$, do

$$
I_{k} \longmapsto \mathbf{M}_{r}\left(\mathbf{y}, I_{k}\right), \mathbf{M}_{r-d_{j}}\left(g_{j} \mathbf{y}, I_{k}\right)
$$

## Correlative sparsity (Waki et al. 2006)

- Correlative sparsity pattern graph $G^{\operatorname{csp}}(V, E)$ :
$>V:=\left\{x_{1}, \ldots, x_{n}\right\}$
$>\left\{x_{i}, x_{j}\right\} \in E \Longleftrightarrow x_{i}, x_{j}$ appear in the same term of $f$ or in the same constraint polynomial $g_{k}$
- For each maximal clique of $G^{\operatorname{csp}}(V, E)$, do

$$
I_{k} \longmapsto \mathbf{M}_{r}\left(\mathbf{y}, I_{k}\right), \mathbf{M}_{r-d_{j}}\left(g_{j} \mathbf{y}, I_{k}\right)
$$

## Term sparsity (Wang \& Magron \& Lasserre, 2021)

- Term sparsity pattern graph $G^{\mathrm{tsp}}(V, E)$ :
$>V:=v_{r}=\left\{1, x_{1}, \ldots, x_{n}, x_{1}^{r}, \ldots, x_{n}^{r}\right\}$
$>\left\{\mathbf{x}^{\boldsymbol{\alpha}}, \mathbf{x}^{\boldsymbol{\beta}}\right\} \in E \Longleftrightarrow \mathbf{x}^{\boldsymbol{\alpha}} \cdot \mathbf{x}^{\boldsymbol{\beta}}=\mathbf{x}^{\boldsymbol{\alpha}+\boldsymbol{\beta}} \in \operatorname{supp}(f) \cup \bigcup_{j=1}^{m} \operatorname{supp}\left(g_{j}\right) \cup v_{r}^{2}$

$$
\begin{gathered}
\vdots \\
\boldsymbol{\beta} \\
\vdots
\end{gathered}\left[\begin{array}{ccc} 
& \vdots & \\
\cdots & y_{\boldsymbol{\alpha}+\boldsymbol{\beta}} & \cdots \\
\vdots &
\end{array}\right]=\mathbf{M}_{r}(\mathbf{y})
$$

## Correlative-term sparsity

(1) Decompose the whole set of variables into cliques by exploiting correlative sparsity
(3) Exploit term sparsity for each subsystem

## Correlative-term sparsity

(1) Decompose the whole set of variables into cliques by exploiting correlative sparsity
(2) Exploit term sparsity for each subsystem

## Extensions

- Complex polynomial optimization $\rightsquigarrow$ optimal power flow
- Trigonometric polynomial optimization $\rightsquigarrow$ sigal processing
- Noncommutative polynomial optimization $\rightsquigarrow$ Bell inequality, quantum entanglement, quantum polynomial optimization
- Polynomial matrix optimization $\rightsquigarrow$ maximal/minimal eigenvalue
- Computation of joint spectral radius $\rightsquigarrow$ stability of switched linear system
- Polynomial dynamic system $\rightsquigarrow$ maximal controlled invariant set, attraction region, global attractor, reachable set, optimal control


## Software

- TSSOS: based on JuMP, user-friendly, support commutative/complex/noncommutative polynomial optimization


