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Polynomial optimization

• Polynomial optimization problem (POP):

fmin :=


inf

x∈Rn
f(x)

s.t. gi(x) ≥ 0, i = 1, . . . ,m

• non-convex, NP-hard

• optimal power flow, computer vision, combinatorial optimization, neutral

networks, signal processing, quantum information...
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Why polynomial optimization?

• closely related to real algebraic geometry: the theory of positive

polynomials, convex algebraic geometry

• be able to compute the globally optimal value/solutions: the

Moment-SOS hierarchy

• closely related to theoretical computer science: the theory of

approximation algorithms, the theory of complexity

• Powerful modelling ability: QCQP, binary program, (mixed) integer

(non-)linear program and so on
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Continuous optimization appears as POPs

Continuous convex and nonconvex optimization problems with linear

and/or quadratic costs and constraints:


inf

x∈Rn
x⊺A0x + b⊺0x

s.t. x⊺Aix + b⊺i x − ci ≥ 0, i = 1, . . . ,m.
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Continuous optimization approximated by POPs

• Any continuous function can be approximated by polynomials as closely

as desired.

• Any continuous optimization problem can be approximated by POPs as

closely as desired.
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Discrete optimization

• ±1 variables: x ∈ {−1,+1} ⇐⇒ x2 − 1 = 0

• 0/1 variables: x ∈ {0, 1} ⇐⇒ x(x − 1) = 0

• integer variables: x ∈ {1, 2, . . . , t} ⇐⇒ (x − 1)(x − 2) · · · (x − t) = 0
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Non-convexity of polynomial optimization
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Example (moment relaxation)


inf
x

x2
1 + x1x2 + x2

2

s.t. 1 − x2
1 ≥ 0, 1 − x2

2 ≥ 0
⇐⇒



inf
x

x2
1 + x1x2 + x2

2

s.t.


1 x1 x2

x1 x2
1 x1x2

x2 x1x2 x2
2

 = [1, x1, x2] · [1, x1, x2]
⊺ ⪰ 0,

1 − x2
1 ≥ 0, 1 − x2

2 ≥ 0

⇐⇒



inf
y

y2,0 + y1,1 + y0,2

s.t.


1 y1,0 y0,1

y1,0 y2,0 y1,1

y0,1 y1,1 y0,2

 ⪰ 0,

1 − y2,0 ≥ 0, 1 − y0,2 ≥ 0,

∃x ∈ R2 s.t. y = (x1, x2, x2
1, x1x2, x2

2)

relax
====⇒



inf
y

y2,0 + y1,1 + y0,2

s.t.


1 y1,0 y0,1

y1,0 y2,0 y1,1

y0,1 y1,1 y0,2

 ⪰ 0,

1 − y2,0 ≥ 0, 1 − y0,2 ≥ 0
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The hierarchy of moment relaxations

• The hierarchy of moment relaxations (Lasserre 2001):

θr :=



inf
y

Ly(f)

s.t. Mr(y) ⪰ 0,

Mr−di(giy) ⪰ 0, i = 1, . . . ,m,

y0 = 1.
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Example (dual SOS relaxation)


inf
x

x2
1 + x1x2 + x2

2

s.t. 1 − x2
1 ≥ 0, 1 − x2

2 ≥ 0
⇐⇒


sup
λ

λ

s.t. x2
1 + x1x2 + x2

2 − λ ≥ 0, ∀x ∈ R2 s.t. (1 − x2
1 ≥ 0, 1 − x2

2 ≥ 0)

strengthen
==========⇒


sup
λ,σi

λ

s.t. x2
1 + x1x2 + x2

2 − λ = σ0 + σ1(1 − x2
1) + σ2(1 − x2

2),

σ0, σ1, σ2 ∈ SOS
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The hierarchy of dual SOS relaxations

• The hierarchy of dual SOS relaxations (Parrilo 2000 & Lasserre 2001):

θ∗r :=



sup
λ,σi

λ

s.t. f − λ = σ0 +
∑m

i=1 σigi,

σ0, σ1, . . . , σm ∈ Σ(x),

deg(σ0) ≤ 2r, deg(σigi) ≤ 2r, i = 1, . . . ,m.

