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Outline

@ Polynomial optimization and the moment-SOS hierarchy

9 Improve scalability by exploiting algebraic structures

© Numerical experiments and applications
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Polynomial optimization

® Polynomial optimization problem (POP):

inf  f(x)

. J xeRn

fmin —
st. gi(x)>0, i=1,...,m

Jie Wang Structured Polynomial Optimization July 20, 2023



Polynomial optimization

® Polynomial optimization problem (POP):

inf  f(x)

. J xeRn

fmin —
st. gi(x)>0, i=1,...,m

® non-convex, NP-hard

Jie Wang Structured Polynomial Optimization

July 20, 2023



Polynomial optimization

® Polynomial optimization problem (POP):

inf  f(x)

fin = xeR?
st. gi(x)>0, i=1,...,m
® non-convex, NP-hard

® optimal power flow, computer vision, combinatorial optimization, neutral

networks, signal processing, quantum information...
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Why polynomial optimization?

® closely related to real algebraic geometry: the theory of positive

polynomials, convex algebraic geometry
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Why polynomial optimization?

® closely related to real algebraic geometry: the theory of positive
polynomials, convex algebraic geometry

® be able to compute the globally optimal value/solutions: the
Moment-SOS hierarchy

® closely related to theoretical computer science: the theory of
approximation algorithms, the theory of complexity

e Powerful modelling ability: QCQP, binary program, (mixed) integer

(non-)linear program and so on
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Continuous optimization appears as POPs

Continuous convex and nonconvex optimization problems with linear

and/or quadratic costs and constraints:

inf  xTAox + blx
x€R"

st. xTAx+bx—c¢>0, i=1...,m.
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Continuous optimization approximated by POPs

® Any continuous function can be approximated by polynomials as closely

as desired.
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Continuous optimization approximated by POPs

® Any continuous function can be approximated by polynomials as closely

as desired.

® Any continuous optimization problem can be approximated by POPs as

closely as desired.
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Discrete optimization

e 1 variables: x€ {-1,+1} & ¥ —-1=0
® 0/1 variables: x€ {0,1} < x(x—1)=0

® integer variables: x€ {1,2,...,t} <= (x—1)(x—2)---(x—1t)=0

Jie Wang Structured Polynomial Optimization July 20, 2023



Non-convexity of polynomial optimization
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Example (moment relaxation)

=[1,x1, %] - [1,x1,%]T = 0,

if)}f 2,0+ y1,1+Y,2
1 Yi,0  Yo,1
st yio 20 via|Z0
Y01 Y1,1 Y02

1—y2020,1-yy22>0

|r)1(f x% + x1xp + x%
1 Pt X2
inf x% + x1x0 +x§
x = (st [x 2 X1 X
1 1X2
st. 1—x>0,1-x3>0
X X1Xp 3
1-2>0,1-232>0
if;f y2,0+y1,1+ 0,2
1 ¥1,0  Y0,1
st lyio w20 v1| 20 relax
Yo,1  Yi,1 Y02
1—y0201—-y322>0,
Ix € R? s.t. y= (xl,XQ,x%,xlxz,xg)
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The hierarchy of moment relaxations

® The hierarchy of moment relaxations (Lasserre 2001):

Jie Wang

inf  Ly(f
y
s.t. Mr(y) t 07

M,_q4(gy) =0, i=1,....,m,

=1
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Example (dual SOS relaxation)

inf x§+x1x2+x% sup A
x — A
st. 1= >0,1-x32>0 st B 4xx 4+ —A>0,VxeR2 st (1—x4 >0,1—53 >0)
sup A
X0
strengthen

st 4 +xx0+3 — A =0+ 01(1 —8) + 0a(1 — ),

og, 01,03 € SOS
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The hierarchy of dual SOS relaxations

® The hierarchy of dual SOS relaxations (Parrilo 2000 & Lasserre 2001):

Jie Wang

sup A
A0

st. f—=A=o00+ Y., 0ig,
00,01,-+,0m € X(x),

deg(oo) < 2r,deg(oigi) < 2r,i=1,...,m.
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The Moment-SOS /Lasserre’s hierarchy

fmin
L R\
VI VI
(Moment relaxation) 6, “=" 6% (dual SOS relaxation)
VI VI
VI VI
ermin w__mn etmin
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Asymptotical convergence and finite convergence

