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Certifying nonnegativity of polynomials

Problem

Given a multivariate polynomial f , decide if f is nonnegative and certify its
nonnegativity if it is.

Certifying nonnegativity of multivariate polynomials is a central
problem in real algebraic geometry which has applications in
polynomial optimization and many other fields such as control,
engineering, probability, combinatorics, and physics.

Generally, this is an NP-hard problem.
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Nonnegative polynomials and polynomial optimization

The unconstrained polynomial optimization problem can be formulated as
follows:

minimize
x∈Rn

f (x).

It is equivalent to {
maximize ξ

subject to f (x)− ξ ≥ 0.
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Sums of squares

A classical approach for certifying nonnegativity of polynomials is the use
of sums of squares.

Sums of squares

Given a polynomial f ∈ R[x] = R[x1, . . . , xn], if there exist polynomials
f1, . . . , fm ∈ R[x] such that

f =
m∑
i=1

f 2i ,

then we say that f is a sum of squares (SOS).
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Sum of squares

Clearly, the SOS representation of a polynomial serves as a certificate of
its nonnegativity. However, not every nonnegative polynomial has an SOS
representation.

Theorem (Hilbert)

In the univariate case, the quadratic case and the bivariate quartic case,
every nonnegative polynomial admits an SOS decomposition.

Except these three cases, there are nonnegative polynomials which cannot
decompose into an SOS.
(Motzkin’s polynomial: x4y2 + x2y4 + 1− 3x2y2)
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SOS decompositions

Though the existence of SOS decompositions is only a sufficient
condition of nonnegativity, it gives a computational approach to
certify nonnegativity.

M: a monomial basis
f admits an SOS decomposition
⇐⇒ ∃ a positive semidefinite matrix Q s.t. f = MTQM
 effectively solved by semidefinite programming (SDP)
(Parrilo 2000, Lasserre 2001)
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Exploiting Sparsity

f : n variables, 2d degree, SDP:
(n+d

n

)
The size of the corresponding semidefinite program problem grows
rapidly as the size of the polynomial increases.

To deal with large polynomials, sparsity must be exploited.

Newton polytopes (Reznick, 1978), correlative sparsity patterns (Waki
et al., 2006), sign-symmetries (Löfberg, 2009), facial reduction
(Permenter and Parrilo, 2014), minimal coordinate projections
(Permenter and Parrilo, 2015).
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Cross sparsity pattern

In order to exploit term sparsity of polynomials, we introduce the notion of
cross sparsity patterns. Suppose f =

∑
α∈A cαxα ∈ R[x] with

supp(f ) = A ⊆ Nn and fix a monomial basis xB = {xω1 , . . . , xωr } with
B = {ω1, . . . ,ωr}. The cross sparsity pattern of f is represented by an
r × r (0, 1)-matrix RA = (Rij) whose elements are given by

Rij =

{
1, ωi + ωj ∈ A ,

0, otherwise.

Given a cross sparsity pattern matrix RA = (Rij), the adjacency graph
G (VA ,EA ) with VA = {1, 2, . . . , r} and
EA = {{i , j} | i , j ∈ VA , i < j ,Rij = 1} is called the cross sparsity pattern
graph.
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Cross sparsity pattern graph

Example

Let f = x2y2 + x2 + y2 + 1− xy and a monomial basis for f is
{1, x , y , xy , x2, y2}. Then the cross sparsity pattern graph of f is

1 x2 x

y2 xy y
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Chordal graph

Definition

A graph is called a chordal graph if all its cycles of length at least four
have a chord.

A chord in a cycle {v1, v2, . . . , vk} is an edge (vi , vj) that joins two
nonconsecutive nodes in the cycle.

Any non-chordal graph G (V ,E ) can always be extended to a chordal
graph G̃ (V , Ẽ ) by adding appropriate edges to E , which is called a
chordal extension of G (V ,E ).
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Chordal graph

Let G (V ,E ) be a graph.

A clique C ⊆ V of G is a subset of nodes who induces a complete
subgraph.

A maximal clique C ⊆ V is a clique of G which is not a proper subset
of any other clique.

It is known that maximal cliques of a chordal graph can be enumerated
efficiently in linear time in the number of nodes and edges of the graph.
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Sparse PSD matrix

Given a graph G (V ,E ), let E ? := E ∪ {(i , i) | i ∈ V }. Define

S r (E , 0) := {X ∈ S r | Xij = Xji = 0 if (i , j) /∈ E ?}

and
S r
+(E , 0) := {X ∈ S r (E , 0) | X � 0}.
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Sparse SOS relaxation

Suppose A ⊆ Nn and xB = {xω1 , . . . , xωr } is a monomial basis. Let the
set of SOS polynomials supported on A be

Σ(A ) := {f ∈ R[A ] | ∃Q ∈ S r
+ s.t. f = (xB)TQxB}.

