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Joint spectral radius

Given A = {A1, . . . ,Am} ⊆ Rn×n, the joint spectral radius (JSR) of A is
defined by

ρ(A) := lim
k→∞

max
σ∈{1,...,m}k

||Aσ1Aσ2 · · ·Aσk ||
1
k .

Applications:

stability of switched linear dynamical systems

continuity of wavelet functions

combinatorics and language theory

capacity of some codes

trackability of graphs
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Bounding JSR from below and from above

B NP-hard to compute/approximate

A lot of algorithms aiming to compute lower/upper bounds for JSR:

Gripenberg’s algorithm; (lower bound)

Balanced polytope method; (upper bound)

Lifted polytope method; (upper bound)

The ellipsoid method; (upper bound)

SOS programming; (upper bound)

Typically, it is more difficult to give a good upper bound than to give a
good lower bound.
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Positive forms and JSR

Theorem (Parrilo and Jadbabaie, 2008)

Given a set of matrices A = {A1, . . . ,Am} ⊆ Rn×n, let p be a strictly
positive form of degree 2d that satisfies

p(Aix) ≤ γ2dp(x), ∀x ∈ Rn, i = 1, . . . ,m.

Then, ρ(A) ≤ γ.

Form: homogeneous polynomial
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A SOS program for approximating JSR

• SOS forms (Σn,2d): f =
∑t

i=1 f
2
i ∈ R[x]2d

Inspired by the previous theorem and replacing positive forms by more
tractable SOS forms, consider the SOS program (for every d ≥ 1):

ρSOS,2d(A) := inf
p∈R[x]2d ,γ

γ

s.t.

{
p(x)− ||x||2d2 ∈ Σn,2d ,

γ2dp(x)− p(Aix) ∈ Σn,2d , i = 1, . . . ,m.

This can be solved via semidefinite programming (SDP) by bisection on γ.

Theorem (Parrilo and Jadbabaie, 2008)

Let A = {A1, . . . ,Am} ⊆ Rn×n. For any integer d ≥ 1, it holds

m−
1
2d ρSOS,2d(A) ≤ ρ(A) ≤ ρSOS,2d(A).
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Scalability issue

The size of SDP at relaxation order d :

number of PSD matrices: m + 1

size of PSD matrices:
(n−1+d

d

)
In view of the current state of SDP solvers, the problem size is quite
limited.

Motivation: Can we exploit the sparsity in A1, . . . ,Am to improve the
scalability of the SOS approach for computing JSR?
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Checking SOS via SDP

• standard monomial basis Vd(x) = [xd1 , . . . , x
d
n ]: all monomials of degree

d
• f ∈ Σn,2d ⇐⇒ ∃Q � 0 (Gram matrix) such that f = Vd(x)QVd(x)T

 SDP

When f is sparse:
B Generate a smaller monomial basis B ⊆ Vd(x)
B Exploit the block structure of Q
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Generating a smaller monomial basis

• The monomial basis given by the Newton polytope:

B = {xβ | β ∈ 1

2
New(f ) ∩ Nn}

• Alternatively, we may use a heuristic method which might generate a
smaller monomial basis:

B = {xβ ∈ Vd(x) | ∃xγ ∈ Vd(x) s.t. xβ · xγ ∈ supp(f )}

(For f =
∑

α fαxα ∈ R[x], supp(f ) := {xα | fα 6= 0})

Jie Wang (LAAS-CNRS) Sparsity in Computing JSR ACC 2021 9 / 23



Generating a smaller monomial basis

• The monomial basis given by the Newton polytope:

B = {xβ | β ∈ 1

2
New(f ) ∩ Nn}

• Alternatively, we may use a heuristic method which might generate a
smaller monomial basis:

B = {xβ ∈ Vd(x) | ∃xγ ∈ Vd(x) s.t. xβ · xγ ∈ supp(f )}

(For f =
∑

α fαxα ∈ R[x], supp(f ) := {xα | fα 6= 0})

Jie Wang (LAAS-CNRS) Sparsity in Computing JSR ACC 2021 9 / 23



Generating a smaller monomial basis

Example

Let f = 1 + x4 + y4 + x2y2.

