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Polynomial optimization problem

The polynomial optimization problem (POP):

(Q) :
f ∗ := inf f

s.t. gj ≥ 0, j = 1, . . . ,m,
(hi = 0, i = 1, . . . ,m′)

where f , gj (hi ) ∈ R[x] := R[x1, . . . , xn].

In general, the problem (Q) is non-convex, NP-hard.
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Diverse applications

Discrete optimization (e.g. the Max-Cut problem)

Truncated K-moment problem

Tensor decomposition

Big-data applications

Computer vision

Neural networks

Quantum information

......
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What do we care about?

Compute the global optimal value

Extract global optimal solutions

Certify global optimality

Approximate the global optimal value if the exact computation is
impossible/unnecessary/expensive

The moment-SOS hierarchy (also known as Lasserre’s hierarchy) is a
powerful tool to handle POPs and to answer all these questions.
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What does “moment” mean?

Assume K = {x ∈ Rn : gj(x) ≥ 0, j = 1, . . . ,m}. The POP (Q) is
equivalent to

inf
µ∈M(K)+

{
∫
K
f (x) dµ : µ(K) = 1}. (1)

Let yα =
∫
K xα dµ (moment) for α ∈ Nn. Then (1) can be rewritten as

inf
y
{Ly(f ) =

∑
α∈supp(f )

fαyα : ∃µ ∈M(K)+ s.t. y ∼ µ and y0 = 1}. (2)

Question: Which sequence y = (yα)α∈Nn admits a finite Borel measure
representation with support contained in K?
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What does “moment” mean?

The d-order moment matrix Md(y) is defined by [Md(y)]βγ = yβ+γ for
β,γ ∈ Nn

d .
Given g ∈ R[x], the d-order localizing matrix Md−dg (gy) is defined by
[Md−dg (gy)]βγ =

∑
α∈supp(g) gαyα+β+γ for β,γ ∈ Nn

d−dg
(dg = ddeg(g)/2e).

Theorem

Assume Archimedean’s condition holds. The sequence y = (yα)α∈Nn has a
finite Borel representing measure with support contained in K if and only
if Md(y) � 0,Md−dj (gjy) � 0 for all j and d .
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What does “moment” mean?

By truncating the order of moments, we then obtain a series of moment
relaxations (indexed by d) of (Q) to approximate f ∗ from below:

(Qd) :

θd := inf Ly(f )
s.t. Md(y) � 0,

Md−dj (gjy) � 0, j = 1, . . . ,m,

y0 = 1.

Here, dj = ddeg(gj)/2e.

This is actually a semidefinite programming (SDP) problem, effectively
solved by interior-point solvers (e.g. MOSEK) or first-order solvers (e.g.
SDPNAL).
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What does “SOS” mean?

Assume K = {x ∈ Rn : gj(x) ≥ 0, j = 1, . . . ,m}. The dual of (Q) reads as

f ∗ = sup
λ
{λ : f (x)− λ ≥ 0 over K}. (3)

The convex cone PK(x) := {g(x) | g(x) ≥ 0 over K} is intractable!

Question: How to effectively approximate PK(x) by tractable subsets (or
supsets)?

Jie Wang (CNRS) Sparsity in Large-Scale POPs 13/12/2020 8 / 35



What does “SOS” mean?

Assume K = {x ∈ Rn : gj(x) ≥ 0, j = 1, . . . ,m}. The dual of (Q) reads as

f ∗ = sup
λ
{λ : f (x)− λ ≥ 0 over K}. (3)

The convex cone PK(x) := {g(x) | g(x) ≥ 0 over K} is intractable!

Question: How to effectively approximate PK(x) by tractable subsets (or
supsets)?

Jie Wang (CNRS) Sparsity in Large-Scale POPs 13/12/2020 8 / 35



What does “SOS” mean?

