
Exploiting Sparsity in Large-Scale Polynomial
Optimization

Jie Wang (AMSS-CAS)
Joint work with Victor Magron and Jean B. Lasserre

SIAM Conference on Optimization

21/7/2021

Jie Wang (AMSS-CAS) Sparsity in Large-Scale POPs 21/7/2021 1 / 30



Content

1 Polynomial optimization and the moment-SOS hierarchy

2 Exploiting sparsity in the moment-SOS hierarchy

3 Numerical experiments

Jie Wang (AMSS-CAS) Sparsity in Large-Scale POPs 21/7/2021 2 / 30



Polynomial optimization problem

We consider the polynomial optimization problem (POP):

(Q) :
f ∗ := inf f

s.t. gj ≥ 0, j = 1, . . . ,m,
(hi = 0, i = 1, . . . ,m′, )

where f , gj (, hi ) ∈ R[x] := R[x1, . . . , xn].

In general, the problem (Q) is non-convex, NP-hard.
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Diverse applications

Combinatorial optimization (e.g. the Max-Cut problem)

Signal processing

Tensor decomposition

Optimal power flow

Computer vision

Neural networks

Quantum information

......
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What do we care about?

Compute the global optimal value

Certify global optimality

Extract global optimal solutions

Approximate the global optimal value if the exact computation is
impossible/unnecessary/expensive

The moment-SOS hierarchy (also known as Lasserre’s hierarchy) is a
well-established tool to handle POPs and is able to answer all these
questions.
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Moment matrix and localizing matrix

For r ∈ N, let Nn
r := {β = (βi ) ∈ Nn |

∑n
i=1 βi ≤ r} arranged w.r.t. the

lexicographic order.

B The moment matrix Mr (y) of order r is defined by

[Mr (y)]βγ := yβ+γ , ∀β,γ ∈ Nn
r .

B Given g =
∑

α gαxα ∈ R[x], the localizing matrix Mr (gy) of order r is
defined by

[Mr (gy)]βγ :=
∑
α

gαyα+β+γ , ∀β,γ ∈ Nn
r .
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The moment relaxation

By truncating the order of moments, for each r (called the relaxation
order), we obtain the moment relaxation of order r :

(Qr ) :

θr := inf Ly(f )
s.t. Mr (y) � 0,

Mr−dj (gjy) � 0, j = 1, . . . ,m,

y0 = 1.

Here, dj = ddeg(gj)/2e.

This is a semidefinite programming (SDP) problem, effectively solved by
interior-point solvers (e.g. MOSEK) or first-order solvers (e.g. COSMO).
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The dual SOS relaxation

The dual SDP of the moment relaxation of order r is the following SOS
relaxation of order r :

(Qr )∗ :

θ∗r := sup λ
s.t. f − λ = σ0 +

∑m
j=1 σjgj ,

σ0, σ1, . . . , σm are SOS polynomials,
deg(σ0) ≤ 2r , deg(σjgj) ≤ 2r , j = 1, . . . ,m.
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The moment-SOS hierarchy

f ∗

≤ ≤
...

...

≤ ≤

(the moment relaxation) θr “ = ” θ∗r (the SOS relaxation)

≤ ≤

...
...

≤ ≤
θr “ = ” θ∗r

r := max{deg(f )/2, d1, . . . , dm}
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Asymptotical convergence and finite convergence

Under Archimedean’s condition: there exists N > 0 s.t. N − ||x||2 ∈ Qg,
we have

θr ↑ f ∗ and θ∗r ↑ f ∗ as r →∞ (Lassere, 2001);

Finite convergence happens generically (Nie, 2014);

We can verify global optimality by the so-called rank condition (flat
extension/truncation);

We can easily extract minimizers when the rank condition is satisfied.

In practice for most POPs, the moment-SOS hierarchy retrieves f ∗ in a
few steps.