Let G (VA ,EA ) be the cross sparsity pattern graph and G̃ (VA , ẼA ) a
chordal extension. To maintain the sparsity of f in the Gram matrix Q, we
consider a subset of the SOS polynomials supported on A

Σ̃(A ) := {f ∈ R[A ] | ∃Q ∈ S r
+(ẼA , 0) s.t. f = (xB)TQxB}.
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Blocking SOS decomposition

Theorem (Wang, Li and Xia, 2019)

Given A ⊆ Nn, assume that xB = {xω1 , . . . , xωr } is a monomial basis and
a chordal extension of the cross sparsity pattern graph is G̃ (VA , ẼA ). Let
C1,C2, . . . ,Ct ⊆ VA denote the maximal cliques of G̃ (VA , ẼA ) and
Bk = {ωi ∈ B | i ∈ Ck}, k = 1, 2, . . . , t. Then, f ∈ Σ̃(A ) if and only if
there exist fk ∈ R[Bk ]2 := {

∑
g2
j | supp(gj) = Bk}, k = 1, . . . , t such

that

f =
t∑

k=1

fk .
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Comparison with correlative sparsity patterns

Correlative sparsity patterns focus on the sparsity of variables, while cross
sparsity patterns focus on the sparsity of terms.

Example

Consider the polynomial f = x2y2 + x2 + y2 + 1− xy . A monomial basis for f is
{1, x , y , xy , x2, y2}. The correlative sparsity pattern graph of f is a complete graph, and hence
the corresponding Gram matrix of f cannot be blocked. On the other hand, the cross sparsity
pattern graph of f has three maximal cliques, corresponding to {1, x2, y2}, {1, xy} and {x , y}
respectively. Hence, the corresponding Gram matrix of f can be blocked into one 3× 3
submatrix and two 2× 2 submatrices.

1 x2 x

y2 xy y
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Numerical Experiments

Example 1

Let Bm = (
∑3m+2

i=1 x2i )((
∑3m+2

i=1 x2i )2 − 2
∑3m+2

i=1 x2i
∑m

j=1 x
2
i+3j+1), where

x3m+2+r = xr . For any m ∈ N∗, Bm is homogeneous and is an SOS
polynomial.

Table: Results for Bm

SparseSOS Yalmip SOSTOOLS SparsePOP

m #supp #block time #block time #block time #block time
1 35 5 × 5, 10 × 1 0.01s 5 × 5, 10 × 1 0.45s 1 × 35 0.95s 1 × 56 0.54s
2 104 8 × 8, 56 × 1 0.04s 8 × 8, 56 × 1 0.95s 1 × 120 2.59s 1 × 165 4.66s
3 242 11 × 11, 165 × 1 0.15s 11 × 11, 165 × 1 1.18s 1 × 286 34.00s 1 × 364 93.9s
4 476 14 × 14, 364 × 1 0.45s 14 × 14, 364 × 1 2.94s 1 × 560 423s 1 × 680 764s
5 833 17 × 17, 680 × 1 1.56s 1 × 969 OM 1 × 969 OM OM
10 5408 32 × 32, 4960 × 1 65.55s
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Numerical Experiments

Example 2

Randomly generated sparse polynomials.

Table: Results for randomly generated polynomials

SparseSOS Yalmip

#var deg #supp #block time #block time
F1 10 12 590 187, 5, 6 × 2, 44 × 1 179.2s 2 × 248 315.60s
F2 10 12 310 83, 3, 4 × 2, 37 × 1 4.42s 131 16.34s
F3 10 12 504 162, 6, 4, 6 × 2, 34 × 1 63.86s 218 116.09s
F4 10 12 873 303, 8, 3 × 2, 40 × 1 1850.54s 357 OM
F5 10 12 709 238, 4, 4 × 3, 12, 55 × 1 633.51s 331 OM
F6 10 12 927 231, 3, 2 × 2, 23 × 1 470.40s 261 297.40s
F7 10 16 306 110, 10, 6, 3 × 4, 5 × 3, 22 × 2, 192 × 1 29.95s 389 OM
F8 10 16 255 62, 8, 5, 4, 2 × 3, 2 × 2, 131 × 1 32.09s 220 185.35s
F9 10 16 228 56, 13, 2 × 6, 2 × 4, 4 × 3, 12 × 2, 107 × 1 11.24s 232 200.43s
F10 10 20 1344 4658, 7, 2 × 5, 3 × 4, 7 × 3, 16 × 2, 29 × 1 OM 4769 OM
F11 10 20 1392 5012, 5, 3, 3 × 2, 20 × 1 OM 5046 OM
F12 10 20 1845 4528, 7, 3, 5 × 2, 28 × 1 OM 4576 OM
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Thank you!
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