Σ(x) := {f ∈ R[x] | f =
∑

i f
2
i , fi ∈ R[x]} (SOS polynomials)

Given g = {gj}mj=1 ⊆ R[x], the quadratic module generated by g is
Qg := {σ0 +

∑m
j=1 σjgj | σj ∈ Σ(x), j = 0, 1, . . . ,m} ⊆ PK(x),

and the truncated quadratic module of degree 2d is (with g0 := 1)
Qg,2d := {σ0 +

∑m
j=1 σjgj | σj ∈ Σ(x), deg(σjgj) ≤ 2d , j = 0, 1, . . . ,m}.

Theorem (Putinar’s Positivstellensatz)

Assume Archimedean’s condition holds. If f > 0 over K, then f ∈ Qg.

Replacing PK(x) by Qg,2d , we then obtain a series of SOS relaxations
(indexed by d) of (Q) to approximate f ∗ from below:

(Qd)∗ :
θ∗d := sup λ

s.t. f − λ ∈ Qg,2d .

This is actually the dual SDP problem of the moment relaxation.
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The moment-SOS hierarchy

f ∗

≤ ≤
...

...

≤ ≤

(the moment relaxation) θd “ = ” θ∗d (the SOS relaxation)

≤ ≤

...
...

≤ ≤
θd “ = ” θ∗d

d := max{deg(f )/2, d1, . . . , dm}
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Asymptotical convergence and finite convergence

Under Archimedean’s condition (≈ compactness): there exists N > 0 s.t.
N − ||x||2 ∈ Qg, we have

θd ↑ f ∗ and θ∗d ↑ f ∗ as d →∞ (Lassere, 2001);

Finite convergence happens generically (Nie, 2014);

We can verify global optimality by the so-called rank condition (flat
extension/truncation);

We can easily extract minimizers when the rank condition is satisfied.

In practice for most POPs, the moment-SOS hierarchy retrieves f ∗ in a
few steps.

Important Message: The moment-SOS hierarchy enables us to
approximate/retrieve the global optimum/optimizers via solving a
sequence of SDPs with increasing sizes.
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Scalability

The size of SDP (considering (Qd)∗) at relaxation order d :

SDP matrix:
(n+d

d

)
#equality constraint:

(n+2d
2d

)
In view of the current state of SDP solvers (e.g. MOSEK), problems are
limited to n ≤ 30 when d = 2 on a standard laptop.

Exploiting structure:

quotient ring

symmetry

constant trace property

sparsity (correlative sparsity and term sparsity)
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Correlative sparsity (Waki et al., 2006)

The basic idea is to partition the variables into cliques according to the
correlations between variables.

Correlative sparsity pattern (csp) graph G csp(V ,E ):
V := {x1, . . . , xn}
{xi , xj} ∈ E ⇐⇒ xi , xj appear in the same term of f or appear in the same
constraint gj

We then construct moment/localizing matrices with respect to the
variables involved in each maximal clique of the csp graph:

Ik 7−→ Md(y, Ik),Md−dj (gjy, Ik)
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Correlative sparsity

Example

Consider f = x41 + x1x
2
2 + x2x3 + x23x

2
4 and g1 = 1− x21 − x22 − x23 ,

g2 = 1− x3x4.

Figure: The csp graph for f and {g1, g2}

x1

x2

x3 x4

Two maximal cliques: {x1, x2, x3} and {x3, x4}
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The correlative sparsity adapted moment-SOS hierarchy

If the csp graph is chordal (otherwise we need a chordal extension),
then the correlative sparsity adapted moment-SOS hierarchy shares
the same convergence as the standard one;

We can still verify global optimality by the (adapted) rank condition;

We can still extract global minimizers if certain rank conditions are
satisfied;

Significantly improve scalability if the sizes of maximal cliques of the
csp graph are small (e.g. ≤ 10).
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Term sparsity

In contrast with correlative sparsity concerning variables, term sparsity
treats sparsity at the term/monomial level.

Vd(x) := {1, x1, . . . , xn, xd1 , . . . , xdn } the monomial basis of degree ≤ d .