Jie Wang Structured Polynomial Optimization July 20, 2023 13 / 51



The Moment-SOS/Lasserre’s hierarchy

fmin

≤ ≤
... ...

≤ ≤

(Moment relaxation) θr “ = ” θ∗r (dual SOS relaxation)
≤ ≤

... ...

≤ ≤

θrmin “ = ” θ∗rmin
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Asymptotical convergence and finite convergence

• Under Archimedean’s condition (≈ compactness): there exists N > 0

s.t. N − ||x||2 ∈ Q(g)

ä θr ↗ fmin and θ∗r ↗ fmin as r → ∞ (Putinar’s Positivstellensatz,

1993)

ä Finite convergence happens generically (Nie, 2014)
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Detecting global optimality

• The moment relaxation achieves global optimality (θr = fmin) when one

of the following conditions holds:

ä (flat extension) For r0 ≤ r′ ≤ r, rank Mr′−r0(y) = rank Mr′(y)

⇝ Extract rank Mr′(y) globally optimal solutions

ä rank Mrmin(y) = 1

⇝ Extract one globally optimal solution
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Extension – complex polynomial optimization

• Complex polynomial optimization problem (CPOP):
inf

z∈Cn
f(z, z)

s.t. gi(z, z) ≥ 0, i = 1, . . . ,m,

hj(z, z) = 0, j = 1, . . . , l.

⇝ The moment-HSOS hierarchy

⇝ optimal power flow
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Extension – trigonometric polynomial optimization

• Trigonometric polynomial optimization problem:
inf

x∈[0,2π)n
f(sin x1, . . . , sin xn, cos x1, . . . , cos xn)

s.t. gi(sin x1, . . . , sin xn, cos x1, . . . , cos xn) ≥ 0, i = 1, . . . ,m,

hj(sin x1, . . . , sin xn, cos x1, . . . , cos xn) = 0, j = 1, . . . , l.

⇝ The moment-HSOS hierarchy

⇝ sigal processing
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Extension – noncommutative polynomial optimization

• Eigenvalue optimization problem:
inf
X

eig f(X) = f(X1, . . . ,Xn)

s.t. gi(X) ≥ 0, i = 1, . . . ,m,

hj(X) = 0, j = 1, . . . , l.

⇝ The moment-SOHS hierarchy

⇝ linear Bell inequality
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Extension – noncommutative polynomial optimization

• Trace optimization problem:
inf
X

tr f(X) = f(X1, . . . ,Xn)

s.t. gi(X) ≥ 0, i = 1, . . . ,m,

hj(X) = 0, j = 1, . . . , l.

⇝ The tracial moment-SOHS hierarchy
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Extension – trace/state polynomial optimization

• trace polynomial: tr(x2
1)x2x1 + tr(x1)tr(x2x1x2), x1, . . . , xn ∈ B(H)

• state polynomial: ς(x2
1)x2x1 + ς(x1)ς(x2x1x2), x1, . . . , xn ∈ B(H), ς is a

formal state (i.e., a positive unital linear functional) on B(H)

⇝ The moment-SOHS hierarchy

⇝ nonlinear Bell inequality
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Extension – polynomial matrix optimization

• Robust polynomial matrix inequality optimization:
inf
y∈Y

f(y)

s.t. P(y, x) � 0, ∀x ∈ X.

⇝ The moment-SOS hierarchy

⇝ robust polynomial semidefinite program
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Extension – polynomial dynamic system

• Polynomial dynamic system:

ẋ1 = f1(x),

ẋ2 = f2(x),
...