(0, 0) (4, 0)

(0, 4)

(0, 2)

(2, 0)(1, 0)

(0, 1)
(1, 1)
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Chordal graphs

• SG : the set of symmetric matrices with sparsity pattern represented by
the graph G
• chordal graph: any cycle of length at least four has a chord
• chordal extension: a chordal graph G (V ,E ) containing G (V ,E ) as a
subgraph
B approximately smallest chordal extension (aiming to minimize the

clique number)
B maximal chordal extension (completing each connected component)
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Decompositions of PSD matrices

Given a maximal clique C of G (V ,E ), define PC ∈ R|C |×|V | as

[PC ]ij =

{
1, if C (i) = j ,

0, otherwise,

where C (i) denotes the i-th node in C , sorted in the ordering compatible
with V .

Theorem (Agler, 1988)

Let G (V ,E ) be a chordal graph and assume that C1, . . . ,Ct are the list of

maximal cliques of G (V ,E ). Then a matrix Q ∈ S
|V |
+ ∩ SG if and only if

there exists Qk ∈ S
|Ck |
+ for k = 1, . . . , t such that Q =

∑t
k=1 P

T
Ck
QkPCk

.
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Decompositions of PSD matrices

Example1 1 0
1 2 1
0 1 1

 (� 0) =

1 1 0
1 1 0
0 0 0

 (� 0) +

0 0 0
0 1 1
0 1 1

 (� 0).

Jie Wang (LAAS-CNRS) Sparsity in Computing JSR ACC 2021 13 / 23



Term sparsity pattern

Term sparsity pattern graph G (V ,E )
B V := B (the monomial basis)
B {xα, xβ} ∈ E ⇐⇒ xα · xβ = xα+β ∈ supp(f )

Example

Let f = x41 + x42 + x43 + x21x
2
2 + x21x

2
3 + x1x2x

2
3 + x1x

2
2x3.

Figure: The term sparsity pattern graph of f and a chordal extension

x21

x23

x1x2

x2x3

x1x3

x22
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Sparse SOS decompositions

• ΣA := {f ∈ R[A ] | ∃Q ∈ S
|B|
+ ∩ SG s.t. f = BQBT}

Theorem (Wang, Li and Xia, 2019; Wang, Magron and Lasserre, 2021)

Given A ⊆ V2d(x), assume that B is a monomial basis and G is the term
sparsity pattern graph. Let B1, . . . ,Bt ⊆ V be the list of maximal cliques
of G (a chordal extension of G ). Then, f ∈ ΣA if and only if there exists

fk = BkQkB
T
k with Qk ∈ S

|Bk |
+ for k = 1, . . . , t such that f =

∑t
k=1 fk .

Key Message: By the above theorem, checking membership in ΣA boils
down to solving an SDP involving PSD matrices of small sizes if each
maximal clique of G has a small size relative to the original matrix.
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Generating a hierarchy of sparse supports

In order to invoke sparse SOS decompositions, we need to construct a
sparse support for p in coordination with the sparsity of A.

Fixing d ≥ 1, let p0(x) =
∑n

j=1 cjx
2d
j with generic coefficients and let

A (0) = supp(p0). Then for s ∈ N\{0}, we iteratively define

A (s) := A (s−1) ∪
m⋃
i=1

supp(ps−1(Aix)),

where ps−1(x) =
∑

xα∈A (s−1) cαxα with generic coefficients. Then,

A (1) ⊆ · · · ⊆ A (s) ⊆ A (s+1) ⊆ · · · ⊆ V2d(x)
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A hierarchy of sparse SOS programs for computing JSR

Fixing d ≥ 1, we can now consider the following hierarchy of sparse SOS
programs indexed by s ≥ 1 (which is called the sparse order):

ρs,2d(A) := inf
p∈R[A (s)],γ

γ

s.t.

{
p(x)− ||x||2d2 ∈ ΣA (s) ,

γ2dp(x)− p(Aix) ∈ Σ
A

(s)
i

, i = 1, . . . ,m,

where A
(s)
i = A (s) ∪ supp(ps(Aix).