Term sparsity pattern (tsp) graph G tsp(V ,E ) (with relaxation order d):
V := Vd(x)
{xα, xβ} ∈ E ⇐⇒ xα+β = xαxβ ∈ supp(f ) ∪

⋃m
j=1 supp(gj) ∪ Vd(x)2

(For f =
∑

α fαxα ∈ R[x], supp(f ) := {xα | fα 6= 0})
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Term sparsity

Example

Consider f = x41 + x1x
2
2 + x2x3 + x23x

2
4 and g1 = 1− x21 − x22 − x23 ,

g2 = 1− x3x4.

Figure: The tsp graph for f and {g1, g2} with d = 2

1

x21

x22

x23

x24

x1

x2x3x4 x1x2

x1x3 x1x4

x2x3

x2x4

x3x4
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Term sparsity

Suppose the tsp graph G tsp has connected components: B1, . . . ,Bt . So

Vd(x) =
t⊔

i=1

Bi .

For each Bi , we construct a block of the moment matrix: MBi
(y).

In such a way, we replace one big matrix Md(y) by a series of smaller
submatrices MBi

(y), i = 1, . . . , t in the moment relaxation.

Remark: The same thing can be also done for the localizing matrices
Md−dj (y), j = 1, . . . ,m.
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Extending to an iterative procedure

For simplicity, we consider the unconstrained case. For a graph G (V ,E )
with nodes Vd(x) (d = deg(f )/2), define

supp(G ) := {xα+β | {xα, xβ} ∈ E}.

Let G (0) = G tsp. We iteratively define a sequence of graphs (G (k))k≥1 via
two successive operations:

1 Support extension: let F (k) be the graph with nodes Vd(x) and edges

E (F (k)) := {{xα, xβ} | xα+β ∈ supp(G (k−1)) ∪ Vd(x)2}

2 Block closure: G (k) = F (k), i.e. G (k) is obtained by completing every
connected components of F (k)
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The term sparsity adapted moment-SOS (TSSOS)
hierarchy

Let B
(k)
1 , . . . ,B

(k)
tk be the connected components of G (k). For each

k ≥ 1, let us consider

(Qk) :

θ(k) := inf Ly(f )
s.t. M

B
(k)
i

(y) � 0, i = 1, . . . , tk

y0 = 1.

One then obtains

θsdsos ≤ θ(1) ≤ θ(2) ≤ · · · ≤ f ∗.

We call (Qk), k = 1, 2, . . . the TSSOS hierarchy for (Q) and k the sparse
order.
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A two-level hierarchy of lower bounds

The above procedure can be extended to the constrained case. As a
consequence, we obtain a two-level hierarchy of lower bounds for f ∗:
(d := max{deg(f )/2, d1, . . . , dm})

θ
(1)
d ≤ θ

(2)
d ≤ · · · ≤ θd
≥ ≥ ≥

θ
(1)
d+1 ≤ θ

(2)
d+1 ≤ · · · ≤ θd+1

≥ ≥ ≥

...
...

...
...

≥ ≥ ≥

θ
(1)
d ≤ θ

(2)
d ≤ · · · ≤ θd

≥ ≥ ≥

...
...

...
...
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The TSSOS hierarchy

Regarding the TSSOS hierarchy, we have

For QCQP, θ
(1)
1 = θshor;

Fixing a sparse order k , the sequence (θ
(k)
d )d≥d is monotone

nondecreasing;

Fixing a relaxation order d , the sequence (θ
(k)
d )k≥1 converges to θd in

finitely many steps.
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Combining correlative sparsity with term sparsity

The combination of correlative sparsity with term sparsity splits into two
steps:

1 Partitioning the variables with respect to the maximal cliques of the
csp graph;

2 For each subsystem involving variables from one maximal clique,
applying the above iterative procedure to exploit term sparsity.

