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Background on SONC polynomials
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Nonnegative Polynomials

Problem

Given a multivariate polynomial f, decide whether f is nonnegative and
certify its nonnegativity if it is.
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Nonnegative Polynomials

Problem

Given a multivariate polynomial f, decide whether f is nonnegative and
certify its nonnegativity if it is.

o Certifying nonnegativity of multivariate polynomials is a central
problem in real algebraic geometry and has applications in polynomial
optimization, control, combinatorics and so on.

@ Generally, deciding nonnegativity of multivariate polynomials is
NP-hard.
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Sums of squares

A classical approach for certifying nonnegativity of polynomials is using
sums of squares.

Sums of squares

Given a polynomial f € R[x] = R[x1,. .., X,], if there exist polynomials
fi,..., fm € R[x] such that
m
f=>Y f

i=1

then we say f is a sum of squares (SOS).

Note: The computation of SOS decompositions for a given polynomial can be
done via semidefinite programming (SDP).
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Questions

@ Question 1: Does there exist other nonnegativity certificates in
coordination with the sparsity of polynomials?
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@ Question 1: Does there exist other nonnegativity certificates in
coordination with the sparsity of polynomials?

@ Question 2: If the answer is yes, how can we efficiently compute
such a nonnegativity certificate for a given polynomial?
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Circuit polynomials

Trellis: o7 C (2N)" comprises the vertices of a simplex

Definition (lliman and Wolff, 2016)

Let o be a trellis and f € R[x]. Then f is called a circuit polynomial if it

is of the form
f= Z Cax® — dxP,

acd
and satisfies:
@ co>0forae o,
@ B e conv(H)°.
.
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Circuit polynomials

Example (Motzkin's polynomial)
The Motzkin's polynomial M(x,y) = x*y? + x?y* +1 —3x?y? is a

nonnegative circuit polynomial.

X2 y4
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SONC polynomials

A polynomial decomposes into a sum of squares (SOS)
—> it is nonnegative

A polynomial decomposes into a sum of nonnegative circuit polynomials
(SONC) = it is nonnegative
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SONC decompositions preserve sparsity of polynomials

For f € R[x], let
A(f) :=={a € supp(f) | a € (2N)" and ¢, > 0}

and
(f) := supp(f)\A(f)

such that we can write f =3, c ) CaX™ = X ger(f) dgxP.
For each 8 € [(f), let

F(B) :={A ] A is a simplex, 3 € A°, V(A) C A(f)}.
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SONC decompositions preserve sparsity of polynomials

Theorem (Wang, 2018)

Let =" enr) Cax® — L ger(r) d8X° € R[x]. If f € SONC, then f
admits a SONC decomposition:

f= Z Z fﬁA-l-ZCaxa,
BEr(f) AeF(B) acd

where fga is a nonnegative circuit polynomial supported on V(A)u{B}
foreach A and & = {a e \(f) | a ¢ Uger(f) Ynez(B) V(A)}.

Remark: This is dramatically different from the SOS case in which extra
monomials are needed in general.
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SONC polynomials and sums of
binomial squares
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Circuit polynomials and sums of binomial squares

@ For a subset M C N”, let
AM) = {3(u+v) |u#v,u,ve Mn(2N)"}.
e For a trellis &/, M is an .«/-mediated set if &/ C M C A(M)U /.
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Circuit polynomials and sums of binomial squares

@ For a subset M C N”, let
AM) = {3(u+v) |u#v,u,ve Mn(2N)"}.
e For a trellis &/, M is an .«/-mediated set if &/ C M C A(M)U /.

Theorem (Reznick, 1989; lliman and Wolff, 2016)

Let f =3 peu Cax® — dxP € R[x], d # 0 be a nonnegative circuit
polynomial with 27 a trellis. Then f is a sum of binomial squares if and
only if there exists an .«/-mediated set containing 3. More specifically,
suppose that 3 belongs to an .«/-mediated set M = {u;}?_,. For each

u; € M\, let u; = %(up(,-) + ug(j))- Then f is a sum of binomial squares

1 1
and f = Zu;eM\ﬂ(a"xiup(i) — b,'XEuq("))z, aj, bj € R.
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Theorem (Reznick, 1989; Iliman and Wolff, 2016)

Theorem (Reznick, 1989; Iliman and Wolff, 2016) inspires us to leverage

sums of binomial squares to compute SONC decompositions. However,
there are two obstacles:

@ There may not exist such an «/-mediated set containing a given
lattice point;

@ Even if such a set exists, there is no efficient algorithm to compute it.
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</ -rational mediated sets

For M C Q" let A(M) := {Gu+v)|u+#v,uveM}
Let &/ be a trellis. We say that M is an .&7-rational mediated set if

7 CMCAM)U .
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</ -rational mediated sets

For M C Q" let A(M) := {A(u+v) |u#v,uveM}
Let &/ be a trellis. We say that M is an .&7-rational mediated set if

7 CMCAM)U .

Theorem (Wang and Magron, 2020)