Key Message: The moment-SOS hierarchy allows us to
approximate/retrieve the global optimum/optimizers via solving a
sequence of SDPs with increasing sizes.
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Scalability issue

The size of SDP (considering the SOS problem) at relaxation order r :

maximal size of SDP matrices:
(n+r

r

)
number of equality constraints:

(n+2r
2r

)
In view of the current state of SDP solvers (e.g. MOSEK), solvable
problems are limited to n ≤ 30 when r = 2 on a standard laptop.

Exploiting structure:

quotient ring

symmetry

sparsity
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Correlative sparsity (Waki et al., 2006)

The basic idea is to partition the variables into cliques according to the
correlations between variables.

Correlative sparsity pattern (csp) graph G csp(V ,E ):
V := {x1, . . . , xn}
{xi , xj} ∈ E ⇐⇒ xi , xj appear in the same term of f or appear in the same
constraint polynomial gk

We then construct moment/localizing matrices with respect to the
variables involved in each maximal clique of the csp graph:

Ik 7−→ Mr (y, Ik),Mr−dj (gjy, Ik)
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Correlative sparsity

Example

Consider f = x41 + x1x
2
2 + x2x3 + x23x

2
4 and g1 = 1− x21 − x22 − x23 ,

g2 = 1− x3x4.

Figure: The csp graph for f and {g1, g2}

x1

x2

x3 x4

There are two maximal cliques: {x1, x2, x3} and {x3, x4}.
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The correlative sparsity adapted moment-SOS hierarchy

If the csp graph is chordal (otherwise we need a chordal extension),
then the correlative sparsity adapted moment-SOS hierarchy shares
the same convergence as the standard one;

We can still verify global optimality by the (adapted) rank condition;

We can still extract global minimizers if certain rank conditions are
satisfied;

Significantly improve scalability if the sizes of maximal cliques of the
csp graph are small (e.g. ≤ 10).
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Term sparsity

In contrast with correlative sparsity concerning variables, term sparsity
treats sparsity at the term/monomial level.

Vr (x) := {1, x1, . . . , xn, x r1 , . . . , x rn} the monomial basis of degree ≤ r .

Term sparsity pattern (tsp) graph G tsp(V ,E ) (with relaxation order r):
V := Vr (x)
{xα, xβ} ∈ E ⇐⇒ xα · xβ = xα+β ∈ supp(f ) ∪

⋃m
j=1 supp(gj) ∪ Vr (x)2

(For f =
∑

α fαxα ∈ R[x], supp(f ) := {xα | fα 6= 0})
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Term sparsity

Example

Consider f = x41 + x1x
2
2 + x2x3 + x23x

2
4 and g1 = 1− x21 − x22 − x23 ,

g2 = 1− x3x4.

Figure: The tsp graph for f and {g1, g2} with r = 2

1

x21

x22

x23

x24

x1

x2x3x4 x1x2

x1x3 x1x4

x2x3

x2x4

x3x4
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Term sparsity

Suppose (G tsp)′ is a chordal extension of G tsp with maximal cliques:
C1, . . . ,Ct ,

Ci 7−→ MCi
(y), i = 1, . . . , t.

In the moment relaxation,

Mr (y) � 0 −→ MCi
(y) � 0, i = 1, . . . , t.

Similarly for the localizing matrices Mr−dj (y), j = 1, . . . ,m.
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Extending to an iterative procedure

By iteratively performing support extension and chordal extension:

G (1) := (G tsp)′ ⊆ · · · ⊆ G (s) ⊆ G (s+1) ⊆ · · ·

Figure: Support extension (xβ
′
xγ

′
= xβxγ and {xβ, xγ} ∈ E ⇒ {xβ′

, xγ
′} ∈ E )

1 x1 x2 x3

x2x3 x1x3 x1x2
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The term sparsity adapted moment-SOHS hierarchy

Let C
(s)
j ,1 , . . . ,C

(s)
j ,tj,s

be the maximal cliques of G
(s)
j . For each s ≥ 1, let us

consider

(Qs
r ) :

θ
(s)
r := inf Ly(f )

s.t. M
C

(s)
0,i

(y) � 0, i = 1, . . . , t0,s ,

M
C

(s)
j,i

(gjy) � 0, i = 1, . . . , tj ,s , j = 1, . . . ,m,

y0 = 1.