## https://github.com/wangjie212/TSSOS

## The AC-OPF problem

$$
\left\{\begin{array}{cl}
\inf _{v_{i}, S_{k}^{g} \in \mathbb{C}} & \sum_{k \in G}\left(\mathbf{c}_{2 k} \Re\left(S_{k}^{g}\right)^{2}+\mathbf{c}_{1 k} \Re\left(S_{k}^{g}\right)+\mathbf{c}_{0 k}\right) \\
\text { s.t. } & \angle V_{r}=0, \\
& \mathbf{S}_{k}^{g \prime} \leq S_{k}^{g} \leq \mathbf{S}_{k}^{g u}, \quad \forall k \in G, \\
& \boldsymbol{v}_{i}^{\prime} \leq\left|V_{i}\right| \leq \boldsymbol{v}_{i}^{u}, \quad \forall i \in N, \\
& \sum_{k \in G_{i}} S_{k}^{g}-\mathbf{S}_{i}^{d}-\mathbf{Y}_{i}^{s}\left|V_{i}\right|^{2}=\sum_{(i, j) \in E_{i} \cup E_{i}^{R}} S_{i j}, \quad \forall i \in N, \\
& S_{i j}=\left(\mathbf{Y}_{i j}^{*}-\mathbf{i} \frac{\mathbf{b}_{i j}^{c}}{2}\right) \frac{\left|V_{V}\right|^{2}}{\left.| |_{i j}\right|^{2}}-\mathbf{Y}_{i j}^{*} \frac{v_{i} V_{j}^{*}}{\mathbf{T}_{i j}}, \quad \forall(i, j) \in E, \\
& S_{j i}=\left(\mathbf{Y}_{i j}^{*}-\mathbf{i} \frac{\mathbf{b}_{i j}^{c}}{2}\right)\left|V_{j}\right|^{2}-\mathbf{Y}_{i j}^{*} \frac{V_{i}^{*} V_{j}}{\mathbf{T}_{i j}^{*}}, \quad \forall(i, j) \in E, \\
& \left|S_{i j}\right| \leq \mathbf{s}_{i j}^{u}, \quad \forall(i, j) \in E \cup E^{R}, \\
& \boldsymbol{\theta}_{i j}^{\Delta \prime} \leq \angle\left(V_{i} V_{j}^{*}\right) \leq \boldsymbol{\theta}_{i j}^{\Delta u}, \quad \forall(i, j) \in E .
\end{array}\right.
$$

## The AC-OPF problem

| n | m | CS (r=2) |  |  |  | $\mathrm{CS}+\mathrm{TS}(r=2, s=1)$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | mb | opt | time (s) | gap | mb | opt | time (s) | gap |
| 12 | 28 | 28 | 1.1242 e 4 | 0.21 | 0.00\% | 22 | 1.1242 e 4 | 0.09 | 0.00\% |
| 20 | 55 | 28 | 1.7543 e 4 | 0.56 | 0.05\% | 22 | 1.7543 e 4 | 0.30 | 0.05\% |
| 72 | 297 | 45 | 4.9927 e 3 | 4.43 | 0.07\% | 22 | 4.9920 e 3 | 2.69 | 0.08\% |
| 114 | 315 | 120 | 7.6943 e 4 | 94.9 | 0.00\% | 39 | 7.6942 e 4 | 14.8 | 0.00\% |
| 344 | 1325 | 253 | - | - | - | 73 | 1.0470 e 5 | 169 | 0.50\% |
| 348 | 1809 | 253 | - | - | - | 34 | 1.2096 e 5 | 201 | 0.03\% |
| 766 | 3322 | 153 | 3.3072 e 6 | 585 | 0.68\% | 44 | 3.3042 e 6 | 33.9 | 0.77\% |
| 1112 | 4613 | 496 | - | - | - | 31 | 7.2396 e 4 | 410 | 0.25\% |
| 4356 | 18257 | 378 | - | - | - | 27 | 1.3953 e 6 | 934 | 0.51\% |
| 6698 | 29283 | 1326 | - | - | - | 76 | 5.9858 e 5 | 1886 | 0.47\% |

## Solving low-rank SDPs via manifold optimization

- Degenerate: $\geq 2$ nd order relaxation $\rightsquigarrow m \gg n$

Challenging!

- Low-rank: rank $\mathbf{M}^{\text {opt }} \ll n \rightsquigarrow \mathbf{M}=Y Y^{\top}, Y \in \mathbb{R}^{n \times p}$ Burer-Monteiro
$>N:=\left\{Y \in \mathbb{R}^{n \times p}\right\}$
- Unital diagonal: $\operatorname{diag}(\mathbf{M})=1$
$>\mathcal{N}:=\left\{Y \in \mathbb{R}^{n \times p} \mid\|Y(k,:)\|=1, k=1, \ldots, n\right\}$
- Unital trace: $\operatorname{tr}(\mathbf{M})=1$

$$
>\mathcal{N}:=\left\{Y \in \mathbb{R}^{n \times p} \mid \| \bigcup_{F}=1\right\}
$$

## Solving low-rank SDPs via manifold optimization

- Degenerate: $\geq 2$ nd order relaxation $\rightsquigarrow m \gg n$

Challenging!

- Low-rank: $\operatorname{rank} \mathbf{M}^{\text {opt }} \ll n \rightsquigarrow \mathbf{M}=Y Y^{\top}, Y \in \mathbb{R}^{n \times p}$ Burer-Monteiro $>\mathcal{N}:=\left\{Y \in \mathbb{R}^{n \times p}\right\}$
- Unital diagonal: $\operatorname{diag}(\mathrm{M})=1$ $>\mathcal{N}:=\left\{Y \in \mathbb{R}^{n \times p} \mid\|Y(k,:)\|=1, k=1, \ldots, n\right\}$
- Unital trace: $\operatorname{tr}(\mathbf{M})=1$

$$
>\mathcal{N}:=\left\{Y \in \mathbb{R}^{n \times p} \mid\|Y\|_{F}=1\right\}
$$

## Solving low-rank SDPs via manifold optimization

- Degenerate: $\geq$ 2nd order relaxation $\rightsquigarrow m \gg n$

Challenging!

