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Background on SONC polynomials
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Nonnegative Polynomials

Problem

Given a multivariate polynomial f , decide whether f is nonnegative and
certify its nonnegativity if it is.

Certifying nonnegativity of multivariate polynomials is a central
problem in real algebraic geometry and has applications in polynomial
optimization, control, combinatorics and so on.

Generally, deciding nonnegativity of multivariate polynomials is
NP-hard.
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Sums of squares

A classical approach for certifying nonnegativity of polynomials is using
sums of squares.

Sums of squares

Given a polynomial f ∈ R[x] = R[x1, . . . , xn], if there exist polynomials
f1, . . . , fm ∈ R[x] such that

f =
m∑
i=1

f 2
i ,

then we say f is a sum of squares (SOS).

Note: The computation of SOS decompositions for a given polynomial can be

done via semidefinite programming (SDP).
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Questions

Question 1: Does there exist other nonnegativity certificates in
coordination with the sparsity of polynomials?

Question 2: If the answer is yes, how can we efficiently compute
such a nonnegativity certificate for a given polynomial?
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Circuit polynomials

Trellis: A ⊆ (2N)n comprises the vertices of a simplex

Definition (Iliman and Wolff, 2016)

Let A be a trellis and f ∈ R[x]. Then f is called a circuit polynomial if it
is of the form

f =
∑
α∈A

cαx
α − dxβ,

and satisfies:

(1) cα > 0 for α ∈ A ;

(2) β ∈ conv(A )◦.
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Circuit polynomials

Example (Motzkin’s polynomial)

The Motzkin’s polynomial M(x , y) = x4y2 + x2y4 + 1− 3x2y2 is a
nonnegative circuit polynomial.

1

x2y4

x4y2
x2y2

Jie Wang and Victor Magron (LAAS-CNRS) A SOC Characterization for SONC July 21, ISSAC2020 8 / 32



SONC polynomials

A polynomial decomposes into a sum of squares (SOS)
=⇒ it is nonnegative

A polynomial decomposes into a sum of nonnegative circuit polynomials
(SONC) =⇒ it is nonnegative

SOS SONC

Jie Wang and Victor Magron (LAAS-CNRS) A SOC Characterization for SONC July 21, ISSAC2020 9 / 32



SONC polynomials

A polynomial decomposes into a sum of squares (SOS)
=⇒ it is nonnegative

A polynomial decomposes into a sum of nonnegative circuit polynomials
(SONC) =⇒ it is nonnegative

SOS SONC

Jie Wang and Victor Magron (LAAS-CNRS) A SOC Characterization for SONC July 21, ISSAC2020 9 / 32



SONC decompositions preserve sparsity of polynomials

For f ∈ R[x], let

Λ(f ) := {α ∈ supp(f ) | α ∈ (2N)n and cα > 0}

and
Γ(f ) := supp(f )\Λ(f )

such that we can write f =
∑

α∈Λ(f ) cαx
α −

∑
β∈Γ(f ) dβx

β.

For each β ∈ Γ(f ), let

F (β) := {∆ | ∆ is a simplex, β ∈ ∆◦,V (∆) ⊆ Λ(f )}.
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SONC decompositions preserve sparsity of polynomials

Theorem (Wang, 2018)

Let f =
∑

α∈Λ(f ) cαx
α −

∑
β∈Γ(f ) dβx

β ∈ R[x]. If f ∈ SONC, then f
admits a SONC decomposition:

f =
∑

β∈Γ(f )

∑
∆∈F (β)

fβ∆ +
∑
α∈Ã

cαx
α,

where fβ∆ is a nonnegative circuit polynomial supported on V (∆) ∪ {β}
for each ∆ and Ã = {α ∈ Λ(f ) | α /∈ ∪β∈Γ(f ) ∪∆∈F (β) V (∆)}.

Remark: This is dramatically different from the SOS case in which extra
monomials are needed in general.
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SONC polynomials and sums of
binomial squares
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Circuit polynomials and sums of binomial squares

For a subset M ⊆ Nn, let
A(M) := {1

2 (u + v) | u 6= v ,u, v ∈ M ∩ (2N)n}.
For a trellis A , M is an A -mediated set if A ⊆ M ⊆ A(M) ∪A .

Theorem (Reznick, 1989; Iliman and Wolff, 2016)

Let f =
∑

α∈A cαxα − dxβ ∈ R[x], d 6= 0 be a nonnegative circuit
polynomial with A a trellis. Then f is a sum of binomial squares if and
only if there exists an A -mediated set containing β. More specifically,
suppose that β belongs to an A -mediated set M = {ui}si=1. For each
ui ∈ M\A , let ui = 1

2 (up(i) + uq(i)). Then f is a sum of binomial squares

and f =
∑

ui∈M\A (aix
1
2
up(i) − bix

1
2
uq(i))2, ai , bi ∈ R.
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Theorem (Reznick, 1989; Iliman and Wolff, 2016)

Theorem (Reznick, 1989; Iliman and Wolff, 2016) inspires us to leverage
sums of binomial squares to compute SONC decompositions. However,
there are two obstacles:

There may not exist such an A -mediated set containing a given
lattice point;

Even if such a set exists, there is no efficient algorithm to compute it.
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A -rational mediated sets

For M ⊆ Qn, let Ã(M) := {1
2 (u + v) | u 6= v ,u, v ∈ M}.