® Under Archimedean’s condition (=~ compactness): there exists N > 0

s.t. N—||x||> € Q(g)
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Asymptotical convergence and finite convergence

® Under Archimedean’s condition (=~ compactness): there exists N > 0
st. N—|[x[|> € Q(g)
» 0, " fmin and 05 7 foin as r — oo (Putinar’s Positivstellensatz,

1993)
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Asymptotical convergence and finite convergence

® Under Archimedean’s condition (=~ compactness): there exists N > 0
st. N—|[x[|> € Q(g)
» 0, " fmin and 05 7 foin as r — oo (Putinar’s Positivstellensatz,

1993)
» Finite convergence happens generically (Nie, 2014)
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Detecting global optimality

® The moment relaxation achieves global optimality (6, = fmin) when one

of the following conditions holds:
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Detecting global optimality

® The moment relaxation achieves global optimality (6, = fmin) when one
of the following conditions holds:
> (flat extension) For rp < ¥ < r, rank M, _, (y) = rank M,(y)

~- Extract rank M, (y) globally optimal solutions
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Detecting global optimality

® The moment relaxation achieves global optimality (6, = fmin) when one
of the following conditions holds:
> (flat extension) For rp < ¥ < r, rank M, _, (y) = rank M,(y)
~- Extract rank M, (y) globally optimal solutions
» rankM,  (y)=1

~~ Extract one globally optimal solution
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Extension — complex polynomial optimization

e Complex polynomial optimization problem (CPOP):

s
. )

st. gi(z,z) >0, i=1,...,m,
hj(Z,i):O, _]:1,,/
~> The moment-HSOS hierarchy

~~ optimal power flow
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Extension — trigonometric polynomial optimization

® Trigonometric polynomial optimization problem:

inf fsinxq,...,Sin Xy, COSX], ..., COSXp)
x€[0,27m)"
s.t. gi(sinx1,...,sinxp,cosxy,...,cosx,) >0, i=1,...,m,
hi(sinx, ...,sinX,,cosx1,...,cosx,) =0, j=1,...,1

~» The moment-HSOS hierarchy

~> sigal processing
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Extension — noncommutative polynomial optimization

® Eigenvalue optimization problem:

ir)1<f eig (X) = AX1,...,Xn)
st. g(X)>0, i=1,...,m,
hi(X)=0, j=1,...,1

~» The moment-SOHS hierarchy

~> linear Bell inequality
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Extension — noncommutative polynomial optimization

® Trace optimization problem:

ian tr (X) = X1,...,Xp)
st. g(X)>0, i=1,...,m,

h(X)=0, j=1,....1

~> The tracial moment-SOHS hierarchy
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Extension — trace/state polynomial optimization

e trace polynomial: tr(x¢)xax1 + tr(xi)tr(xax1x2), X1, - -, xn € B(H)
e state polynomial: ¢(x3)xax1 + s(x1)s(xax1x2), X1, ..., %, € B(H), s is a
formal state (i.e., a positive unital linear functional) on B(#)

~ The moment-SOHS hierarchy

~> nonlinear Bell inequality
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Extension — polynomial matrix optimization

® Robust polynomial matrix inequality optimization:

inf  fy)

yeyY

s.t. P(y,x) =0, Vx € X.

~» The moment-SOS hierarchy

~> robust polynomial semidefinite program
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Extension — polynomial dynamic system

® Polynomial dynamic system:

,

5(1 - f]_(X),
X = f2(x)7
X = fa(x),

\
~ The moment-SOS hierarchy
~» maximal (controlled) invariant set, attraction region, global

attractor, reachable set, optimal control
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The scalability issue of the moment-SOS hierarchy

® The size of SDP corresponding to the r~th SOS relaxation:

@ PSD constraint: (”fr)

@ #equality constraint: (”;rz’)
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The scalability issue of the moment-SOS hierarchy

® The size of SDP corresponding to the r~th SOS relaxation:

@ PSD constraint: (”fr)

@ #equality constraint: (”;rz’)

® r=2, n< 30 (Mosek)
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The scalability issue of the moment-SOS hierarchy

® The size of SDP corresponding to the r~th SOS relaxation:

@ PSD constraint: (”fr)

@ #equality constraint: (”;rz’)

® r=2, n< 30 (Mosek)

® Exploiting algebraic structures:
>» POP
>» SDP
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Quotient ring

