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Polynomial optimization problem

We consider the polynomial optimization problem (POP):

f*:= inf f
(Q) : st. g>0, j=1,....m,
(hi=0, i=1,...,m))

where f, gi (, hj) € R[x] :=R[xq,..., x|

In general, the problem (Q) is non-convex, NP-hard.
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Diverse applications

Combinatorial optimization (e.g. the Max-Cut problem)
Signal processing

Tensor decomposition

Optimal power flow

Computer vision

Neural networks

Quantum information
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What do we care about?

Compute the global optimal value
Certify global optimality

Extract global optimal solutions

Approximate the global optimal value if the exact computation is
impossible/unnecessary /expensive
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What do we care about?

Compute the global optimal value
Certify global optimality

Extract global optimal solutions

Approximate the global optimal value if the exact computation is
impossible/unnecessary /expensive

The moment-SOS hierarchy (also known as Lasserre’s hierarchy) is a
well-established tool to handle POPs and is able to answer all these
questions.
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Moment matrix and localizing matrix

For re N, let N7 := {8 =(8;) e N" | >7_; Bi < r} arranged w.r.t. the
lexicographic order.

> The moment matrix M,(y) of order r is defined by

IM(Y)lgy == ¥8+~, VB, €N].

> Given g = >, 8ax® € R[x], the localizing matrix M,(gy) of order r is
defined by

[Mr(gY)]B'y = Zga}/aJrBJr‘y: VB,v € N?'
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The moment relaxation

By truncating the order of moments, for each r (called the relaxation
order), we obtain the moment relaxation of order r:

0, .= inf Ly(f)
s.t. M (y) =0,
I\/I,_dj(gjy) =0, j=1,...,m,
yo = 1.

(Q):

Here, d; = [deg(g;)/2].

This is a semidefinite programming (SDP) problem, effectively solved by
interior-point solvers (e.g. MOSEK) or first-order solvers (e.g. COSMO).
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The dual SOS relaxation

The dual SDP of the moment relaxation of order r is the following SOS
relaxation of order r:

07 = sup A
(Q )* s.t. f—)\:Uo—i—Zjn;lO‘jgj,
r 00,01, ---,0m are SOS polynomials,

deg(oo) < 2r,deg(ojgj) <2r,j=1,...,m.

Q
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The moment-SOS hierarchy
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Asymptotical convergence and finite convergence

Under Archimedean’s condition: there exists N > 0 s.t. N — ||x||2 € Qp,
we have

@ 0,1 f*and 0} 1 f* as r — oo (Lassere, 2001);
e Finite convergence happens generically (Nie, 2014);

@ We can verify global optimality by the so-called rank condition (flat
extension /truncation);

@ We can easily extract minimizers when the rank condition is satisfied.

In practice for most POPs, the moment-SOS hierarchy retrieves f* in a
few steps.

Jie Wang (AMSS-CAS) Sparsity in Large-Scale POPs



Asymptotical convergence and finite convergence

Under Archimedean’s condition: there exists N > 0 s.t. N — ||x||2 € Qp,
we have

@ 0,1 f*and 0} 1 f* as r — oo (Lassere, 2001);
e Finite convergence happens generically (Nie, 2014);

@ We can verify global optimality by the so-called rank condition (flat
extension /truncation);

@ We can easily extract minimizers when the rank condition is satisfied.

In practice for most POPs, the moment-SOS hierarchy retrieves f* in a
few steps.

Key Message: The moment-SOS hierarchy allows us to
approximate/retrieve the global optimum /optimizers via solving a
sequence of SDPs with increasing sizes.
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Scalability issue

The size of SDP (considering the SOS problem) at relaxation order r:
e maximal size of SDP matrices: ("7")

@ number of equality constraints: ("erfr)

In view of the current state of SDP solvers (e.g. MOSEK), solvable
problems are limited to n < 30 when r = 2 on a standard laptop.
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Scalability issue

The size of SDP (considering the SOS problem) at relaxation order r:

e maximal size of SDP matrices: ("7")
. . . (n+2r
e number of equality constraints: (")
In view of the current state of SDP solvers (e.g. MOSEK), solvable
problems are limited to n < 30 when r = 2 on a standard laptop.

Exploiting structure:
@ quotient ring
@ symmetry

@ sparsity
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Correlative sparsity (Waki et al., 2006)

The basic idea is to partition the variables into cliques according to the
correlations between variables.

Correlative sparsity pattern (csp) graph G*P(V, E):

Vi={xy,...,xn}

{xi,xj} € E <= x;, x; appear in the same term of f or appear in the same
constraint polynomial gx
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Correlative sparsity (Waki et al., 2006)

The basic idea is to partition the variables into cliques according to the
correlations between variables.