- Low-rank: $\operatorname{rank} \mathbf{M}^{\text {opt }} \ll n \rightsquigarrow \mathbf{M}=Y Y^{\top}, Y \in \mathbb{R}^{n \times p}$ Burer-Monteiro $>\mathcal{N}:=\left\{Y \in \mathbb{R}^{n \times p}\right\}$
- Unital diagonal: $\operatorname{diag}(\mathbf{M})=\mathbf{1}$
$>\mathcal{N}:=\left\{Y \in \mathbb{R}^{n \times p} \mid\|Y(k,:)\|=1, k=1, \ldots, n\right\}$
- Unital trace: $\operatorname{tr}(M)=1$
$>\mathcal{N}:=\left\{Y \in \mathbb{R}^{n \times p} \mid\|Y\|_{F}=1\right\}$


## Solving low-rank SDPs via manifold optimization

- Degenerate: $\geq 2$ nd order relaxation $\rightsquigarrow m \gg n$

Challenging!

- Low-rank: $\operatorname{rank} \mathbf{M}^{\text {opt }} \ll n \rightsquigarrow \mathbf{M}=Y Y^{\top}, Y \in \mathbb{R}^{n \times p}$ Burer-Monteiro $>\mathcal{N}:=\left\{Y \in \mathbb{R}^{n \times p}\right\}$
- Unital diagonal: $\operatorname{diag}(\mathbf{M})=\mathbf{1}$
$>\mathcal{N}:=\left\{Y \in \mathbb{R}^{n \times p} \mid\|Y(k,:)\|=1, k=1, \ldots, n\right\}$
- Unital trace: $\operatorname{tr}(\mathbf{M})=1$

$$
>\mathcal{N}:=\left\{Y \in \mathbb{R}^{n \times p} \mid\|Y\|_{F}=1\right\}
$$

## The augmented Lagrangian framework

$$
\left\{\begin{aligned}
& \inf _{X \geq 0}\langle C, X\rangle \\
& \text { s.t. } \mathcal{A}(X)=b, \mathcal{B}(X)=d \rightsquigarrow \text { handle with ALM } \\
& \text { sefine a manifold } \mathcal{M}
\end{aligned}\right.
$$

- The augmented Lagrangian function:

- Need to solve the subproblem at the $k$-th step



## The augmented Lagrangian framework

$$
\left\{\begin{aligned}
& \inf _{X \geq 0}\langle C, X\rangle \\
& \text { s.t. } \mathcal{A}(X)=b, \mathcal{B}(X)=d \rightsquigarrow \text { handle with ALM } \\
& \text { define a manifold } \mathcal{M}
\end{aligned}\right.
$$

- The augmented Lagrangian function:

$$
L_{\sigma}(X, y)=\langle C, X\rangle-y^{\top}(\mathcal{A}(X)-b)+\frac{\sigma}{2}\|\mathcal{A}(X)-b\|^{2}
$$

- Need to solve the subproblem at the $k$-th step

$$
\min _{X \in \mathcal{M}} L_{\sigma^{k}}\left(X, y^{k}\right)
$$

## The augmented Lagrangian framework

$$
\left\{\begin{aligned}
& \inf _{X \geq 0}\langle C, X\rangle \\
& \text { s.t. } \mathcal{A}(X)=b, \mathcal{B}(X)=d \rightsquigarrow \text { handle with ALM } \\
& \text { sefine a manifold } \mathcal{M}
\end{aligned}\right.
$$

- The augmented Lagrangian function:

$$
L_{\sigma}(X, y)=\langle C, X\rangle-y^{\top}(\mathcal{A}(X)-b)+\frac{\sigma}{2}\|\mathcal{A}(X)-b\|^{2}
$$

- Need to solve the subproblem at the $k$-th step:

$$
\min _{X \in \mathcal{M}} L_{\sigma^{k}}\left(X, y^{k}\right)
$$

## Solve the subproblem by the Riemannian trust region

 methodLet $X=Y Y^{\top}$. Solve the subproblem on the manifold $\mathcal{N}$ by the Riemannian trust region method:

$$
\min _{Y \in \mathcal{N}}\left\langle C, Y Y^{\top}\right\rangle-\left(y^{k}\right)^{\top}\left(\mathcal{A}\left(Y Y^{\top}\right)-b\right)+\frac{\sigma^{k}}{2}\left\|\mathcal{A}\left(Y Y^{\top}\right)-b\right\|^{2} \rightsquigarrow \text { nonconvex! }
$$