® Equality constraints: hj(x) =0, j=1,...,/
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Quotient ring

® Equality constraints: hj(x) =0, j=1,...,/
@ Build the moment-SOS hierarchy on the quotient ring

R[x]/(h1(x), ..., h(x))

~~ Grobner basis
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Symmetry

® permutation symmetry: (x1,...,Xn) = (Xr(1)s -« -5 Xr(n))

® translation symmetry: (x1,...,Xn) = (X14is -« s Xnti)s Xnti = Xi
® sign symmetry: (xi,...,Xn) = (—=X1,...,—Xp)

® conjugate symmetry: z — z

0

® T-symmetry: z — €z
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Symmetry

® permutation symmetry: (x1,...,Xn) = (Xr(1)s -« -5 Xr(n))

® translation symmetry: (x1,...,Xn) = (X14is -« s Xnti)s Xnti = Xi
® sign symmetry: (xi,...,Xn) = (—=X1,...,—Xp)

® conjugate symmetry: z — z

0

® T-symmetry: z — €z

~ lead to block-diagonal moment-SOS hierarchies
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Correlative sparsity (Waki et al. 2006)

e Correlative sparsity pattern graph G*P(V, E):
» Vi={x1,...,Xn}
» {xi,x;j} € E <= x;, x; appear in the same term of for in the same

constraint polynomial g
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Correlative sparsity (Waki et al. 2006)

e Correlative sparsity pattern graph G*P(V, E):

» Vi={x1,...,Xn}

» {xi,x;j} € E <= x;, x; appear in the same term of for in the same
constraint polynomial g

® For each maximal clique of G*P(V, E), do

Ik — Mr(y7 lk)7 Ml’fdi(giy7 lk)
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Term sparsity (Wang & Magron & Lasserre, 2021)

® Term sparsity pattern graph G*P(V, E):
» Vi=ve={1,x1,..., X0, X{, ..., Xp}
» {x¥ xP} € E <= x* - xP = x2*8 ¢ supp(f) U U, supp(gi) U V2
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Correlative-term sparsity

@ Decompose the whole set of variables into cliques by exploiting

correlative sparsity
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Correlative-term sparsity

@ Decompose the whole set of variables into cliques by exploiting

correlative sparsity

@ Exploit term sparsity for each subsystem
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Structures of the SOS problem

e Orthogonality: (A, Aj) =0, Vi#j

sup cTx

s.t. <A,‘,)<>+B,'X: b, i=1,...,m

X>=0
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Structures of the moment problem

e Low-rank: rank(M°P') < n
e Unital diagonal: diag(M) =1
e Unital trace: tr(M) =1
inf C
ot {GX)
S.t. (A,’,)Q:b,', i=1,...,m

X=0
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Solving low-rank SDPs via manifold optimization

@ Degenerate: > 2nd relaxation ~ m > n  Challenging!
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Solving low-rank SDPs via manifold optimization

@ Degenerate: > 2nd relaxation ~ m > n  Challenging!

o Low-rank: rank M°P! < n ~» M = YYT, Y € R"™P Burer-Monteiro
» N ={YeR"™}
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Solving low-rank SDPs via manifold optimization

@ Degenerate: > 2nd relaxation ~ m > n  Challenging!

o Low-rank: rank M°P! < n ~» M = YYT, Y € R"™P Burer-Monteiro
» N ={YeR"™P}

e Unital diagonal: diag(M) =1
> N ={YeR™P||Yk:)|=1k=1,...,n}
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Solving low-rank SDPs via manifold optimization

Degenerate: > 2nd relaxation ~» m > n  Challenging!

Low-rank: rank M°Pt < n ~» M = YYT, Y € R"™P Burer-Monteiro
» N ={YeR"™}

Unital diagonal: diag(M) =1
» N ={YeR™P||Yk:)|=1k=1,...,n}

Unital trace: tr(M) =1
> N ={YeR""[[Y]F=1}
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The augmented Lagrangian framework

inf  (C,
oty | )Qﬁ handle with ALM

st. A(X)=b, B(X) = d ~~ define a manifold M
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The augmented Lagrangian framework

inf  (C,
oty | )Qﬁ handle with ALM

st. A(X)=b, B(X) = d ~~ define a manifold M

® The augmented Lagrangian function:

Lo(X,y) = (G, X) — y"(A(X) — b) + gIIA(X) b
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The augmented Lagrangian framework

inf C,
)I<g0 ( X>’—> handle with ALM

st. A(X)=b, B(X) = d ~~ define a manifold M

® The augmented Lagrangian function:
o
Lo(X,y) = (G X) = yT(A(X) = b) + S A(X) — b||?
® Need to solve the subproblem at the k-th step:

)?;IHL X)/(
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Solve the subproblem by the Riemannian trust region

method

Let X = YYT. Solve the subproblem on the manifold A/ by the

Riemannian trust region method:

k
\r/nln (C,YYT) — (y)T( —b) + %HA(YYT) — b||2~~ nonconvex!
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Solve the subproblem by the Riemannian trust region

method

Let X = YYT. Solve the subproblem on the manifold A/ by the

Riemannian trust region method:

k
\r/nln (C,YYT) — (y)T( —b) + %HA(YYT) — b||2~~ nonconvex!

Good news
We can efficiently escape from saddle points and arrive at an optimal

solution of the original SDP.
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Solving large-scale polynomial optimization

POP structure Structured Moment-SOS ’
—|— *){ Solving large-scale POP
Moment-SOS structure Structured SDP ’
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Software

® TSSOS: based on JuMP, user-friendly, support

commutative/complex/noncommutative polynomial optimization
https://github.com/wangjie212/TSSOS
® ManiSDP: efficiently solve low-rank SDPs via manifold optimization

https://github.com/wangjie212 /ManiSDP
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Binary quadratic programs

Table: Random binary quadratic programs min,c_1 13, xTQx, r= 2!

MOSEK 10.0 SDPNAL+ STRIDE ManiSDP
n Nsdp Msdp i . . .
TImax time TImax time Tmax time Tlmax time
10 56 1,256 4.4e-11 | 0.71 | 1.9e-09 | 0.65 | 4.7e-13 | 0.79 | 3.2¢-15 | 0.14

20 211 16,361 2.7e-11 | 49.0 | 3.0e-09 | 28.8 | 7.4e-13 | 6.12 | 1.2e-14 | 0.53

30 466 77,316 - - 1.7e-04 | 187 | 1.2e-12 | 65.4 | 2.4e-14 | 3.25
40 821 236,121 - - 2.1e-08 | 813 | 4.4e-13 | 249 | 4.1e-14 | 10.5
50 | 1,276 564,776 - - 1.6e-07 | 3058 | 7.8e-09 | 826 | 6.4e-14 | 31.1
60 | 1,831 | 1,155,281 - - * * 1.3e-12 | 2118 | 7.9e-14 | 94.3
120 | 7,261 | 17,869,161 - - - - - - 3.5e-13 | 30801

L. out of memory, *: >10000s
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The robust rotation search problem

® g: unit quaternion parametrization of a 3D rotation
o (z; e R3 w; € R¥)N,: N pairs of 3D points

ez =[,0TcR*

® /= [wT,0]T € R*

® [3;: threshold determining the maximum inlier residual

- [z gowog !
min Zmln 72 ,1
i

=1
lall=1 4=

Jie Wang Structured Polynomial Optimization
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The robust rotation search problem

Table: Results for the robust rotation search problem, r =2

MOSEK 10.0 SDPLR 1.03 SDPNAL+ STRIDE ManiSDP

TImax time TImax time TImax time TImax time TImax time
50 | 4.7¢-10 | 16.4 | 9.8e-03 | 12.5 | 1.1e-02 | 106 | 2.8e-09 | 18.3 | 6.6e-09 | 3.02
100 | 2.0e-11 | 622 | 3.6e-04 | 106 | 7.1e-02 | 642 | 3.1e-09 | 73.0 | 1.0e-09 | 22.9

150 - - 2.0e-03 | 291 | 8.0e-02 | 1691 | 4.3e-11 | 249 | 1.6e-09 | 33.5
200 - - 3.1e-02 | 459 | 8.3e-02 | 2799 | 1.4e-09 | 254 | 6.3e-10 | 65.3
300 - - 1.1e-03 | 1264 | 5.2e-02 | 3528 | 4.1e-10 | 1176 | 1.1e-09 | 188
500 - - * * * * 7.1e-09 | 5627 | 5.2¢-10 | 601
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The AC-OPF problem

inf
v, séeC

s.t.