In doing so, we again obtain a two-level hierarchy of lower bounds for f ∗,
which is called the CS-TSSOS hierarchy.
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Polynomials in noncommutating variables

X = (X1, . . . ,Xn): a tuple of noncommutating variables
R〈X 〉: the ring of real polynomials in X
Given S = {g1, . . . , gm} ⊆ SymR〈X 〉, the semialgebraic set DS is

DS :=
⋃

r∈N\{0}

{A = (A1, . . . ,An) ∈ (Sr )n | gj(A) � 0, j ∈ [m]}.

The operator semialgebraic set D∞S is the set of all bounded self-adjoint
operators A on a Hilbert space endowed with a scalar product 〈·, ·〉 making
g(A) a PSD operator, for all g ∈ S .
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Eigenvalue minimization and trace minimization

Given f =
∑

w aww ∈ SymR〈X 〉 and S = {g1, . . . , gm} ⊆ SymR〈X 〉, the
eigenvalue minimization problem for f over the operator semialgebraic
set D∞S is defined by

(EQ0) : λmin(f , S) := inf{〈f (A)v , v〉 : A ∈ D∞S , ||v || = 1},

and the trace minimization problem for f over the semialgebraic set DS

is defined by

(TQ0) : trmin(f ,S) := inf{tr f (A) : A ∈ DS}.

For A = [aii ] ∈ Sr , trA := 1
r

∑r
i=1 aii .
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Remarks on noncommutative polynomial optimization

Noncommutative polynomial optimization is typically harder than
commutative polynomial optimization (|Wd(X )| � |Vd(x)|);

The whole sparsity-exploiting framework can be adapted to the
noncommutative case;

Many computation problems emerging from quantum information can
be modeled as a NCPOP;

For NCPOPs from physics, symmetry is frequently present. It is
mandatory to exploit several structures (sparsity, symmetry, quotient
ring) simultaneously in order to reduce the computational cost.
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Software

All sparsity-exploiting techniques (reduced monomial basis, quotient
structure, correlative sparsity, term sparsity, combined correlative-term
sparsity) have been implemented in the following two software (freely
available on GitHub):

TSSOS: solving commutative polynomial optimization

NCTSSOS: solving noncommutative polynomial optimization
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Randomly generated polynomials of the SOS form

TSSOS, NCTSSOS, GloptiPoly, Yalmip: MOSEK SparsePOP: SDPT3

Table: Running time (in seconds) comparison with GloptiPoly, Yalmip and
SparsePOP for minimizing randomly generated sparse polynomials of the SOS
form with the same optimum; the symbol “-” indicates out of memory

n 2d TSSOS GloptiPoly Yalmip SparsePOP

8 8 0.24 306 10 24
8 8 0.34 348 13 130
8 8 0.36 326 19 175
8 10 0.58 - 92 323
8 10 0.53 - 72 1526
8 10 0.38 - 22 134
9 10 0.50 - 44 324
9 10 0.72 - 143 -
9 10 0.79 - 109 284
10 12 2.2 - 474 -
10 12 1.6 - 147 318
10 12 1.8 - 350 404
10 16 15 - - -
10 16 14 - - -
10 16 12 - - -
12 12 8.4 - - -
12 12 5.7 - - -
12 12 7.4 - - -
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Randomly generated polynomials with simplex Newton
polytopes

Table: Running time (in seconds) comparison with GloptiPoly, Yalmip and
SparsePOP for minimizing randomly generated sparse polynomials with simplex
Newton polytopes with the same optimum; the symbol “-” indicates out of
memory

n 2d TSSOS GloptiPoly Yalmip SparsePOP

8 8 0.36 346 31 271
8 8 0.51 447 24 496
8 8 0.31 257 6.0 178
9 8 1.0 - - -
9 8 0.63 - 363 611
9 8 0.76 - 141 578
9 10 6.6 - 322 -
9 10 5.0 - 233 -
9 10 4.9 - 249 -
10 8 1.2 - - -
10 8 8.0 - 536 -
10 8 1.0 - - -
11 8 1.7 - 655 398
11 8 1.8 - - 221
11 8 1.9 - 340 293
12 8 10 - - -
12 8 7.4 - - -
12 8 2.9 - - -
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AC-OPF problems