Given a trellis &7 and a lattice point 3 € conv(7)°, there is an algorithm
to compute an <7-rational mediated set M, g containing 3 such that the
denominators of coordinates of points in M,/3 are odd numbers and the
numerators of coordinates of points in M.,3\{3} are even numbers.
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Circuit polynomials and sums of binomial squares

Theorem (Wang and Magron, 2020)

Let f =3 peo Cax® — dxP € R[x], d # 0 be a circuit polynomial and
assume that M3 = {u;}?_; is an ./-rational mediated set containing 3
such that the denominators of coordinates of points in Mg are odd
numbers and the numerators of coordinates of points in M. 3\{3} are
even numbers. For each u; € Mg\, let u; = %(up(,-) + ug(j)). Then f
is nonnegative if and only if f can be written as

1 1
=2 weMyp\aor(aiX2%10) — bix24)?, a;, b; € R.
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An example

Example

Let f = x*y? + x*y* + 1 — 3x?y? be Motzkin's polynomial and
o/ = {a1 =(0,0),2 = (4,2),a3 = (2,4)}, B=(2,2). Then
M = {1, oz, a3, 8, By, B,, 85,84} is an /-rational mediated set containing 3.

a3

By a simple computation, we have
F=303y3 —x3y3P+ 002 —xdy P+ 303y 5 — 12+ 0y —x3yd P+ 3y s - 1),
v
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SONC polynomials and sums of binomial squares

Theorem (Wang and Magron, 2020)

Let £ =2 nener) CaX™ — X ger() daxP € R[x]. For every 8 € I'(f) and
every A € .Z(3), let Mga be a V(A)-rational mediated set containing 3
such that the denominators of coordinates of points in Mga are odd
numbers and the numerators of coordinates of points in Mga\{3} are
even numbers. Let M = Uger(r) Une#(8) Mpna- For each u € M\A(f), let
u= %(vu +wy), vy #w, € M. Let

o ={a € Nf) | a & Uger(r) Unes(s) V(A)}. Then f € SONC iff £
can be written as f = ZueM\/\(f)(auX%Vu — bux%wu)2 + 2 e CaX?,

au, by € R.
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Second order cones

An n-dimensional second order cone (SOC) is
Q:={x€R™:||Ax+b|l» < c"x+d},
where A € R(=1Dxm e R1=1 ¢ ¢ R™ d € R.

Remark: The optimization problem over second order cones can be solved
more efficiently than semidefinite programming.
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Second order cones

An n-dimensional second order cone (SOC) is
Q:={x€R™:||Ax+b|l» < c"x+d},
where A € R(=1Dxm e R1=1 ¢ ¢ R™ d € R.

Remark: The optimization problem over second order cones can be solved
more efficiently than semidefinite programming.

a b

S3 = {[b c] € R2¥?| [Z Iz] is positive semidefinite}

is a 3-dimensional second order cone.
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Second order cone lifts of convex cones

Ok = Q x --- Q: the Cartesian product of k copies of a second order cone

Q

Definition

A convex cone C C R™ has a second order cone lift of size k (or simply a
Qk—lift) if it can be written as the projection of a slice of Ok, that is, there
is a subspace L of QK and a linear map m: QK — R™ such that

C =n(QkNL).
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Second order cone lifts of convex cones

Ok = Q x --- Q: the Cartesian product of k copies of a second order cone

Q

Definition

A convex cone C C R™ has a second order cone lift of size k (or simply a
Qk—lift) if it can be written as the projection of a slice of Ok, that is, there
is a subspace L of QK and a linear map m: QK — R™ such that

C =n(QkNL).

Theorem (Fawzi, 2018)

The cone SOS,, 54 does not admit any second order cone lift except in the
case (n,2d) = (1,2).
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(S%)k-lifts of SONC cones

Given o/ C (2N)", %; C conv(«/) N (2N)" and
Py C conv(e/) N (N"\(2N)") such that &7 N H#1 = &, define the SONC
cone supported on o, %1, B> as

SONC.s 2,2, ={(Cer, d5,, diz,) € R x R RIZ|

| Z Cax® — Z dsxP € SONC]}.

aco Be%Hb1UA
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(S%)k-lifts of SONC cones

Given o/ C (2N)", %; C conv(«/) N (2N)" and
Py C conv(e/) N (N"\(2N)") such that &7 N H#1 = &, define the SONC
cone supported on o, %1, B> as

SONC.s 2,2, ={(Cer, d5,, diz,) € R x R RIZ|

| Z Cax® — Z dsxP € SONC]}.

aco Be%Hb1UA

Theorem (Wang and Magron, 2020)

For o7 C (2N)", %1 C conv(</) N (2N)" and
P> C conv(e/) N (N"\(2N)") such that &7 N H#; = &, the SONC cone
SONC,/ %, %, admits an (S2)*-lift for some k € N.
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SONC optimization via second
order cone programming
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SONC optimization

Consider the unconstrained polynomial optimization problem:

sup &

(Uromy: ¢ = {t )~ €20, e
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SONC optimization

Consider the unconstrained polynomial optimization problem:

e Jsup €
(Uromy: ¢ = {t )~ €20, e

Replacing the nonnegativity condition by SONC to obtain:

sup &

(SONC) : Esonc = {S.t. f(X) — £ € SONC.
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PN-polynomials

Suppose f =} enf) CaX® = Dger(r) dgxP € R[x]. If dg > 0 for all
B € I'(f), then we call f a PN-polynomial.
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PN-polynomials

Suppose f =} enf) CaX® = Dger(r) dgxP € R[x]. If dg > 0 for all
B € I'(f), then we call f a PN-polynomial.