## Good news

We can efficiently escape from saddle points and obtain an optimal

## Solve the subproblem by the Riemannian trust region

## method

Let $X=Y Y^{\top}$. Solve the subproblem on the manifold $\mathcal{N}$ by the Riemannian trust region method:

$$
\min _{Y \in \mathcal{N}}\left\langle C, Y Y^{\top}\right\rangle-\left(y^{k}\right)^{\top}\left(\mathcal{A}\left(Y Y^{\top}\right)-b\right)+\frac{\sigma^{k}}{2}\left\|\mathcal{A}\left(Y Y^{\top}\right)-b\right\|^{2} \rightsquigarrow \text { nonconvex! }
$$

## Good news

We can efficiently escape from saddle points and obtain an optimal solution of the SDP.

## Numerical experiments

Table: Binary quadratic programs $\min _{\mathbf{x} \in\{-1,1\}^{d}} \mathbf{X} Q \mathbf{x}^{\top}, r=2^{1}$

| $d$ | $n$ | $m$ | Mosek 10.0 |  | SDPNAL+ |  | STRIDE |  | ManiSDP |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\eta_{\max }$ | time |
| 10 | 56 | 1,256 | $4.4 \mathrm{e}-11$ | 0.71 | $1.9 \mathrm{e}-09$ | 0.65 | $4.7 \mathrm{e}-13$ | 0.79 | $3.2 \mathrm{e}-15$ | $\mathbf{0 . 1 4}$ |
| 20 | 211 | 16,361 | $2.7 \mathrm{e}-11$ | 49.0 | $3.0 \mathrm{e}-09$ | 28.8 | $7.4 \mathrm{e}-13$ | 6.12 | $1.2 \mathrm{e}-14$ | $\mathbf{0 . 5 3}$ |
| 30 | 466 | 77,316 | - | - | $1.7 \mathrm{e}-04$ | 187 | $1.2 \mathrm{e}-12$ | 65.4 | $2.4 \mathrm{e}-14$ | $\mathbf{3 . 2 5}$ |
| 40 | 821 | 236,121 | - | - | $2.1 \mathrm{e}-08$ | 813 | $4.4 \mathrm{e}-13$ | 249 | $4.1 \mathrm{e}-14$ | $\mathbf{1 0 . 5}$ |
| 50 | 1,276 | 564,776 | - | - | $1.6 \mathrm{e}-07$ | 3058 | $7.8 \mathrm{e}-09$ | 826 | $6.4 \mathrm{e}-14$ | $\mathbf{3 1 . 1}$ |
| 60 | 1,831 | $1,155,281$ | - | - | $*$ | $*$ | $1.3 \mathrm{e}-12$ | 2118 | $7.9 \mathrm{e}-14$ | $\mathbf{9 4 . 3}$ |

${ }^{1}$-: out of memory, $*:>10000 \mathrm{~s}$

## Solving large-scale polynomial optimization



## Main references

- Jie Wang, Victor Magron and Jean B. Lasserre, TSSOS: A Moment-SOS hierarchy that exploits term sparsity, SIAM Journal on Optimization, 2021.
- Jie Wang, Victor Magron and Jean B. Lasserre, Chordal-TSSOS: a moment-SOS hierarchy that exploits term sparsity with chordal extension, SIAM Journal on Optimization, 2021.
- Jie Wang and Victor Magron, Exploiting Sparsity in Complex Polynomial Optimization, Journal of Optimization Theory and Applications, 2021.
- Jie Wang, Victor Magron, Jean B. Lasserre and Ngoc H. A. Mai, CS-TSSOS: Correlative and term sparsity for large-scale polynomial optimization, ACM Transactions on Mathematical Software, 2022.


## Main references

- Jie Wang and Victor Magron, Exploiting Term Sparsity in Noncommutative Polynomial Optimization, Computational Optimization and Applications, 2021.
- Igor Klep, Victor Magron, Jurij Volčič and Jie Wang, State Polynomials: Positivity, Optimization and Nonlinear Bell Inequalities, arXiv, 2023.
- Jie Wang and Liangbing Hu, Solving Low-Rank Semidefinite Programs via Manifold Optimization, arXiv, 2023.


## Thank You!

https://wangjie212.github.io/jiewang