Theorem (Wang, Maggio and Magron, 2021)

Let A = {A1, . . . ,Am} ⊆ Rn×n. For any integer d ≥ 1, it holds
ρSOS,2d(A) ≤ · · · ≤ ρs,2d(A) ≤ · · · ≤ ρ2,2d(A) ≤ ρ1,2d(A).
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The SparseJSR software

The sparse approach has been implemented in the Julia package
SparseJSR.
B ChordalGraph: generate approximately smallest chordal extensions
B JuMP: construct SDP
B MOSEK: solve SDP

Settings for numerical experiments
- Sparse order: s = 1
- Tolerance for bisection: ε = 1× 10−5

- Initial interval for bisection: [0, 2]
- Lower bound (lb): Gripenberg’s algorithm
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Randomly generated examples

Here test matrices are randomly generated with sparsity pattern
represented by a directed graph with n nodes and n + 10 edges.

Table: Randomly generated examples with d = 1 and m = 2, ub: upper bound,
mb: maximal size of SDP blocks, -: running time > 3600s

Sparse (d = 1) Dense (d = 1)
n lb

time (s) ub mb time (s) ub mb
30 0.8502 1.65 0.8666 10 7.79 0.8523 30
40 0.9446 2.68 0.9446 14 25.6 0.9446 40
50 0.8838 2.97 0.9102 14 55.9 0.8838 50
60 0.7612 3.64 0.7843 13 171 0.7612 60
70 0.9629 4.35 0.9629 11 308 0.9629 70
80 0.9345 5.95 0.9399 15 743 0.9345 80
90 0.8020 6.27 0.8465 14 1282 0.8020 90
100 0.8642 8.15 0.9132 13 2568 0.8659 100
110 0.8355 9.59 0.8839 15 - - -
120 0.7483 11.7 0.7735 16 - - -
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Examples from control systems (I)

Here test matrices are taken from certain switched linear dynamical
systems related to deadline misses.

Table: Examples from control systems with d = 1 and m = 5, ub: upper bound,
mb: maximal size of SDP blocks, -: running time > 3600s, ∗: out of memory

Sparse (d = 1) Dense (d = 1)
n lb

time (s) ub mb time (s) ub mb
20 0.8142 1.62 0.8142 12 9.08 0.8142 20
30 1.0924 4.42 1.0961 14 65.4 1.0961 30
40 0.9772 9.69 0.9804 16 259 0.9804 30
50 1.1884 17.5 1.1884 18 680 1.1884 50
60 1.3259 30.7 1.3259 20 1776 1.3259 60
70 1.2727 53.9 1.2727 22 - - -
80 1.4262 85.6 1.4262 24 - - -
90 1.4452 132 1.4452 26 - - -
100 1.5267 195 1.5267 28 ∗ ∗ ∗
110 1.5753 287 1.5753 30 ∗ ∗ ∗
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Examples from control systems (II)

Here test matrices are taken from certain switched linear dynamical
systems related to deadline misses.

Table: Examples from control systems with d = 2, ub: upper bound, mb:
maximal size of SDP blocks, -: running time > 3600s, ∗: out of memory

Sparse (d = 2) Dense (d = 2)
m n lb ub

time (s) ub time (s) ub mb
2 6 0.9464 0.9782 0.42 0.9547 1.87 0.9539 21
3 8 0.7218 0.7467 0.60 0.7310 13.4 0.7305 36
4 10 0.7458 0.7738 0.75 0.7564 107 0.7554 55
5 12 0.8601 0.8937 1.08 0.8706 1157 0.8699 78
6 14 0.7875 0.8107 1.32 0.7958 - - -
7 16 1.1110 1.1531 1.81 1.1182 ∗ ∗ ∗
8 18 1.0487 1.0881 2.05 1.0569 ∗ ∗ ∗
9 20 0.7570 0.7808 2.52 0.7660 ∗ ∗ ∗
10 22 0.9911 1.0315 2.70 1.0002 ∗ ∗ ∗
11 24 0.7339 0.7530 3.67 0.7418 ∗ ∗ ∗
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Thanks for your attention!
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