ẋn = fn(x),

⇝ The moment-SOS hierarchy

⇝ maximal (controlled) invariant set, attraction region, global

attractor, reachable set, optimal control

Jie Wang Structured Polynomial Optimization July 20, 2023 23 / 51



The scalability issue of the moment-SOS hierarchy

• The size of SDP corresponding to the r-th SOS relaxation:

1 PSD constraint:
(n+r

r
)

2 #equality constraint:
(n+2r

2r
)

• r = 2, n < 30 (Mosek)

• Exploiting algebraic structures:

ä POP

ä SDP
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Quotient ring

• Equality constraints: hj(x) = 0, j = 1, . . . , l

• Build the moment-SOS hierarchy on the quotient ring

R[x]/(h1(x), . . . , hl(x))

⇝ Gröbner basis
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Symmetry

• permutation symmetry: (x1, . . . , xn) → (xτ(1), . . . , xτ(n))

• translation symmetry: (x1, . . . , xn) → (x1+i, . . . , xn+i), xn+i = xi

• sign symmetry: (x1, . . . , xn) → (−x1, . . . ,−xn)

• conjugate symmetry: z → z

• T-symmetry: z → eiθz

⇝ lead to block-diagonal moment-SOS hierarchies
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Correlative sparsity (Waki et al. 2006)

• Correlative sparsity pattern graph Gcsp(V,E):

ä V := {x1, . . . , xn}

ä {xi, xj} ∈ E ⇐⇒ xi, xj appear in the same term of f or in the same

constraint polynomial gk

• For each maximal clique of Gcsp(V,E), do

Ik 7−→ Mr(y, Ik),Mr−di(giy, Ik)
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Term sparsity (Wang & Magron & Lasserre, 2021)

• Term sparsity pattern graph Gtsp(V,E):

ä V := vr = {1, x1, . . . , xn, xr
1, . . . , xr

n}

ä {xα, xβ} ∈ E ⇐⇒ xα · xβ = xα+β ∈ supp(f) ∪
∪m

i=1 supp(gi) ∪ v2
r


··· α ···

... ...

β · · · yα+β · · ·
... ...

 = Mr(y)
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Correlative-term sparsity

1 Decompose the whole set of variables into cliques by exploiting

correlative sparsity

2 Exploit term sparsity for each subsystem
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Structures of the SOS problem

Orthogonality: 〈Ai,Aj〉 = 0, ∀i 6= j



sup
X,x

c⊺x

s.t. 〈Ai,X〉+ Bix = bi, i = 1, . . . ,m

X � 0
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Structures of the moment problem

Low-rank: rank(Mopt) � n

Unital diagonal: diag(M) = 1

Unital trace: tr(M) = 1


inf

X∈Rn×n
〈C,X〉

s.t. 〈Ai,X〉 = bi, i = 1, . . . ,m

X � 0
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Solving low-rank SDPs via manifold optimization

Degenerate: ≥ 2nd relaxation ⇝ m � n Challenging!

Low-rank: rank Mopt � n ⇝ M = YY⊺, Y ∈ Rn×p Burer-Monteiro

ä N := {Y ∈ Rn×p}

Unital diagonal: diag(M) = 1

ä N := {Y ∈ Rn×p | ‖Y(k, :)‖ = 1, k = 1, . . . , n}

Unital trace: tr(M) = 1

ä N := {Y ∈ Rn×p | ‖Y‖F = 1}
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The augmented Lagrangian framework


inf
X⪰0

〈C,X〉

s.t. A(X) = b , B(X) = d ⇝ define a manifold M
handle with ALM

• The augmented Lagrangian function:

Lσ(X, y) = 〈C,X〉 − y⊺(A(X)− b) + σ

2 ‖A(X)− b‖2

• Need to solve the subproblem at the k-th step:

min
X∈M

Lσk(X, yk)
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• The augmented Lagrangian function:

Lσ(X, y) = 〈C,X〉 − y⊺(A(X)− b) + σ

2 ‖A(X)− b‖2

• Need to solve the subproblem at the k-th step:

min
X∈M

Lσk(X, yk)
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Solve the subproblem by the Riemannian trust region

method

Let X = YY⊺. Solve the subproblem on the manifold N by the

Riemannian trust region method:

min
Y∈N

〈C,YY⊺〉 − (yk)⊺(A(YY⊺)− b) + σk

2 ‖A(YY⊺)− b‖2⇝ nonconvex!

