TSSOS: a Julia Library to Exploit Sparsity for Large-Scale Polynomial Optimization

Jie Wang (LAAS-CNRS) Joint work with Victor Magron

7-11 June, MEGA 2021

Polynomial optimization and the moment-SOS hierarchy

- 2 Exploiting sparsity in the moment-SOS hierarchy
- 3 The usage of TSSOS
- 4 Numerical experiments

TSSOS aims to solve the polynomial optimization problem (POP):

(Q):

$$f^* := \inf f$$

s.t. $g_j \ge 0, \quad j = 1, ..., m,$
 $g_j = 0, \quad j = m+1, ..., m+l,$

where $f, g_j \in \mathbb{R}[x] := \mathbb{R}[x_1, \dots, x_n]$.

In general, the problem (Q) is non-convex, NP-hard.

- Compute the global optimal value
- Certify global optimality
- Extract global optimal solutions
- Approximate/bound the global optimal value if the exact computation is impossible/unnecessary/expensive

- Compute the global optimal value
- Certify global optimality
- Extract global optimal solutions
- Approximate/bound the global optimal value if the exact computation is impossible/unnecessary/expensive

The moment-SOS hierarchy established by Lasserre has become a powerful tool to handle POPs and possesses nice theoretical properties.

The moment relaxation (with relaxation order d) for (Q):

$$\begin{array}{rcl} \theta_d := & \inf & L_y(f) \\ & & \text{s.t.} & M_d(y) \succeq 0, \\ Q_d) : & & M_{d-d_j}(g_j y) \succeq 0, \quad j = 1, \dots, m, \\ & & M_{d-d_j}(g_j y) = 0, \quad j = m+1, \dots, m+l, \\ & & y_0 = 1, \end{array}$$

where $d_j := \lceil \deg(g_j)/2 \rceil$.

This is a semidefinite programming (SDP) problem, solved by interior-point solvers (e.g. Mosek) or first-order solvers (e.g. COSMO).

For each d, the dual SDP of the moment relaxation is the following SOS relaxation:

$$(\mathbf{Q}_d)^*: \begin{array}{rll} \theta_d^* := & \sup & \lambda \\ & \text{s.t.} & f - \lambda = \sigma_0 + \sum_{j=1}^m \sigma_j g_j + \sum_{j=m+1}^{m+l} \tau_j g_j, \\ & \sigma_j \in \Sigma_{2(d-d_j)}[\mathbf{x}], \quad j = 0, 1, \dots, m, \\ & \tau_j \in \mathbb{R}_{2(d-d_j)}[\mathbf{x}], \quad j = m+1, \dots, m+l. \end{array}$$

$$\underline{d} := \max\{\deg(f)/2, d_1, \ldots, d_{m+l}\}$$

Under Archimedean's condition, the following hold:

- $\theta_d \uparrow f^*$ and $\theta_d^* \uparrow f^*$ as $d \to \infty$ (Lassere, 2001);
- Finite convergence happens generically (Nie, 2014);
- We can verify global optimality by the so-called rank condition (flat extension/truncation);
- We can easily extract minimizers when the rank condition is satisfied.

Under Archimedean's condition, the following hold:

- $\theta_d \uparrow f^*$ and $\theta_d^* \uparrow f^*$ as $d \to \infty$ (Lassere, 2001);
- Finite convergence happens generically (Nie, 2014);
- We can verify global optimality by the so-called rank condition (flat extension/truncation);
- We can easily extract minimizers when the rank condition is satisfied.

Key Message: The moment-SOS hierarchy enables us to approximate/retrieve the global optimum/optimizers via solving a sequence of SDPs with increasing sizes.

The size of SDP (considering $(Q_d)^*$) at relaxation order d:

- Maximal size of PSD blocks: $\binom{n+d}{d}$
- Number of equality constraints: $\binom{n+2d}{2d}$

In view of the current state of SDP solvers (e.g. Mosek), solvable problems are limited to $n \leq 30$ when d = 2 on a standard laptop.

