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Nonnegative Polynomials

Problem

Given a multivariate polynomial f , decide if f is nonnegative and certify its
nonnegativity if it is.

Certifying nonnegativity of multivariate polynomials is a central
problem in real algebraic geometry which has applications in
polynomial optimization and many other fields such as control,
engineering, combinatorics, and physics.

Generally, deciding nonnegativity of multivariate polynomials is an
NP-hard problem.
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Sums of squares

A classical approach for certifying nonnegativity of polynomials is the use
of sums of squares.

Sums of squares

Given a polynomial f ∈ R[x] = R[x1, . . . , xn], if there exist polynomials
f1, . . . , fm ∈ R[x] such that

f =
m∑
i=1

f 2i ,

then we say f is a sum of squares (SOS).
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SOS decompositions

Though the existence of SOS decompositions is only a sufficient
condition of nonnegativity, it gives a computational approach to
certify nonnegativity.

M: a monomial basis
f admits an SOS decomposition
⇐⇒ ∃ a positive semidefinite matrix Q s.t. f = MTQM
 effectively solved by semidefinite programming (SDP)
(Parrilo 2000, Lasserre 2001)
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Exploiting Sparsity

f : n variables, 2d degree, SDP:
(n+d

n

)
The size of the corresponding semidefinite program problem grows
rapidly as the size of the polynomial increases.

To deal with large polynomials, sparsity must be exploited.

Newton polytopes (Reznick, 1978), correlative sparsity patterns (Waki
et al., 2006), sign-symmetries (Löfberg, 2009), the facial reduction
(Permenter and Parrilo, 2014), the split property (Dai and Xia, 2015),
minimal coordinate projections (Permenter and Parrilo, 2015), cross
sparsity patterns (Wang, Li and Xia, 2019).
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Certify nonnegativity via SONC
decompositions
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Sparse nonnegative polynomial

An n-variate dense polynomial of degree d consists of
(n+d

n

)
monomials.

A sparse polynomial has �
(n+d

n

)
terms.

Problem

Does there exist a method for certifying nonnegativity of sparse
polynomials, whose complexity depends on the number of terms, not on
degrees?
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Circuit polynomials

Trellis: A ⊆ (2N)n comprises the vertices of a simplex

Definition (Iliman and Wolff, 2016)

Let A be a trellis and f ∈ R[x]. Then f is called a circuit polynomial if it
is of the form

f =
∑
α∈A

cαx
α − dxβ,

and satisfies:

(1) cα > 0 for α ∈ A ;

(2) β ∈ conv(A )◦.
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Circuit polynomials

Example (Motzkin’s polynomial)

The Motzkin’s polynomial M(x , y) = x4y2 + x2y4 + 1− 3x2y2 is a
nonnegative circuit polynomial.

1

x2y4

x4y2
x2y2
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Sums of nonnegative circuit polynomials

A polynomial decomposes into a sum of squares of polynomials (SOS)
=⇒ it is nonnegative

A polynomial decomposes into a sum of nonnegative circuit polynomials
(SONC) =⇒ it is nonnegative

SOS SONC
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Sums of nonnegative circuit polynomials

A polynomial decomposes into a sum of squares of polynomials (SOS)
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Sums of nonnegative circuit polynomials

Question 1 : Under which conditions, a nonnegative polynomial admits an
SONC decomposition? (A Hilbert-style theorem for the SONC case)

Question 2 : How to efficiently compute an SONC decomposition of a
nonnegative polynomial if there exists?
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The case of one negative term

Theorem (Wang, 2018)

Let f =
∑

α∈A cαxα − dxβ ∈ R[x] with A ⊆ (2N)n, β ∈ New(f )◦ ∩ Nn

and cα > 0 for α ∈ A . Then f is nonnegative if and only if f admits an
SONC decomposition.
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The case of multiple negative terms

Theorem (Wang, 2018)

Let f =
∑

α∈A cαxα −
∑

β∈B dβx
β ∈ R[x] with A ⊆ (2N)n,

B ⊆ New(f )◦ ∩ Nn and cα > 0 for α ∈ A . Assume that

New(f ) is simple at some vertex,

all β’s lie in the same side of every hyperplane determined by points
among A ,

there exists a point v = (vk) ∈ (R∗)n such that dβv
β > 0 for all β.

Then f is nonnegative if and only if f admits an SONC decomposition.
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An example

Example

Let f = 1 + x6 + y6 + x6y6 − x2y − 2x4y which is nonnegative. Then
f ∈ SONC.

1 x6

y6 x6y6

x2y x4y
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Compute SONC decompositions
via second-order cone

programming
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The connection with SOS

For a subset M ⊆ Nn, A(M) := {12(u + v) | u 6= v,u, v ∈ M ∩ (2N)n}.
For a trellis A , M is an A -mediated set if A ⊆ M ⊆ A(M) ∪A .