Correlative sparsity pattern (csp) graph G*P(V, E):

Vi={xy,...,xn}

{xi,xj} € E <= x;, x; appear in the same term of f or appear in the same
constraint polynomial gx

We then construct moment/localizing matrices with respect to the
variables involved in each maximal clique of the csp graph:

Ie — My, k), Mr—q.(8jy, k)
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Correlative sparsity

Example

Consider f = x{ + x1x3 + xox3 + x3x2 and g1 = 1 — x2 — x5 — x2,

& =1—x3x4.

Figure: The csp graph for f and {g1, 2}

:’@ ()

There are two maximal cliques: {x1,x2,x3} and {x3,xa}.

Jie Wang (AMSS-CAS) Sparsity in Large-Scale POPs 21/7/2021 13 /30



The correlative sparsity adapted moment-SOS hierarchy

o If the csp graph is chordal (otherwise we need a chordal extension),
then the correlative sparsity adapted moment-SOS hierarchy shares
the same convergence as the standard one;

@ We can still verify global optimality by the (adapted) rank condition;

@ We can still extract global minimizers if certain rank conditions are
satisfied;

@ Significantly improve scalability if the sizes of maximal cliques of the
csp graph are small (e.g. < 10).
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In contrast with correlative sparsity concerning variables, term sparsity
treats sparsity at the term/monomial level.
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In contrast with correlative sparsity concerning variables, term sparsity
treats sparsity at the term/monomial level.

Vi(x) :={1,x1,...,%n, X{, ..., x}} the monomial basis of degree < r.
Term sparsity pattern (tsp) graph G®P(V, E) (with relaxation order r):
V = V,(x)

{x*,xP} € E «= x* - xP = x**B ¢ supp(f) U U2, supp(gj) U V,(x)?

(For f =", fax® € R[x], supp(f) := {x* | £ # 0})
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Term sparsity

Consider f = xf + x1x22 + xox3 + x32xf and gg =1 — X12 —x2 - x32,

g =1—x3x4.

Figure: The tsp graph for f and {g1, 8} with r =2

Jie Wang (AMSS-CAS) Sparsity in Large-Scale POPs 21/7/2021 16 /30



Suppose (G™P) is a chordal extension of G*™P with maximal cliques:
C.]_7 ey Ctr
C,-r—>MC,.(y), i=1,...,t.
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Suppose (G™P) is a chordal extension of G*™P with maximal cliques:

C]_,...,Ct,
i=1,...t

Ci — MC,—(Y)7

In the moment relaxation,
M(y) =0 — Mc(y) =0, i=1,... ¢t
Similarly for the localizing matrices M, 4.(y),j =1,...,m.
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Extending to an iterative procedure

By iteratively performing support extension and chordal extension:

G .= (") C...c G c gt ...

Figure: Support extension (x%'x7" = x®xY and {xB X'} e E= {xﬁ X"} € E)
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The term sparsity adapted moment-SOHS hierarchy

Let Cj(’sl), ey Cj(stj)S be the maximal cliques of Gj(s). For each s > 1, let us
consider ’
0 = inf Ly(f) |
Q) s.t. MCS,S,-)(Y) b i=1,...,ts,

0,
Mcgs')(gjy)to, I':].,...,tj"s,_j':l,...,m,
sl
» =1

We call {(Q3)}rs the TSSOS hierarchy and s the sparse order.
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A two-level hierarchy of lower bounds

Consequently, we obtain a two-level hierarchy of lower bounds for f*:
(r := max{deg(f)/2,d1,...,dm})

o) < 0P < < g,
Al Al Al
0 < 00 < v < fem
Al Al Al
A Al | Al
o< 0P < o< g,
Al A Al

Jie Wang (AMSS-CAS) Sparsity in Large-Scale POPs 21/7/2021 20/30



choices of chordal extensions

e chordal extension
> maximal chordal extension
> (approximately) smallest chordal extension

Figure: smallest versus maximal chordal extension
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The TSSOS hierarchy

Regarding the TSSOS hierarchy, we have
o For QCQP, V) = Oy

e Fixing a sparse order s, the sequence (9$s)),2£ is monotonically
nondecreasing;

o Fixing a relaxation order r, the sequence («9£S))521 is monotonically

nondecreasing and converges to 6, in finitely many steps if the
maximal chordal extension is used for the chordal extension operation.
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Combining correlative sparsity with term sparsity

The combination of correlative sparsity with term sparsity splits into two
steps:

@ Partitioning the variables with respect to the maximal cliques of the
csp graph;

@ For each subsystem involving variables from one maximal clique,
applying the above iterative procedure to exploit term sparsity.