Table: The results for AC-OPF problems; the symbol “-” indicates out of memory

n m
CS (d = 2) CS+TS (d = 2)

mb opt time (s) rel. gap mb opt time (s) rel. gap
12 28 28 1.1242e4 0.21 0.00% 22 1.1242e4 0.09 0.00%
20 55 28 1.7543e4 0.56 0.05% 22 1.7543e4 0.30 0.05%
114 315 66 1.3442e5 5.59 0.39% 31 1.3396e5 2.01 0.73%
114 315 120 7.6943e4 94.9 0.00% 39 7.6942e4 14.8 0.00%
72 297 45 4.9927e3 4.43 0.07% 22 4.9920e3 2.69 0.08%
344 971 153 4.2246e5 758 0.06% 44 4.2072e5 96.0 0.48%
344 971 153 2.2775e5 504 0.00% 44 2.2766e5 71.5 0.04%
344 1325 253 − − − 31 2.4180e5 82.7 0.11%
344 1325 253 − − − 73 1.0470e5 169 0.50%
348 1809 253 − − − 34 1.0802e5 278 0.05%
348 1809 253 − − − 34 1.2096e5 201 0.03%
766 3322 153 3.3072e6 585 0.68% 44 3.3042e6 33.9 0.77%
1112 4613 231 4.2413e4 3114 0.85% 39 4.2408e4 46.6 0.86%
1112 4613 496 − − − 31 7.2396e4 410 0.25%
4356 18257 378 − − − 27 1.3953e6 934 0.51%
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Eigenvalue minimization for the nc generalized Rosenbrock
function

Table: The eigenvalue minimization for the nc generalized Rosenbrock function
over D, where D is defined by {1− X 2

1 , . . . , 1− X 2
n , X1 − 1/3, . . . ,Xn − 1/3}; the

symbol “-” indicates out of memory

n
CS+TS (d = 2) Dense (d = 2)

mb opt time (s) mb opt time (s)
20 3 1.0000 0.14 - - -
40 3 1.0000 0.22 - - -
60 3 0.9999 0.28 - - -
80 3 0.9999 0.35 - - -
100 3 0.9999 0.46 - - -
200 3 0.9999 0.89 - - -
400 3 1.0000 2.40 - - -
600 3 1.0000 4.47 - - -
800 3 1.0000 6.95 - - -
1000 3 0.9999 10.2 - - -
2000 3 0.9999 37.2 - - -
3000 3 0.9999 87.2 - - -
4000 3 0.9998 145 - - -
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Trace minimization for the nc Broyden tridiagonal function

Table: The trace minimization for the nc Broyden tridiagonal function over D,
where D is defined by {1− X 2

1 , . . . , 1− X 2
n , X1 − 1/3, . . . ,Xn − 1/3}; the symbol

“-” indicates out of memory

n
CS+TS (d = 2) Dense (d = 2)

mb opt time (s) mb opt time (s)
20 6 1.1805 0.27 - - -
40 6 1.1828 0.53 - - -
60 6 1.1828 0.68 - - -
80 6 1.1828 0.82 - - -
100 6 1.1828 1.07 - - -
200 6 1.1828 2.45 - - -
400 6 1.1828 6.18 - - -
600 6 1.1828 12.2 - - -
800 6 1.1828 20.1 - - -
1000 6 1.1828 28.6 - - -
2000 6 1.1828 104 - - -
3000 6 1.1828 204 - - -
4000 6 1.1828 363 - - -
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Conclusion and outlook

The concept of term sparsity patterns opens a new window to exploit
sparsity at the term level for polynomial optimization;

The CS-TSSOS hierarchy is a powerful tool to handle large-scale
polynomial optimization problems;

One can exploit term sparsity for generalized moment problems (more
general than polynomial optimization), SOS programming, SDP
problems;

Fruitful potential applications: optimal power flow, computer vision,
big data, deep learning, quantum information, tensor decomposition,
......
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Thanks for your attention!
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