We call {(Qs
r )}r ,s the TSSOS hierarchy and s the sparse order.
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A two-level hierarchy of lower bounds

Consequently, we obtain a two-level hierarchy of lower bounds for f ∗:
(r := max{deg(f )/2, d1, . . . , dm})

θ
(1)
r ≤ θ

(2)
r ≤ · · · ≤ θr

≥ ≥ ≥

θ
(1)
r+1 ≤ θ

(2)
r+1 ≤ · · · ≤ θr+1

≥ ≥ ≥

...
...

...
...

≥ ≥ ≥

θ
(1)
r ≤ θ

(2)
r ≤ · · · ≤ θr

≥ ≥ ≥

...
...

...
...
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Different choices of chordal extensions

• chordal extension
B maximal chordal extension
B (approximately) smallest chordal extension

Figure: smallest versus maximal chordal extension

2 4 6

1 3 5
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The TSSOS hierarchy

Regarding the TSSOS hierarchy, we have

For QCQP, θ
(1)
1 = θshor;

Fixing a sparse order s, the sequence (θ
(s)
r )r≥r is monotonically

nondecreasing;

Fixing a relaxation order r , the sequence (θ
(s)
r )s≥1 is monotonically

nondecreasing and converges to θr in finitely many steps if the
maximal chordal extension is used for the chordal extension operation.
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Combining correlative sparsity with term sparsity

The combination of correlative sparsity with term sparsity splits into two
steps:

1 Partitioning the variables with respect to the maximal cliques of the
csp graph;

2 For each subsystem involving variables from one maximal clique,
applying the above iterative procedure to exploit term sparsity.

In doing so, we again obtain a two-level hierarchy of lower bounds for f ∗,
which is called the CS-TSSOS hierarchy.
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Software

The sparsity-adapted hierarchies have been implemented in the Julia
package TSSOS (freely available on GitHub):

https://github.com/wangjie212/TSSOS
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Randomly generated polynomials of the SOS form

TSSOS, GloptiPoly, Yalmip: MOSEK SparsePOP: SDPT3

Table: Running time (in seconds) comparison with GloptiPoly, Yalmip and
SparsePOP for minimizing randomly generated sparse polynomials of the SOS
form with the same optimum; the symbol “-” indicates out of memory

n 2d TSSOS GloptiPoly Yalmip SparsePOP

8 8 0.24 306 10 24
8 8 0.34 348 13 130
8 8 0.36 326 19 175
8 10 0.58 - 92 323
8 10 0.53 - 72 1526
8 10 0.38 - 22 134
9 10 0.50 - 44 324
9 10 0.72 - 143 -
9 10 0.79 - 109 284
10 12 2.2 - 474 -
10 12 1.6 - 147 318
10 12 1.8 - 350 404
10 16 15 - - -
10 16 14 - - -
10 16 12 - - -
12 12 8.4 - - -
12 12 5.7 - - -
12 12 7.4 - - -
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Randomly generated polynomials with simplex Newton
polytopes

Table: Running time (in seconds) comparison with GloptiPoly, Yalmip and
SparsePOP for minimizing randomly generated sparse polynomials with simplex
Newton polytopes with the same optimum; the symbol “-” indicates out of
memory

n 2d TSSOS GloptiPoly Yalmip SparsePOP

8 8 0.36 346 31 271
8 8 0.51 447 24 496
8 8 0.31 257 6.0 178
9 8 1.0 - - -
9 8 0.63 - 363 611
9 8 0.76 - 141 578
9 10 6.6 - 322 -
9 10 5.0 - 233 -
9 10 4.9 - 249 -
10 8 1.2 - - -
10 8 8.0 - 536 -
10 8 1.0 - - -
11 8 1.7 - 655 398
11 8 1.8 - - 221
11 8 1.9 - 340 293
12 8 10 - - -
12 8 7.4 - - -
12 8 2.9 - - -
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The AC optimal power flow problem