Let A be a trellis. We say that M is an A -rational mediated set if
A ⊆ M ⊆ Ã(M) ∪A .

Theorem (Wang and Magron, 2020)

Given a trellis A and a lattice point β ∈ conv(A )◦, there is an algorithm
to compute an A -rational mediated set MA β containing β such that the
denominators of coordinates of points in MA β are odd numbers and the
numerators of coordinates of points in MA β\{β} are even numbers.
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Circuit polynomials and sums of binomial squares

Theorem (Wang and Magron, 2020)

Let f =
∑

α∈A cαxα − dxβ ∈ R[x], d 6= 0 be a circuit polynomial and
assume that MA β = {ui}si=1 is an A -rational mediated set containing β
such that the denominators of coordinates of points in MA β are odd
numbers and the numerators of coordinates of points in MA β\{β} are
even numbers. For each ui ∈ MA β\A , let ui = 1

2 (up(i) + uq(i)). Then f
is nonnegative if and only if f can be written as

f =
∑

ui∈MAβ\A (aix
1
2
up(i) − bix

1
2
uq(i))2, ai , bi ∈ R.
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An example

Example

Let f = x4y 2 + x2y 4 + 1− 3x2y 2 be Motzkin’s polynomial and
A = {α1 = (0, 0),α2 = (4, 2),α3 = (2, 4)}, β = (2, 2). Then
M = {α1,α2,α3,β,β1,β2,β3,β4} is an A -rational mediated set containing β.

α1

α3

α2β

β2

β1β4

β3

By a simple computation, we have

f = 3
2
(x

2
3 y

4
3 −x

4
3 y

2
3 )2 +(xy 2−x

1
3 y

2
3 )2 + 1

2
(x

2
3 y

4
3 −1)2 +(x2y −x

2
3 y

1
3 )2 + 1

2
(x

4
3 y

2
3 −1)2.
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SONC polynomials and sums of binomial squares

Theorem (Wang and Magron, 2020)

Let f =
∑

α∈Λ(f ) cαx
α −

∑
β∈Γ(f ) dβx

β ∈ R[x]. For every β ∈ Γ(f ) and
every ∆ ∈ F (β), let Mβ∆ be a V (∆)-rational mediated set containing β
such that the denominators of coordinates of points in Mβ∆ are odd
numbers and the numerators of coordinates of points in Mβ∆\{β} are
even numbers. Let M = ∪β∈Γ(f ) ∪∆∈F (β) Mβ∆. For each u ∈ M\Λ(f ), let

u = 1
2 (vu + wu), vu 6= wu ∈ M. Let

Ã = {α ∈ Λ(f ) | α /∈ ∪β∈Γ(f ) ∪∆∈F (β) V (∆)}. Then f ∈ SONC iff f

can be written as f =
∑

u∈M\Λ(f )(aux
1
2
vu − bux

1
2
wu)2 +

∑
α∈Ã cαxα,

au, bu ∈ R.
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Second order cones

An n-dimensional second order cone (SOC) is

Q := {x ∈ Rm : ||Ax + b||2 ≤ cTx + d},

where A ∈ R(n−1)×m,b ∈ Rn−1, c ∈ Rm, d ∈ R.

Remark: The optimization problem over second order cones can be solved
more efficiently than semidefinite programming.

Example

S2
+ := {

[
a b
b c

]
∈ R2×2 |

[
a b
b c

]
is positive semidefinite}

is a 3-dimensional second order cone.
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Second order cone lifts of convex cones

Qk = Q× · · ·Q: the Cartesian product of k copies of a second order cone
Q

Definition

A convex cone C ⊆ Rm has a second order cone lift of size k (or simply a
Qk -lift) if it can be written as the projection of a slice of Qk , that is, there
is a subspace L of Qk and a linear map π : Qk → Rm such that
C = π(Qk ∩ L).

Theorem (Fawzi, 2018)

The cone SOSn,2d does not admit any second order cone lift except in the
case (n, 2d) = (1, 2).
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(S2
+)k-lifts of SONC cones

Given A ⊆ (2N)n, B1 ⊆ conv(A ) ∩ (2N)n and
B2 ⊆ conv(A ) ∩ (Nn\(2N)n) such that A ∩B1 = ∅, define the SONC
cone supported on A ,B1,B2 as

SONCA ,B1,B2 :={(cA ,dB1 ,dB2) ∈ R|A |+ × R|B1|
+ × R|B2|

|
∑
α∈A

cαx
α −

∑
β∈B1∪B2

dβx
β ∈ SONC}.