Correlative sparsity (Waki et al., 2006)

Consider $f = x_1^4 + x_1x_2^2 + x_2x_3 + x_3^2x_4^2$ and $g_1 = 1 - x_1^2 - x_2^2 - x_3^2$, $g_2 = 1 - x_3x_4$.

Figure: The correlative sparsity pattern (csp) graph

Correlative sparsity (Waki et al., 2006)

Consider
$$f = x_1^4 + x_1x_2^2 + x_2x_3 + x_3^2x_4^2$$
 and $g_1 = 1 - x_1^2 - x_2^2 - x_3^2$, $g_2 = 1 - x_3x_4$.

Figure: The correlative sparsity pattern (csp) graph

We then construct moment/localizing matrices with respect to the variables involved in each maximal clique of the csp graph:

$$I_k \longmapsto M_d(y, I_k), M_{d-d_j}(g_j y, I_k)$$

Term sparsity

Consider $f = x_1^4 + x_1x_2^2 + x_2x_3 + x_3^2x_4^2$ and $g_1 = 1 - x_1^2 - x_2^2 - x_3^2$, $g_2 = 1 - x_3x_4$.

Figure: The term sparsity pattern (tsp) graph with d = 2

Term sparsity

Consider $f = x_1^4 + x_1x_2^2 + x_2x_3 + x_3^2x_4^2$ and $g_1 = 1 - x_1^2 - x_2^2 - x_3^2$, $g_2 = 1 - x_3x_4$.

Figure: The term sparsity pattern (tsp) graph with d = 2

For each moment/localizing matrix, we iterativly construct an ascending chain of graphs:

$$G_{d,j}^{(1)} \subseteq \cdots \subseteq G_{d,j}^{(k-1)} \subseteq G_{d,j}^{(k)} \subseteq G_{d,j}^{(k+1)} \subseteq \cdots$$

The term sparsity adapted moment-SOS (TSSOS) hierarchy

For each $k \ge 1$ (which is called the sparse order), let us consider

$$\theta_d^{(k)} := \begin{cases} \inf \quad L_y(f) \\ \text{s.t.} \quad B_{G_{d,0}^{(k)}} \circ M_d(y) \in \Pi_{G_{d,0}^{(k)}}(\mathsf{S}_+^{r_0}), \\ \quad B_{G_{d,j}^{(k)}} \circ M_{d-d_j}(g_j y) \in \Pi_{G_{d,j}^{(k)}}(\mathsf{S}_+^{r_j}), \quad j = 1, \dots, m, \\ \quad B_{G_{d,j}^{(k)}} \circ M_{d-d_j}(g_j y) = 0, \quad j = m+1, \dots, m+l, \\ \quad y_0 = 1. \end{cases}$$

 B_G : the adjacency matrix of G $\Pi_G(S_+^{|V|})$: the PSD completable cone with specified entries at G

Theorem (Grone et al., 1984)

Let G(V, E) be a chordal graph and assume that C_1, \ldots, C_t are the list of maximal cliques of G(V, E). Then a matrix $Q \in \Pi_G(S_+^{|V|})$ if and only if $Q[C_i] \succeq 0$ for $i = 1, \ldots, t$, where $Q[C_i]$ denotes the principal submatrix of Q indexed by the clique C_i .

As a consequence, we obtain a two-level hierarchy of lower bounds for f^* : $(\underline{d} := \max\{\deg(f)/2, d_1, \dots, d_{m+l}\})$

$\theta^{(1)}_{\underline{d}}$	\leq	$\theta_{\underline{d}}^{(2)}$	\leq	•••	\leq	$\theta_{\underline{d}}$
$\theta^{(1)}_{\underline{d}+1}$	\leq	$\theta_{\underline{d}+1}^{(2)}$	\leq		\leq	$\theta_{\underline{d}+1}$
:		:		÷		:
$\theta_d^{(1)}$	\leq	$\theta_d^{(2)}$	\leq		\leq	θ_d
÷		÷		÷		÷