Theorem (Reznick, 1989; Iliman and Wolff, 2016)

Let f =
∑

α∈A cαxα − dxβ ∈ R[x], d 6= 0 be a nonnegative circuit
polynomial with A a trellis. Then f is a sum of squares if and only if there
exists an A -mediated set containing β. Moreover, suppose that β belongs
to an A -mediated set M = {ui}si=1. For each ui ∈ M\A , let
ui = 1

2(up(i) + uq(i)). Then f is a sum of binomial squares and

f =
∑

ui∈M\A (aix
1
2
up(i) − bix

1
2
uq(i))2, ai , bi ∈ R.
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A -rational mediated sets

For a subset M ⊆ Qn, Ã(M) := {12(u + v) | u 6= v,u, v ∈ M}. Let
A ⊆ Qn comprise the vertices of a simplex. We say that M is an
A -rational mediated set if A ⊆ M ⊆ Ã(M) ∪A .

Theorem (Wang, 2019)

For a trellis A = {α1, . . . ,αm} and a lattice point β ∈ conv(A )◦, there
always exists an A -rational mediated set MA β containing β such that the
denominators of coordinates of points in MA β are odd numbers and the
numerators of coordinates of points in MA β\{β} are even numbers.

Remark: Actually we have an algorithm to compute an A -rational
mediated set MA β containing β with the desired property.
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A -rational mediated sets

Theorem (Wang, 2019)

Let f =
∑

α∈A cαxα − dxβ ∈ R[x], d 6= 0 be a circuit polynomial and
assume that MA β = {ui}si=1 is an A -rational mediated set containing β
such that the denominators of coordinates of points in MA β are odd
numbers and the numerators of coordinates of points in MA β\{β} are
even numbers. For each ui ∈ MA β\A , let ui = 1

2(up(i) + uq(i)). Then f
is nonnegative if and only if f can be written as

f =
∑

ui∈MAβ\A (aix
1
2
up(i) − bix

1
2
uq(i))2, ai , bi ∈ R.
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An example

Example

Let f = x4y 2 + x2y 4 + 1− 3x2y 2 be the Motzkin’s polynomial and
A = {α1 = (0, 0),α2 = (4, 2),α3 = (2, 4)}, β = (2, 2). Then
M = {α1,α2,α3,β,β1,β2,β3,β4} is an A -rational mediated set containing β.

α1

α3

α2β

β2

β1β4

β3

By a simple computation, we have

f = 3
2
(x

2
3 y

4
3 −x

4
3 y

2
3 )2+(xy 2−x

1
3 y

2
3 )2+ 1

2
(x

2
3 y

4
3 −1)2+(x2y −x

2
3 y

1
3 )2+ 1

2
(x

4
3 y

2
3 −1)2.
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Compute SONC decompositions via second-order cone
programming

A polynomial f ∈ SONC ⇐⇒ f is a sum of “binomial” squares with
rational exponents

 efficiently solved by a 2× 2-blocked SDP problem (second-order cone
programming (SOCP))
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Second-order cone representations
of SONC cones
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Second-order cones

The n-dimensional standard second-order cone is defined as

C := {(x, t) ∈ Rn−1 × R : ||x||2 ≤ t},

and an n-dimensional second-order cone is

Q := {x ∈ Rm : ||Ax + b||2 ≤ cTx + d},

where A ∈ R(n−1)×m,b ∈ Rn−1, c ∈ Rm, d ∈ R.

Remark: The optimization problem over second-order cones can be solved
more efficiently than semidefinite programming.
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Second-order cones

Example

S2+ := {
[
a b
b c

]
∈ R2×2 |

[
a b
b c

]
is positive semidefinite}

is a 3-dimensional second-order cone.
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Second-order cone lifts of convex cones

Qk = Q× · · ·Q: the Cartesian product of k copies of a second-order cone
Q

Definition

A convex cone C ⊆ Rm has a second-order cone lift of size k (or simply a
Qk -lift) if it can be written as the projection of a slice of Qk , that is, there
is a subspace L of Qk and a linear map π : Qk → Rm such that
C = π(Qk ∩ L).

Theorem (Fawzi, 2018)

The cone SOSn,2d does not admit any second-order cone lift except in the
case (n, 2d) = (1, 2).
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(S2
+)k-lifts of SONC cones

Given A ⊆ (2N)n, B1 ⊆ conv(A ) ∩ (2N)n and
B2 ⊆ conv(A ) ∩ (Nn\(2N)n) such that A ∩B1 = ∅, define

SONCA ,B1,B2 :={(cA ,dB1 ,dB2) ∈ R|A |+ × R|B1|
+ × R|B2|

|
∑
α∈A

cαx
α −

∑
β∈B1∪B2

dβx
β ∈ SONC},

which is a convex cone.

Theorem (Wang, 2019)

For A ⊆ (2N)n, B1 ⊆ conv(A ) ∩ (2N)n and
B2 ⊆ conv(A ) ∩ (Nn\(2N)n) such that A ∩B1 = ∅, the convex cone
SONCA ,B1,B2 admits an (S2+)k -lift for some k ∈ N.
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Comparison between SONC and SOS

SONC SOS

sparsity maintain not maintain

computation REP/SOCP SDP

complexity depends on n,m depends on n,d

second-order cone
exist not exist

representation

... ... ...

Table: n: number of variables, d: degree, m: number of terms
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Summary

SONC decompositions provide a new computational framework for
certificates of sparse nonnegativity and sparse polynomial
optimization.

A partial Hilbert-style theorem for the SONC case is given.

We can compute SONC decompositions via SOCP.

The SONC cone admits a second-order cone representation.
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Thank you!
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