Theorem (Wang and Magron, 2020)

For A ⊆ (2N)n, B1 ⊆ conv(A ) ∩ (2N)n and
B2 ⊆ conv(A ) ∩ (Nn\(2N)n) such that A ∩B1 = ∅, the SONC cone
SONCA ,B1,B2 admits an (S2

+)k -lift for some k ∈ N.
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SONC optimization via second
order cone programming
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SONC optimization

Consider the unconstrained polynomial optimization problem:

(UPOP) : ξ∗ :=

{
sup ξ

s.t. f (x)− ξ ≥ 0, ∀x ∈ Rn.

Replacing the nonnegativity condition by SONC to obtain:

(SONC) : ξsonc :=

{
sup ξ

s.t. f (x)− ξ ∈ SONC.
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PN-polynomials

Suppose f =
∑

α∈Λ(f ) cαx
α −

∑
β∈Γ(f ) dβx

β ∈ R[x]. If dβ > 0 for all
β ∈ Γ(f ), then we call f a PN-polynomial.

For a PN-polynomial f , we have

f (x) ≥ 0 for all x ∈ Rn ⇐⇒ f (x) ≥ 0 for all x ∈ Rn
+

Hence to represent a SONC PN-polynomial as a sum of binomial squares,
we do not require the denominators of coordinates of points in A -rational
mediated sets to be odd. This enables us to decrease the number of
binomial squares.
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PN-polynomials

An example

Let f = x4y 2 + x2y 4 + 1− 3x2y 2 be Motzkin’s polynomial and
A = {α1 = (4, 2),α2 = (2, 4),α3 = (0, 0)}, β = (2, 2). Then
β = 1

3
α1 +

1
3
α2 +

1
3
α3 = 1

3
α1 +

2
3
( 1

2
α2 +

1
2
α3). Let β1 = 1

2
α2 +

1
2
α3 such that

β = 1
3
α1 +

2
3
β1. Let β2 = 2

3
α1 +

1
3
β1. It is easy to check that

M = {α1,α2,α3,β,β1,β2} is an A -rational mediated set containing β.

α3

α2

α1ββ1 β2

By a simple computation, we have f = (1− xy 2)2 + 2(x
1
2 y − x

3
2 y)2 + (xy − x2y)2. Here

we represent f as a sum of three binomial squares with rational exponents.
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Converting to PN-polynomials

Let f =
∑

α∈Λ(f ) cαx
α −

∑
β∈Γ(f ) dβx

β and let

f̃ =
∑

α∈Λ(f ) cαx
α −

∑
β∈Γ(f ) |dβ|xβ be its associated PN-polynomial.

Fact: f ∈ SONC ⇐⇒ f̃ ∈ SONC.

Hence we can replace f by f̃ in (SONC) without changing the optimal
value:

(SONC-PN) : ξsonc =

{
sup ξ

s.t. f̃ (x)− ξ ∈ SONC.
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SONC optimization via second order cone programming

Suppose f =
∑

α∈Λ(f ) cαx
α −

∑
β∈Γ(f ) dβx

β ∈ R[x]. Let {(Ak ,βk)}lk=1

be a simplex cover with Ak ⊆ Λ(f ),∀k and Γ(f ) ⊆ ∪lk=1{βk}.

For each k, let Mk be an Ak -rational mediated set containing βk and
sk = #Mk\Ak . For each uki ∈ Mk\Ak , let us write uki = 1

2 (vk
i + wk

i ). Let

Ã = {α ∈ Λ(f ) | α /∈ ∪β∈Γ(f ) ∪∆∈F (β) V (∆)}. Then we can relax
(SONC-PN) to a second order cone program (SOCP)

ξsocp :=


sup ξ

s.t. f̃ (x)− ξ =
∑l

k=1

∑sk
i=1(2aki x

v k
i + bki x

wk
i − 2cki x

uki ) +
∑

α∈Ã cαxα,

(aki , b
k
i , c

k
i ) ∈ K, ∀i , k ,

where K be a 3-dimensional second order cone.
Note: ξsocp ≤ ξsonc ≤ ξ∗
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Numerical experiments

Jie Wang and Victor Magron (LAAS-CNRS) A SOC Characterization for SONC July 21, ISSAC2020 28 / 32



Experiment settings

SONCSOCP: our tool for SONC optimization via SOCP with Mosek as
a SOCP solver

POEM: Seidler and Wolff’s tool for SONC optimization with ECOS as
a geometric programming solver

Benchmarks: Random polynomials generated by Seidler and Wolff

Relative optimality gap: |ξmin−ξlb|
|ξmin| , where ξmin is a local minimum

provided by a local solver and ξlb is the optimal value given by
SONCSOCP or POEM
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Results for random polynomials with standard simplex
Newton polytopes

Take N = 10 polynomials
Number of variables: 10 ∼ 40, degree: 40 ∼ 60, number of terms:
20 ∼ 100
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Results for random polynomials with general simplex
Newton polytopes

Take N = 10 polynomials
Number of variables: 10, degree: 20 ∼ 60, number of terms: 20 ∼ 30
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Results for random polynomials with arbitrary Newton
polytopes

Take N = 20 polynomials
Number of variables: 10, degree: 20 ∼ 50, number of terms: 30 ∼ 300
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