> (cakR(S5)? + cukR(SE) + cox)

keG

/V, =0,

! u
S8 < SE<SE ke G,
vl < |V <wf, VieN,

Zkec, Si— S{ - Y|V = Z(i,j)eE;UEIR Sij, VieN,

_ _bf. I_z g ViV .
Si=(YVi=i3)ifn ~ Yor), V(i) €E
< .b v.Y P
Sii= (Y —i5)|Vi* — Yig, V(ij)eE

1Sy < s V(ij) € EUER,

ijs

03 < Z(ViV) <63, V(ij) €E.

ij >

Jie Wang
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The AC-OPF problem

CS (r=2) CS+TS (r=2)
A " Nsdp opt time gap Nsdp opt time gap
12 28 28 1.1242e¢4 | 0.21 | 0.00% 22 1.1242¢4 | 0.09 | 0.00%
20 55 28 1.7543e4 | 0.56 | 0.05% 22 1.7543e4 | 0.30 | 0.05%

72 297 45 4.9927e3 | 4.43 | 0.07% 22 4.9920e3 | 2.69 | 0.08%
114 315 120 7.6943e4 | 94.9 | 0.00% 39 7.6942e4 | 14.8 | 0.00%

344 1325 253 - - - 73 1.0470e5 169 | 0.50%
348 1809 253 - - - 34 1.2096e5 201 0.03%
766 3322 153 3.3072¢6 | 585 | 0.68% 44 3.3042¢6 | 33.9 | 0.77%
1112 4613 496 - - - 31 7.2396e4 | 410 | 0.25%
4356 | 18257 378 - - - 27 1.3953e6 934 0.51%
6698 | 29283 | 1326 - - - 76 5.9858e5 | 1886 | 0.47%
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Nonlinear Bell inequality

® \(A1By + ArB1)? + \(A1By — A B)? < 4
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Nonlinear Bell inequality

® \(A1By + ArB1)? + \(A1By — A B)? < 4

sup  (s(xay2) +sbey))? + (sbay) — s(ey2))®

XisYj
st. X = 1,yJ2- =1,[x,y]=0forij=1,2.
® For classical models: 4

® For quantum commuting model: 4 (r= 3)
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Nonlinear Bell inequality

® \Ay+ By + By — A1By + AyB1 + A1By + A2 Ba) — A(A1)A(By1) —
A(A2)A(B1) = A(A2)A(B2) — A(A1)? — A(B2)?

Jie Wang Structured Polynomial Optimization July 20, 2023



Nonlinear Bell inequality

® \Ay+ By + By — A1By + AyB1 + A1By + A2 Ba) — A(A1)A(By1) —
A(A2)A(B1) = A(A2)A(B2) — A(A1)? — A(B2)?

;

sup  <(x2) +<(y1) +<(y2) — s(xay1) + s(xey1) + s(x1y2) + s(x2y2)

XiyYj

—s(x1)s(y1) — s()s(y1) — s(x)s(y2) — C(X1)2 - c(y2)2

s.t. xgzl,ngzl,[x,-,yj]zofor ihj=1,2.

\ 1
® For classical models: 3.375

® For quantum commuting model: 3.5114 (r=2)
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Ground state energy of quantum many-body systems

The Heisenberg chain is defined by the Hamiltonian:

N
HeY Y oot

=1 ae{xy,z}
The ground state energy of the Heisenberg chain equals the optimum of

the NCPOP:

min
{l¥),o7

st. (09)?=1, i=1,....,N,ac {xyz},

Jie Wang Structured Polynomial Optimization July 20, 2023



Ground state energy of many-body systems

Y o® * *==‘=:‘::!:::::.1:::55:::::33::::‘::‘.‘.::::::::::::::‘
ZE —-0.445 R
&6
5}
A
» —0.450
=
n
E - DMRG PBC
E —0.455
&5 DMRG OBC Rescaled (Anderson)
A ~+- SDP Lower Bound
—-0.460— : ‘ ‘ :
20 40 60 80 100

N

Figure: Ground state energy of the Heisenberg chain
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Summary

Measure Positive

theory polynomials

Polynomial

optimization

Applications
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Conclusions

@ Polynomial optimization provides a unified scheme for global

optimization of various non-convex problems.

@ The scalability of the moment-SOS hierarchy can be significantly

improved by exploiting plenty of algebraic structures.

@ There are tons of applications in diverse fields!
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Thank You!

https://wangjie212.github.io/jiewang
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