Good news
We can efficiently escape from saddle points and arrive at an optimal

solution of the original SDP.
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Solving large-scale polynomial optimization

POP structure

Moment-SOS structure

Structured Moment-SOS

Structured SDP

Solving large-scale POP+
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Software

• TSSOS: based on JuMP, user-friendly, support

commutative/complex/noncommutative polynomial optimization

https://github.com/wangjie212/TSSOS

• ManiSDP: efficiently solve low-rank SDPs via manifold optimization

https://github.com/wangjie212/ManiSDP
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Binary quadratic programs

Table: Random binary quadratic programs minx∈{−1,1}n x⊺Qx, r = 21

n nsdp msdp
MOSEK 10.0 SDPNAL+ STRIDE ManiSDP

ηmax time ηmax time ηmax time ηmax time

10 56 1,256 4.4e-11 0.71 1.9e-09 0.65 4.7e-13 0.79 3.2e-15 0.14

20 211 16,361 2.7e-11 49.0 3.0e-09 28.8 7.4e-13 6.12 1.2e-14 0.53

30 466 77,316 - - 1.7e-04 187 1.2e-12 65.4 2.4e-14 3.25

40 821 236,121 - - 2.1e-08 813 4.4e-13 249 4.1e-14 10.5

50 1,276 564,776 - - 1.6e-07 3058 7.8e-09 826 6.4e-14 31.1

60 1,831 1,155,281 - - ∗ ∗ 1.3e-12 2118 7.9e-14 94.3

120 7,261 17,869,161 - - - - - - 3.5e-13 30801

1-: out of memory, ∗: >10000s
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The robust rotation search problem

• q: unit quaternion parametrization of a 3D rotation

• (zi ∈ R3,wi ∈ R3)N
i=1: N pairs of 3D points

• z̃ := [z⊺, 0]⊺ ∈ R4

• w̃ := [w⊺, 0]⊺ ∈ R4

• βi: threshold determining the maximum inlier residual

min
∥q∥=1

N∑
i=1

min

{
‖z̃i − q ◦ w̃i ◦ q−1‖2

β2
i

, 1
}
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The robust rotation search problem

Table: Results for the robust rotation search problem, r = 2

N
MOSEK 10.0 SDPLR 1.03 SDPNAL+ STRIDE ManiSDP

ηmax time ηmax time ηmax time ηmax time ηmax time

50 4.7e-10 16.4 9.8e-03 12.5 1.1e-02 106 2.8e-09 18.3 6.6e-09 3.02

100 2.0e-11 622 3.6e-04 106 7.1e-02 642 3.1e-09 73.0 1.0e-09 22.9

150 - - 2.0e-03 291 8.0e-02 1691 4.3e-11 249 1.6e-09 33.5

200 - - 3.1e-02 459 8.3e-02 2799 1.4e-09 254 6.3e-10 65.3

300 - - 1.1e-03 1264 5.2e-02 3528 4.1e-10 1176 1.1e-09 188

500 - - ∗ ∗ ∗ ∗ 7.1e-09 5627 5.2e-10 601
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The AC-OPF problem



inf
Vi,Sg

k∈C

∑
k∈G

(
c2kℜ(Sg

k)
2 + c1kℜ(Sg

k) + c0k
)

