Exploiting Sparsity in Large-Scale Polynomial Optimization

Jie Wang (AMSS-CAS) Joint work with Victor Magron and Jean B. Lasserre

SIAM Conference on Optimization

21/7/2021

Polynomial optimization and the moment-SOS hierarchy

2 Exploiting sparsity in the moment-SOS hierarchy

We consider the polynomial optimization problem (POP):

(Q):

$$f^* := \inf f$$

 $g_j \ge 0, \quad j = 1, ..., m,$
 $(h_i = 0, \quad i = 1, ..., m',)$

where $f, g_j(, h_i) \in \mathbb{R}[\mathbf{x}] := \mathbb{R}[x_1, \dots, x_n]$.

In general, the problem (Q) is non-convex, NP-hard.

- Combinatorial optimization (e.g. the Max-Cut problem)
- Signal processing
- Tensor decomposition
- Optimal power flow
- Computer vision
- Neural networks
- Quantum information
-

- Compute the global optimal value
- Certify global optimality
- Extract global optimal solutions
- Approximate the global optimal value if the exact computation is impossible/unnecessary/expensive

- Compute the global optimal value
- Certify global optimality
- Extract global optimal solutions
- Approximate the global optimal value if the exact computation is impossible/unnecessary/expensive

The moment-SOS hierarchy (also known as Lasserre's hierarchy) is a well-established tool to handle POPs and is able to answer all these questions.

For $r \in \mathbb{N}$, let $\mathbb{N}_r^n := \{\beta = (\beta_i) \in \mathbb{N}^n \mid \sum_{i=1}^n \beta_i \leq r\}$ arranged w.r.t. the lexicographic order.

 \triangleright The moment matrix $M_r(\mathbf{y})$ of order r is defined by

$$[M_r(\mathbf{y})]_{\boldsymbol{\beta\gamma}} := y_{\boldsymbol{\beta+\gamma}}, \quad \forall \boldsymbol{\beta}, \boldsymbol{\gamma} \in \mathbb{N}_r^n.$$

 \triangleright Given $g = \sum_{\alpha} g_{\alpha} \mathbf{x}^{\alpha} \in \mathbb{R}[\mathbf{x}]$, the localizing matrix $M_r(g\mathbf{y})$ of order r is defined by

$$[M_r(g\mathbf{y})]_{eta\gamma} := \sum_{lpha} g_{lpha} y_{lpha+eta+\gamma}, \quad orall eta, \gamma \in \mathbb{N}_r^n.$$

By truncating the order of moments, for each r (called the relaxation order), we obtain the moment relaxation of order r:

$$\begin{array}{rcl} \theta_r := & \inf & L_{\mathbf{y}}(f) \\ \mathrm{Q}_r) : & & \mathrm{s.t.} & M_r(\mathbf{y}) \succeq 0, \\ & & & M_{r-d_j}(g_j \mathbf{y}) \succeq 0, \quad j = 1, \dots, m, \\ & & & y_0 = 1. \end{array}$$

Here, $d_j = \lceil \deg(g_j)/2 \rceil$.

This is a semidefinite programming (SDP) problem, effectively solved by interior-point solvers (e.g. MOSEK) or first-order solvers (e.g. COSMO).

The dual SDP of the moment relaxation of order r is the following SOS relaxation of order r:

$$(\mathbf{Q}_r)^*: \begin{array}{rcl} \theta_r^* := & \sup & \lambda \\ & \mathrm{s.t.} & f - \lambda = \sigma_0 + \sum_{j=1}^m \sigma_j g_j, \\ & \sigma_0, \sigma_1, \dots, \sigma_m \text{ are SOS polynomials,} \\ & \deg(\sigma_0) \leq 2r, \deg(\sigma_j g_j) \leq 2r, j = 1, \dots, m. \end{array}$$

$$\underline{r} := \max\{\deg(f)/2, d_1, \ldots, d_m\}$$

Jie Wang (AMSS-CAS)

Sparsity in Large-Scale POPs

Under Archimedean's condition: there exists N>0 s.t. $N-||\mathbf{x}||^2\in\mathcal{Q}_{\mathbf{g}}$, we have

- $\theta_r \uparrow f^*$ and $\theta_r^* \uparrow f^*$ as $r \to \infty$ (Lassere, 2001);
- Finite convergence happens generically (Nie, 2014);
- We can verify global optimality by the so-called rank condition (flat extension/truncation);

• We can easily extract minimizers when the rank condition is satisfied. In practice for most POPs, the moment-SOS hierarchy retrieves f^* in a few steps.