Combining correlative sparsity with term sparsity (CS-TSSOS)

The combination of correlative sparsity with term sparsity splits into two steps:

- Partitioning the variables with respect to the maximal cliques of the csp graph;
- For each subsystem involving variables from one maximal clique, applying the iterative procedure to exploit term sparsity.

$$\begin{array}{ll} \inf & L_{y}(f) \\ \text{s.t.} & B_{G_{d,l,0}^{(k)}} \circ M_{d}(y, I_{l}) \in \Pi_{G_{d,l,0}^{(k)}}(\mathsf{S}_{+}^{\prime \prime, 0}), \quad l = 1, \dots, p, \\ & B_{G_{d,l,j}^{(k)}} \circ M_{d-d_{j}}(g_{j}y, I_{l}) \in \Pi_{G_{d,l,j}^{(k)}}(\mathsf{S}_{+}^{\prime \prime, j}), \quad j \in J_{l}, l = 1, \dots, p, \\ & B_{G_{d,l,j}^{(k)}} \circ M_{d-d_{j}}(g_{j}y, I_{l}) = 0, \quad j \in K_{l}, l = 1, \dots, p, \\ & y_{0} = 1. \end{array}$$

- Chordal extension
 - ▷ maximal chordal extension
 - \triangleright approximately smallest chordal extension
- Binary variable $(x^2 = 1)$
- Quotient structure via Gröbner bases
- Extracting an approximate solution and then refining it by Ipopt
- Merging PSD blocks

Figure: Merge two 4×4 blocks into a single 5×5 block

• Extending to complex polynomial optimization

 $\inf_{\mathsf{z}\in\mathbb{C}^n} \{f(\mathsf{z},\bar{\mathsf{z}}): g_j(\mathsf{z},\bar{\mathsf{z}}) \ge 0, j=1,\ldots,m, g_j(\mathsf{z},\bar{\mathsf{z}})=0, j=m+1,\ldots,m+l\}$

Extending to noncommutative polynomial optimization
 Eigenvalue optimization:

$$\inf_{X} \{ eig f(X) : g_j(X) \succeq 0, j = 1, \dots, m, g_j(X) = 0, j = m+1, \dots, m+l \}$$

▷ Trace optimization:

$$\inf_{X} \{ \operatorname{tr} f(X) : g_j(X) \succeq 0, j = 1, \dots, m, g_j(X) = 0, j = m+1, \dots, m+l \}$$

Freely available at: https://github.com/wangjie212/TSSOS Dependency:

- MultivariatePolynomials: manipulate multivariate polynomials
- JuMP: build the SDP problem
- LightGraphs: handle graphs
- MetaGraphs: handle weighted graphs
- ChordalGraph: generate approximately smallest chordal extensions
- SemialgebraicSets: compute Gröbner bases

Besides, TSSOS requires an SDP solver, which can be Mosek, SDPT3, or COSMO.

```
using TSSOS
using DynamicPolynomials
@polyvar x[1:2]
f = 1 + x[1]^{4*x[2]^{2}} + x[1]^{2*x[2]^{4}} - 3x[1]^{2*x[2]^{2}} # define the
objective function
g = 1 - sum(x[1:2].^2) \# define the inequality constraint
pop = [f, g] # define the POP
numeq = 0 # define the number of equality constraints
d = 3 \# set a relaxation order
opt,sol,data = tssos_first(pop, x, d, numeq=numeq) # k = 1
opt,sol,data = tssos_higher!(data) # k > 1
opt,sol,data = cs_tssos_first(pop, x, d, numeq=numeq) # k = 1
opt,sol,data = cs_tssos_higher!(data) # k > 1
```

• For large-scale POPs, it is more efficient to define the supports and coefficients directly.