s.t. ∠Vr = 0,

Sgl
k ≤ Sg

k ≤ Sgu
k , ∀k ∈ G,

υl
i ≤ |Vi| ≤ υu

i , ∀i ∈ N,∑
k∈Gi

Sg
k − Sd

i − Ys
i |Vi|2 =

∑
(i,j)∈Ei∪ER

i
Sij, ∀i ∈ N,

Sij = (Yij − i bc
ij

2 ) |Vi|2

|Tij|2
− Yij

ViVj
Tij

, ∀(i, j) ∈ E,

Sji = (Yij − i bc
ij

2 )|Vj|2 − Yij
ViVj
Tij

, ∀(i, j) ∈ E,

|Sij| ≤ su
ij, ∀(i, j) ∈ E ∪ ER,

θ∆l
ij ≤ ∠(ViVj) ≤ θ∆u

ij , ∀(i, j) ∈ E.
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The AC-OPF problem

n m
CS (r = 2) CS+TS (r = 2)

nsdp opt time gap nsdp opt time gap
12 28 28 1.1242e4 0.21 0.00% 22 1.1242e4 0.09 0.00%
20 55 28 1.7543e4 0.56 0.05% 22 1.7543e4 0.30 0.05%
72 297 45 4.9927e3 4.43 0.07% 22 4.9920e3 2.69 0.08%
114 315 120 7.6943e4 94.9 0.00% 39 7.6942e4 14.8 0.00%
344 1325 253 - - - 73 1.0470e5 169 0.50%
348 1809 253 - - - 34 1.2096e5 201 0.03%
766 3322 153 3.3072e6 585 0.68% 44 3.3042e6 33.9 0.77%
1112 4613 496 - - - 31 7.2396e4 410 0.25%
4356 18257 378 - - - 27 1.3953e6 934 0.51%
6698 29283 1326 - - - 76 5.9858e5 1886 0.47%
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Nonlinear Bell inequality

• λ(A1B2 + A2B1)2 + λ(A1B1 − A2B2)2 ≤ 4


sup
xi,yj

(ς(x1y2) + ς(x2y1))
2 + (ς(x1y1)− ς(x2y2))

2

s.t. x2
i = 1, y2

j = 1, [xi, yj] = 0 for i, j = 1, 2.

• For classical models: 4

• For quantum commuting model: 4 (r = 3)
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Nonlinear Bell inequality

• λ(A2 + B1 + B2 − A1B1 + A2B1 + A1B2 + A2B2)− λ(A1)λ(B1)−

λ(A2)λ(B1)− λ(A2)λ(B2)− λ(A1)2 − λ(B2)2



sup
xi,yj

ς(x2) + ς(y1) + ς(y2)− ς(x1y1) + ς(x2y1) + ς(x1y2) + ς(x2y2)

−ς(x1)ς(y1)− ς(x2)ς(y1)− ς(x2)ς(y2)− ς(x1)2 − ς(y2)2

s.t. x2
i = 1, y2

j = 1, [xi, yj] = 0 for i, j = 1, 2.

• For classical models: 3.375

• For quantum commuting model: 3.5114 (r = 2)
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Ground state energy of quantum many-body systems

The Heisenberg chain is defined by the Hamiltonian:

H =
N∑

i=1

∑
a∈{x,y,z}

σa
i σ

a
i+1.

The ground state energy of the Heisenberg chain equals the optimum of

the NCPOP:

min
{|ψ⟩,σa

i }
〈ψ|H|ψ〉

s.t. (σa
i )

2 = 1, i = 1, . . . ,N, a ∈ {x, y, z},

σx
i σ

y
i = iσz

i , σ
y
i σ

z
i = iσx

i , σ
z
i σ

x
i = iσy

i , i = 1, . . . ,N,

σa
i σ

b
j = σb

j σ
a
i , 1 ≤ i 6= j ≤ N, a, b ∈ {x, y, z}.
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Ground state energy of many-body systems

DMRG PBC
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Figure: Ground state energy of the Heisenberg chain
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Summary

Polynomial
optimization

Positive

polynomials

Applications

Measure

theory
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Conclusions

Polynomial optimization provides a unified scheme for global

optimization of various non-convex problems.

The scalability of the moment-SOS hierarchy can be significantly

improved by exploiting plenty of algebraic structures.

There are tons of applications in diverse fields!
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Thank You!
https://wangjie212.github.io/jiewang
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