Under Archimedean's condition: there exists N>0 s.t. $N-||\mathbf{x}||^2\in\mathcal{Q}_{\mathbf{g}}$, we have

- $\theta_r \uparrow f^*$ and $\theta_r^* \uparrow f^*$ as $r \to \infty$ (Lassere, 2001);
- Finite convergence happens generically (Nie, 2014);
- We can verify global optimality by the so-called rank condition (flat extension/truncation);

• We can easily extract minimizers when the rank condition is satisfied. In practice for most POPs, the moment-SOS hierarchy retrieves f^* in a few steps.

Key Message: The moment-SOS hierarchy allows us to approximate/retrieve the global optimum/optimizers via solving a sequence of SDPs with increasing sizes.

The size of SDP (considering the SOS problem) at relaxation order r:

- maximal size of SDP matrices: $\binom{n+r}{r}$
- number of equality constraints: $\binom{n+2r}{2r}$

In view of the current state of SDP solvers (e.g. MOSEK), solvable problems are limited to $n \leq 30$ when r = 2 on a standard laptop.

The size of SDP (considering the SOS problem) at relaxation order r:

- maximal size of SDP matrices: $\binom{n+r}{r}$
- number of equality constraints: $\binom{n+2r}{2r}$

In view of the current state of SDP solvers (e.g. MOSEK), solvable problems are limited to $n \leq 30$ when r = 2 on a standard laptop.

Exploiting structure:

- quotient ring
- symmetry
- sparsity

The basic idea is to partition the variables into cliques according to the correlations between variables.

Correlative sparsity pattern (csp) graph $G^{csp}(V, E)$: $V := \{x_1, \dots, x_n\}$ $\{x_i, x_j\} \in E \iff x_i, x_j$ appear in the same term of f or appear in the same constraint polynomial g_k The basic idea is to partition the variables into cliques according to the correlations between variables.

Correlative sparsity pattern (csp) graph $G^{csp}(V, E)$: $V := \{x_1, \ldots, x_n\}$ $\{x_i, x_j\} \in E \iff x_i, x_j$ appear in the same term of f or appear in the same constraint polynomial g_k

We then construct moment/localizing matrices with respect to the variables involved in each maximal clique of the csp graph:

$$I_k \mapsto M_r(\mathbf{y}, I_k), M_{r-d_j}(g_j \mathbf{y}, I_k)$$

Correlative sparsity

Example

Consider
$$f = x_1^4 + x_1x_2^2 + x_2x_3 + x_3^2x_4^2$$
 and $g_1 = 1 - x_1^2 - x_2^2 - x_3^2$, $g_2 = 1 - x_3x_4$.

Figure: The csp graph for f and $\{g_1, g_2\}$

There are two maximal cliques: $\{x_1, x_2, x_3\}$ and $\{x_3, x_4\}$.

- If the csp graph is chordal (otherwise we need a chordal extension), then the correlative sparsity adapted moment-SOS hierarchy shares the same convergence as the standard one;
- We can still verify global optimality by the (adapted) rank condition;
- We can still extract global minimizers if certain rank conditions are satisfied;
- Significantly improve scalability if the sizes of maximal cliques of the csp graph are small (e.g. \leq 10).

In contrast with correlative sparsity concerning variables, term sparsity treats sparsity at the term/monomial level.

In contrast with correlative sparsity concerning variables, term sparsity treats sparsity at the term/monomial level.

 $V_r(\mathbf{x}) := \{1, x_1, \dots, x_n, x_1^r, \dots, x_n^r\}$ the monomial basis of degree $\leq r$.

Term sparsity pattern (tsp) graph $G^{tsp}(V, E)$ (with relaxation order r): $V := V_r(\mathbf{x})$ $\{\mathbf{x}^{\alpha}, \mathbf{x}^{\beta}\} \in E \iff \mathbf{x}^{\alpha} \cdot \mathbf{x}^{\beta} = \mathbf{x}^{\alpha+\beta} \in \operatorname{supp}(f) \cup \bigcup_{j=1}^{m} \operatorname{supp}(g_j) \cup V_r(\mathbf{x})^2$

(For $f = \sum_{\alpha} f_{\alpha} \mathbf{x}^{\alpha} \in \mathbb{R}[\mathbf{x}]$, $\operatorname{supp}(f) := \{\mathbf{x}^{\alpha} \mid f_{\alpha} \neq 0\}$)

Example

Consider $f = x_1^4 + x_1x_2^2 + x_2x_3 + x_3^2x_4^2$ and $g_1 = 1 - x_1^2 - x_2^2 - x_3^2$, $g_2 = 1 - x_3x_4$.