Table: The results for AC-OPF instances; mb: the maximal size of blocks, gap:
the optimality gap with respect to a local optimal solution, -: out of memory

n m+m’
CS (r = 2) CS+TS (r = 2, s = 1)

mb opt time (s) gap mb opt time (s) gap
12 28 28 1.1242e4 0.21 0.00% 22 1.1242e4 0.09 0.00%
20 55 28 1.7543e4 0.56 0.05% 22 1.7543e4 0.30 0.05%
114 315 66 1.3442e5 5.59 0.39% 31 1.3396e5 2.01 0.73%
114 315 120 7.6943e4 94.9 0.00% 39 7.6942e4 14.8 0.00%
72 297 45 4.9927e3 4.43 0.07% 22 4.9920e3 2.69 0.08%
344 971 153 4.2246e5 758 0.06% 44 4.2072e5 96.0 0.48%
344 971 153 2.2775e5 504 0.00% 44 2.2766e5 71.5 0.04%
344 1325 253 − − − 31 2.4180e5 82.7 0.11%
344 1325 253 − − − 73 1.0470e5 169 0.50%
348 1809 253 − − − 34 1.0802e5 278 0.05%
348 1809 253 − − − 34 1.2096e5 201 0.03%
766 3322 153 3.3072e6 585 0.68% 44 3.3042e6 33.9 0.77%
1112 4613 231 4.2413e4 3114 0.85% 39 4.2408e4 46.6 0.86%
1112 4613 496 − − − 31 7.2396e4 410 0.25%
4356 18257 378 − − − 27 1.3953e6 934 0.51%
6698 29283 1326 − − − 76 5.9858e5 1886 0.47%
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Conclusion and outlook

The concept of term sparsity patterns opens a new window to exploit
sparsity at the term level for polynomial optimization;

When appropriate sparsity patterns are accessible, we can significantly
improve the scalability of the moment-SOS hierarchy;

Extensions to other situations also relying on the moment-SOS
hierarchy, e.g., complex polynomial optimization, noncommutative
polynomial optimization;

Fruitful potential applications: optimal power flow, computer vision,
neural networks, quantum information, control and so on.

Jie Wang (AMSS-CAS) Sparsity in Large-Scale POPs 21/7/2021 28 / 30



Main references

Jie Wang, Victor Magron and Jean B. Lasserre, TSSOS: A Moment-SOS
hierarchy that exploits term sparsity, SIAM Optimization, 2021.

Jie Wang, Victor Magron and Jean B. Lasserre, Chordal-TSSOS: a moment-SOS
hierarchy that exploits term sparsity with chordal extension, SIAM Optimization,
2021.

Jie Wang, Victor Magron, Jean B. Lasserre and Ngoc H. A. Mai, CS-TSSOS:
Correlative and term sparsity for large-scale polynomial optimization,
arXiv:2005.02828, 2020.

Jie Wang and Victor Magron, Exploiting Term Sparsity in Noncommutative
Polynomial Optimization, Computational Optimization and Applications, 2021.

Jie Wang, Martina Maggio and Victor Magron, SparseJSR: A Fast Algorithm to
Compute Joint Spectral Radius via Sparse SOS Decompositions, American Control
Conference, 2021.

TSSOS: https://github.com/wangjie212/TSSOS

Jie Wang (AMSS-CAS) Sparsity in Large-Scale POPs 21/7/2021 29 / 30



Thanks for your attention!
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