In doing so, we again obtain a two-level hierarchy of lower bounds for f*,
which is called the CS-TSSOS hierarchy.
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The sparsity-adapted hierarchies have been implemented in the Julia
package TSSOS (freely available on GitHub):

https://github.com/wangjie212/TSSOS
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Randomly generated polynomials of the SOS form

TSS0S, GloptiPoly, Yalmip: MOSEK  SparsePOP: SDPT3

Table: Running time (in seconds) comparison with GloptiPoly, Yalmip and
SparsePQP for minimizing randomly generated sparse polynomials of the SOS

form with the same optimum; the symbol “-" indicates out of memory
n 2d TSS0S GloptiPoly Yalmip SparsePOP
8 8 0.24 306 10 24
8 8 0.34 348 13 130
8 8 0.36 326 19 175
8 10 0.58 - 92 323
8 10 0.53 - 72 1526
8 10 0.38 - 22 134
9 10 0.50 - 44 324
9 10 0.72 - 143 -
9 10 0.79 - 109 284
10 12 2.2 - 474 -
10 12 1.6 - 147 318
10 12 1.8 - 350 404
10 16 15 - -
10 16 14
10 16 12 -
12 12 8.4 -
12 12 5.7 -
12 12 7.4
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Randomly generated polynomials with simplex Newton

polytopes

Table: Running time (in seconds) comparison with GloptiPoly, Yalmip and
SparseP0P for minimizing randomly generated sparse polynomials with simplex

Newton polytopes with the same optimum; the symbol “-" indicates out of
memory

n 2d TSS0S GloptiPoly Yalmip SparsePOP
8 8 0.36 346 31 271
8 8 0.51 447 24 496
8 | 8 | 031 257 6.0 178
9 8 1.0 - - -
9 | 8 | 063 - 363 611
9 | 8 | 076 - 141 578
9 10 6.6 - 322 -
9 10 5.0 - 233 -
9 [ 10 | 49 - 249 -
10 8 1.2 - - -
10 8 8.0 - 536 -
10 8 1.0 - - -
11 8 1.7 - 655 398
11 8 1.8 - - 221
11 8 1.9 - 340 293
12 8 10 - - -
12 8 7.4 - - -
12 8 2.9 - - -
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The AC optimal power flow problem

Table: The results for AC-OPF instances; mb: the maximal size of blocks, gap:
the optimality gap with respect to a local optimal solution, -: out of memory

CS (r=2) CS+TS (r=2,5=1)

n m+m mb opt time (s) gap mb opt time (s) gap
12 28 28 1.1242e4 0.21 0.00% 22 1.1242e4 0.09 0.00%
20 55 28 1.7543e4 0.56 0.05% 22 1.7543e4 0.30 0.05%
114 315 66 1.3442¢5 5.59 0.39% 31 1.3396e5 2.01 0.73%
114 315 120 7.6943e4 94.9 0.00% 39 7.6942e4 14.8 0.00%
72 297 45 4.9927e3 4.43 0.07% 22 4.9920e3 2.69 0.08%
344 971 153 4.2246e5 758 0.06% 44 4.2072e5 96.0 0.48%
344 971 153 2.2775e5 504 0.00% 44 2.2766e5 71.5 0.04%
344 1325 253 — — — 31 2.4180e5 82.7 0.11%
344 1325 253 — — — 73 1.0470e5 169 0.50%
348 1809 253 — — — 34 1.0802e5 278 0.05%
348 1809 253 — — — 34 1.2096e5 201 0.03%
766 3322 153 3.3072e6 585 0.68% 44 3.3042¢6 33.9 0.77%
1112 4613 231 4.2413e4 3114 0.85% 39 4.2408e4 46.6 0.86%
1112 4613 496 - - - 31 7.2396e4 410 0.25%

4356 18257 378 — — — 27 1.3953e6 934 0.51%
6698 29283 1326 — — — 76 5.9858e5 1886 0.47%
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Conclusion and outlook

@ The concept of term sparsity patterns opens a new window to exploit
sparsity at the term level for polynomial optimization;

@ When appropriate sparsity patterns are accessible, we can significantly
improve the scalability of the moment-SOS hierarchy;

@ Extensions to other situations also relying on the moment-SOS
hierarchy, e.g., complex polynomial optimization, noncommutative
polynomial optimization;

o Fruitful potential applications: optimal power flow, computer vision,
neural networks, quantum information, control and so on.
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Thanks for your attention!
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