Figure: The tsp graph for f and $\{g_1, g_2\}$ with r = 2

Suppose $(G^{\mathrm{tsp}})'$ is a chordal extension of G^{tsp} with maximal cliques: $C_1,\ldots,C_t,$

$$C_i \mapsto M_{C_i}(\mathbf{y}), \quad i = 1, \ldots, t.$$

Suppose $(G^{tsp})'$ is a chordal extension of G^{tsp} with maximal cliques: C_1, \ldots, C_t ,

$$C_i \mapsto M_{C_i}(\mathbf{y}), \quad i = 1, \ldots, t.$$

In the moment relaxation,

$$M_r(\mathbf{y}) \succeq 0 \longrightarrow M_{C_i}(\mathbf{y}) \succeq 0, \quad i = 1, \ldots, t.$$

Similarly for the localizing matrices $M_{r-d_i}(\mathbf{y}), j = 1, \dots, m$.

By iteratively performing support extension and chordal extension:

$$G^{(1)} := (G^{\operatorname{tsp}})' \subseteq \cdots \subseteq G^{(s)} \subseteq G^{(s+1)} \subseteq \cdots$$

Figure: Support extension $(\mathbf{x}^{\beta'}\mathbf{x}^{\gamma'} = \mathbf{x}^{\beta}\mathbf{x}^{\gamma} \text{ and } \{\mathbf{x}^{\beta}, \mathbf{x}^{\gamma}\} \in E \Rightarrow \{\mathbf{x}^{\beta'}, \mathbf{x}^{\gamma'}\} \in E)$

Let $C_{j,1}^{(s)},\ldots,C_{j,t_{j,s}}^{(s)}$ be the maximal cliques of $G_j^{(s)}$. For each $s\geq 1$, let us consider

$$(\mathbf{Q}_{r}^{s}): \begin{array}{ccc} \theta_{r}^{(s)} := & \inf & L_{\mathbf{y}}(f) \\ & \text{s.t.} & M_{C_{0,i}^{(s)}}(\mathbf{y}) \succeq 0, \quad i = 1, \dots, t_{0,s}, \\ & & M_{C_{j,i}^{(s)}}(g_{j}\mathbf{y}) \succeq 0, \quad i = 1, \dots, t_{j,s}, j = 1, \dots, m, \\ & & y_{\mathbf{0}} = 1. \end{array}$$

We call $\{(Q_r^s)\}_{r,s}$ the TSSOS hierarchy and s the sparse order.

Consequently, we obtain a two-level hierarchy of lower bounds for f^* : ($\underline{r} := \max\{\deg(f)/2, d_1, \dots, d_m\}$)

$ heta_{\underline{r}}^{(1)}$	\leq	$ heta_{\underline{r}}^{(2)}$	\leq		\leq	$\theta_{\underline{r}}$
$ heta^{(1)}_{\underline{r}+1} \ \wedge \mid$	\leq	$ heta_{\underline{r}+1}^{(2)}$	\leq	•••	\leq	$\theta_{\underline{r}+1}$
:		:		:		:
$ heta_r^{(1)}$ \wedge	\leq	$ heta_r^{(2)}$ \wedge	\leq		\leq	$ heta_r$
÷		÷		÷		÷

- chordal extension
 - \triangleright maximal chordal extension
 - > (approximately) smallest chordal extension

Figure: smallest versus maximal chordal extension

Regarding the TSSOS hierarchy, we have

- For QCQP, $\theta_1^{(1)} = \theta_{\text{shor}}$;
- Fixing a sparse order s, the sequence (θ^(s)_r)_{r≥r} is monotonically nondecreasing;
- Fixing a relaxation order r, the sequence (θ_r^(s))_{s≥1} is monotonically nondecreasing and converges to θ_r in finitely many steps if the maximal chordal extension is used for the chordal extension operation.

The combination of correlative sparsity with term sparsity splits into two steps:

- Partitioning the variables with respect to the maximal cliques of the csp graph;
- For each subsystem involving variables from one maximal clique, applying the above iterative procedure to exploit term sparsity.

In doing so, we again obtain a two-level hierarchy of lower bounds for f^* , which is called the CS-TSSOS hierarchy.

The sparsity-adapted hierarchies have been implemented in the Julia package TSSOS (freely available on GitHub):

https://github.com/wangjie212/TSSOS

Randomly generated polynomials of the SOS form

TSSOS, GloptiPoly, Yalmip: MOSEK SparsePOP: SDPT3

Table: Running time (in seconds) comparison with GloptiPoly, Yalmip and SparsePOP for minimizing randomly generated sparse polynomials of the SOS form with the same optimum; the symbol "-" indicates out of memory

n	2 <i>d</i>	TSSOS	GloptiPoly	Yalmip	SparsePOP
8	8	0.24	306	10	24
8	8	0.34	348	13	130
8	8	0.36	326	19	175
8	10	0.58	-	92	323
8	10	0.53	-	72	1526
8	10	0.38	-	22	134
9	10	0.50	-	44	324
9	10	0.72	-	143	-
9	10	0.79	-	109	284
10	12	2.2	-	474	-
10	12	1.6	-	147	318
10	12	1.8	-	350	404
10	16	15	-	-	-
10	16	14	-		
10	16	12	-	-	-
12	12	8.4	-	-	-
12	12	5.7	-	-	-
12	12	7.4	-	-	-