For a PN-polynomial 7, we have

f(x) >0 for all x € R" <= f(x) > 0 for all x € R
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PN-polynomials

Suppose f =} enf) CaX® = Dger(r) dgxP € R[x]. If dg > 0 for all
B € I'(f), then we call f a PN-polynomial.

For a PN-polynomial 7, we have

f(x) >0 for all x € R" <= f(x) > 0 for all x € R

Hence to represent a SONC PN-polynomial as a sum of binomial squares,
we do not require the denominators of coordinates of points in .<7-rational
mediated sets to be odd. This enables us to decrease the number of
binomial squares.
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PN-polynomials

An example

Let f = x*y? + x?y* + 1 — 3x®y? be Motzkin's polynomial and

o = {al = (4,2),0’,2 = (2,4),(13 = (070)}v B= (272) Then

8= %al + oz + oz = Ton + 2(3a + 2as). Let B; = Jao + Lo such that
B =301+ 5B, Let B, = %al + %51. It is easy to check that

M

= {1, o, 3,8, 8, 3,} is an «/-rational mediated set containing 3.

By a simple computation, we have f = (1 — xy?)? + 2(X%y - x%y)2 + (xy — x*y)?. Here
we represent f as a sum of three binomial squares with rational exponents.

v
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Converting to PN-polynomials

Let £ =2 nener) CaX™ — X ger(s) dgx? and let
f= Doaen(r) CaX® = X ger(r) |dg|x? be its associated PN-polynomial.

Fact: f € SONC < f € SONC.
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Converting to PN-polynomials

Let £ =2 nener) CaX™ — X ger(s) dgx? and let
f= Doaen(r) CaX® = X ger(r) |dg|x? be its associated PN-polynomial.

Fact: f € SONC < f € SONC.

Hence we can replace f by f in (SONC) without changing the optimal
value:
sup €&

(SONC-PN) :  &sonc = { %
s.t.  f(x) —& € SONC.
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SONC optimization via second order cone programming

Suppose f =} enf) CaX® = Dger(r) dgxP € R[x]. Let {(“, B}y
be a simplex cover with @7 C A(f),Vk and T(f) C U,_,{B}.

For each k, let My be an /-rational mediated set containing 3, and

sk = #M\ . For each uf-‘ € M\, let us write uf-‘ = %(vf‘ + w,k) Let
o ={aeNf)|ad¢ Uger(r) Yaez(g) V(A)}. Then we can relax
(SONC-PN) to a second order cone program (SOCP)

sup ¢
Esorp = {5t F(X)— €= 0% (Zaffx"fk + bExW — 2ckx¥’) + > aces CaX®,
(ak, bk, ck) e K, Vi k

i I’I

where K be a 3-dimensional second order cone.
NOte: gSOCP S £SOI‘IC é g*
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Numerical experiments
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Experiment settings

@ SONCSOCP: our tool for SONC optimization via SOCP with Mosek as
a SOCP solver

@ POEM: Seidler and Wolff's tool for SONC optimization with ECOS as
a geometric programming solver

@ Benchmarks: Random polynomials generated by Seidler and Wolff

o Relative optimality gap: , Where &, is a local minimum
provided by a local solver and &, is the optimal value given by
SONCSOCP or POEM

|Emin—Ein|
-
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Results for random polynomials with standard simplex

Newton polytopes

Take N = 10 polynomials

Number of variables: 10 ~ 40, degree: 40 ~ 60, number of terms:
20 ~ 100

I I I
—6— SONCSOCP R —6— SONCSOCP
2| —~— POEM N 2 —*— POEM
= S 01}
~ [0
o >
E 2
e £
21 N s -2
g 2 5.10
3 3
= 2
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e
oL L °r L]
10 5 10
N N
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Results for random polynomials with general simplex

Newton polytopes

Take N = 10 polynomials
Number of variables: 10, degree: 20 ~ 60, number of terms: 20 ~ 30

L I I T
1 || —©— SONCsocCP B 300 | | —o— SONCSOCP | @ B

—%—  POEM S —%— POEM
= &
G
2 08| | & ool
g 2
£ :
2 06 e 5
£ z
g S 100
3 [
S H
0.4] R &
®

5 10
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Results for random polynomials with arbitrary Newton

polytopes

Take N = 20 polynomials
Number of variables: 10, degree: 20 ~ 50, number of terms: 30 ~ 300

T I
40 || —©— SONCsocP B —o— SONCSOCP
X
_ = 20|
O &
2 z
= ]
@ 20 - £
.g g 10|
3 [
4 =
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