$$x_1^4 x_2^2 \longrightarrow [1; 1; 1; 1; 2; 2]$$

using TSSOS

```
supp = Vector{Vector{UInt16}}[[[], [1; 1; 1; 1; 2; 2], [1; 1; 2; 2; 2;
2], [1; 1; 2; 2]], [[], [1; 1], [2; 2]]] # define the support array of
the POP
coe = Vector{Float64}[[1; 1; 1; -3], [1; -1; -1]] # define the
coefficient array of the POP
numeq = 0 # define the number of equality constraints
n = 2 # define the number of variables
d = 3 # set a relaxation order
opt,sol,data = cs_tssos_first(supp, coe, n, d, numeq=numeq) # k = 1
opt,sol,data = cs_tssos_higher!(data) # k > 1
```

Randomly generated polynomials of the SOS form

TSSOS, GloptiPoly, Yalmip: Mosek SparsePOP: SDPT3

Table: Running time (in seconds) comparison with GloptiPoly, Yalmip and SparsePOP for minimizing randomly generated sparse polynomials of the SOS form giving the same optimum; the symbol "-" indicates out of memory

n	2 <i>d</i>	TSSOS	GloptiPoly	Yalmip	SparsePOP
8	8	0.24	306	10	24
8	8	0.34	348	13	130
8	8	0.36	326	19	175
8	10	0.58	-	92	323
8	10	0.53	-	72	1526
8	10	0.38	-	22	134
9	10	0.50	-	44	324
9	10	0.72	-	143	-
9	10	0.79	-	109	284
10	12	2.2	-	474	-
10	12	1.6	-	147	318
10	12	1.8	-	350	404
10	16	15	-	-	-
10	16	14	-	-	-
10	16	12	-	-	-
12	12	8.4	-	-	-
12	12	5.7	-	-	-
12	12	7.4	-	-	-

Randomly generated polynomials with simplex Newton polytopes

Table: Running time (in seconds) comparison with GloptiPoly, Yalmip and SparsePOP for minimizing randomly generated sparse polynomials with simplex Newton polytopes giving the same optimum; the symbol "-" indicates out of memory

n	2 <i>d</i>	TSSOS	GloptiPoly	Yalmip	SparsePOP
8	8	0.36	346	31	271
8	8	0.51	447	24	496
8	8	0.31	257	6.0	178
9	8	1.0	-	-	-
9	8	0.63	-	363	611
9	8	0.76	-	141	578
9	10	6.6	-	322	-
9	10	5.0	-	233	-
9	10	4.9	-	249	-
10	8	1.2	-	-	-
10	8	8.0	-	536	-
10	8	1.0	-	-	-
11	8	1.7	-	655	398
11	8	1.8	-	-	221
11	8	1.9	-	340	293
12	8	10	-	-	-
12	8	7.4	-	-	-
12	8	2.9	-	-	-

Table: The results for AC-OPF instances; mb: the maximal size of blocks, gap: the relative gap with respect to a local optimal solution, -: out of memory

n m+l		CS(d=2)				CS+TS (d = 2, k = 1)				
	mb	opt	time (s)	gap	mb	opt	time (s)	gap		
12	28	28	1.1242e4	0.21	0.00%	22	1.1242e4	0.09	0.00%	
20	55	28	1.7543e4	0.56	0.05%	22	1.7543e4	0.30	0.05%	
114	315	66	1.3442e5	5.59	0.39%	31	1.3396e5	2.01	0.73%	
114	315	120	7.6943e4	94.9	0.00%	39	7.6942e4	14.8	0.00%	
72	297	45	4.9927e3	4.43	0.07%	22	4.9920e3	2.69	0.08%	
344	971	153	4.2246e5	758	0.06%	44	4.2072e5	96.0	0.48%	
344	971	153	2.2775e5	504	0.00%	44	2.2766e5	71.5	0.04%	
344	1325	253	-	-	-	31	2.4180e5	82.7	0.11%	
344	1325	253	-	-	-	73	1.0470e5	169	0.50%	
348	1809	253	-	-	_	34	1.0802e5	278	0.05%	
348	1809	253	-	-	-	34	1.2096e5	201	0.03%	
766	3322	153	3.3072e6	585	0.68%	44	3.3042e6	33.9	0.77%	
1112	4613	231	4.2413e4	3114	0.85%	39	4.2408e4	46.6	0.86%	
1112	4613	496	_	-	-	31	7.2396e4	410	0.25%	
4356	18257	378	-	-	-	27	1.3953e6	934	0.51%	
6698	29283	1326	-	-	-	76	5.9858e5	1886	0.47%	