Randomly generated polynomials with simplex Newton polytopes

Table: Running time (in seconds) comparison with GloptiPoly, Yalmip and SparsePOP for minimizing randomly generated sparse polynomials with simplex Newton polytopes with the same optimum; the symbol "-" indicates out of memory

n	2 <i>d</i>	TSSOS	GloptiPoly	Yalmip	SparsePOP	
8	8	0.36	346	31	271	
8	8	0.51	447	24	496	
8	8	0.31	257	6.0	178	
9	8	1.0	-	-	-	
9	8	0.63	-	363	611	
9	8	0.76	-	141	578	
9	10	6.6	-	322	-	
9	10	5.0	-	233	-	
9	10	4.9	-	249	-	
10	8	1.2	-	-	-	
10	8	8.0	-	536	-	
10	8	1.0	-	-	-	
11	8	1.7	-	655	398	
11	8	1.8	-	-	221	
11	8	1.9	- 340		293	
12	8	10	-	-	-	
12	8	7.4	-	-	-	
12	8	2.9	-	-	-	

Table: The results for AC-OPF instances; mb: the maximal size of blocks, gap: the optimality gap with respect to a local optimal solution, -: out of memory

n m	m+m'	CS(r = 2)				CS+TS $(r = 2, s = 1)$			
		mb	opt	time (s)	gap	mb	opt	time (s)	gap
12	28	28	1.1242e4	0.21	0.00%	22	1.1242e4	0.09	0.00%
20	55	28	1.7543e4	0.56	0.05%	22	1.7543e4	0.30	0.05%
114	315	66	1.3442e5	5.59	0.39%	31	1.3396e5	2.01	0.73%
114	315	120	7.6943e4	94.9	0.00%	39	7.6942e4	14.8	0.00%
72	297	45	4.9927e3	4.43	0.07%	22	4.9920e3	2.69	0.08%
344	971	153	4.2246e5	758	0.06%	44	4.2072e5	96.0	0.48%
344	971	153	2.2775e5	504	0.00%	44	2.2766e5	71.5	0.04%
344	1325	253	-	-	-	31	2.4180e5	82.7	0.11%
344	1325	253	-	-	-	73	1.0470e5	169	0.50%
348	1809	253	-	-	-	34	1.0802e5	278	0.05%
348	1809	253	-	-	-	34	1.2096e5	201	0.03%
766	3322	153	3.3072e6	585	0.68%	44	3.3042e6	33.9	0.77%
1112	4613	231	4.2413e4	3114	0.85%	39	4.2408e4	46.6	0.86%
1112	4613	496	-	_	-	31	7.2396e4	410	0.25%
4356	18257	378	-	-	-	27	1.3953e6	934	0.51%
6698	29283	1326	-	-	-	76	5.9858e5	1886	0.47%

- The concept of term sparsity patterns opens a new window to exploit sparsity at the term level for polynomial optimization;
- When appropriate sparsity patterns are accessible, we can significantly improve the scalability of the moment-SOS hierarchy;
- Extensions to other situations also relying on the moment-SOS hierarchy, e.g., complex polynomial optimization, noncommutative polynomial optimization;
- Fruitful potential applications: optimal power flow, computer vision, neural networks, quantum information, control and so on.

- Jie Wang, Victor Magron and Jean B. Lasserre, *TSSOS: A Moment-SOS* hierarchy that exploits term sparsity, SIAM Optimization, 2021.
- Jie Wang, Victor Magron and Jean B. Lasserre, *Chordal-TSSOS: a moment-SOS hierarchy that exploits term sparsity with chordal extension*, SIAM Optimization, 2021.
- Jie Wang, Victor Magron, Jean B. Lasserre and Ngoc H. A. Mai, *CS-TSSOS: Correlative and term sparsity for large-scale polynomial optimization*, arXiv:2005.02828, 2020.
- Jie Wang and Victor Magron, Exploiting Term Sparsity in Noncommutative Polynomial Optimization, Computational Optimization and Applications, 2021.
- Jie Wang, Martina Maggio and Victor Magron, SparseJSR: A Fast Algorithm to Compute Joint Spectral Radius via Sparse SOS Decompositions, American Control Conference, 2021.
- TSSOS: https://github.com/wangjie212/TSSOS

Thanks for your attention!