24 / 28

Eigenvalue minimization of the nc generalized Rosenbrock function

Table: The eigenvalue minimization of the nc generalized Rosenbrock function over \mathcal{D} , where \mathcal{D} is defined by $\{1 - X_1^2 \succeq 0, \dots, 1 - X_n^2 \succeq 0, X_1 - 1/3 \succeq 0, \dots, X_n - 1/3 \succeq 0\}$; the symbol "-" indicates out of memory

	Sparse $(d = 2, k = 1)$			Dense $(d = 2)$			
"	mb	opt	time (s)	mb	opt	time (s)	
20	3	1.0000	0.14	-	-	-	
40	3	1.0000	0.22	-	-	-	
60	3	0.9999	0.28	-	-	-	
80	3	0.9999	0.35	-	-	-	
100	3	0.9999	0.46	-	-	-	
200	3	0.9999	0.89	-	-	-	
400	3	1.0000	2.40	-	-	-	
600	3	1.0000	4.47	-	-	-	
800	3	1.0000	6.95	-	-	-	
1000	3	0.9999	10.2	-	-	-	
2000	3	0.9999	37.2	-	-	-	
3000	3	0.9999	87.2	-	-	-	
4000	3	0.9998	145	-	-	-	

Table: The trace minimization of the nc Broyden tridiagonal function over \mathcal{D} , where \mathcal{D} is defined by $\{1 - X_1^2 \succeq 0, \dots, 1 - X_n^2 \succeq 0, X_1 - 1/3 \succeq 0, \dots, X_n - 1/3 \succeq 0\}$; the symbol "-" indicates out of memory

n	Sparse $(d = 2, k = 1)$			Dense $(d = 2)$			
	mb	opt	time (s)	mb	opt	time (s)	
20	6	1.1805	0.27	-	-	-	
40	6	1.1828	0.53	-	-	-	
60	6	1.1828	0.68	-	-	-	
80	6	1.1828	0.82	-	-	-	
100	6	1.1828	1.07	-	-	-	
200	6	1.1828	2.45	-	-	-	
400	6	1.1828	6.18	-	-	-	
600	6	1.1828	12.2	-	-	-	
800	6	1.1828	20.1	-	-	-	
1000	6	1.1828	28.6	-	-	-	
2000	6	1.1828	104	-	-	-	
3000	6	1.1828	204	-	-	-	
4000	6	1.1828	363	-	-	-	

- Jie Wang, Victor Magron and Jean B. Lasserre, *TSSOS: A Moment-SOS hierarchy that exploits term sparsity*, SIAM Optimization, 2021.
- Jie Wang, Victor Magron and Jean B. Lasserre, *Chordal-TSSOS: a moment-SOS hierarchy that exploits term sparsity with chordal extension*, SIAM Optimization, 2021.
- Jie Wang, Victor Magron, Jean B. Lasserre and Ngoc H. A. Mai, *CS-TSSOS: Correlative and term sparsity for large-scale polynomial optimization*, arXiv:2005.02828, 2020.
- Jie Wang and Victor Magron, *Exploiting Term Sparsity in Noncommutative Polynomial Optimization*, arXiv:2010.06956, 2021.
- Jie Wang and Victor Magron, *Exploiting Sparsity in Complex Polynomial Optimization*, arXiv:2103.12444, 2021.
- TSSOS: https://github.com/wangjie212/TSSOS

Thanks for your attention!