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Polynomial optimization problem

The polynomial optimization problem (POP):

(Q) :
f ∗ := inf f

s.t. gj ≥ 0, j = 1, . . . ,m,
(hi = 0, i = 1, . . . ,m′)

where f , gj (hi ) ∈ R[x] := R[x1, . . . , xn].

In general, the problem (Q) is non-convex, NP-hard.
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Applications

Discrete optimization (e.g. the max-cut problem)

Optimal power flow

Truncated least squares (TLS) estimation

Sparse polynomial interpolation

Optimal control

Deep learning

Quantum information

......
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What do we care about?

Compute the global optimal value

Extract global minimizers

Certify global optimality

Approximate the global optimal value if the exact computation is
impossible/unnecessary/expensive

The moment-SOS hierarchy (also known as Lasserre’s hierarchy) is a
powerful tool to handle POPs and to answer all these questions.
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What does “moment” mean?

Assume K = {x ∈ Rn : gj(x) ≥ 0, j = 1, . . . ,m}. The POP (Q) is
equivalent to

inf
µ∈M(K)+

{
∫
K
f (x) dµ : µ(K) = 1}. (1)

Let yα =
∫
K xα dµ (moment) for α ∈ Nn. Then (1) can be rewritten as

inf
y
{Ly(f ) =

∑
α∈supp(f )

fαyα : ∃µ ∈M(K)+ s.t. y ∼ µ and y0 = 1}. (2)

Question: Which sequence y = (yα)α∈Nn admits a finite Borel measure
representation with support contained in K?
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What does “moment” mean?

The d-order moment matrix Md(y) is defined by [Md(y)]βγ = yβ+γ for
β,γ ∈ Nn

d .
Given g ∈ R[x], the d-order localizing matrix Md−dj (gy) is defined by
[Md−dj (gy)]βγ =

∑
α∈supp(g) gαyα+β+γ for β,γ ∈ Nn

d−dj
(dj = ddeg(gj)/2e).

Theorem

Assume Archimedean’s condition holds. The sequence y = (yα)α∈Nn has a
finite Borel representing measure with support contained in K if and only
if Md(y) � 0,Md−dj (gjy) � 0 for all j and d.
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What does “moment” mean?

By truncating the order of moments, we then obtain a series of moment
relaxations (indexed by d) of (Q) to approximate f ∗ from below:

(Qd) :

θd := inf Ly(f )
s.t. Md(y) � 0,

Md−dj (gjy) � 0, j = 1, . . . ,m,

y0 = 1.

Here, d0 = 0, dj = ddeg(gj)/2e.

This is actually a semidefinite programming (SDP) problem, effectively
solved by interior-point solvers (e.g. MOSEK) or first-order solvers (e.g.
SDPNAL).
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What does “SOS” mean?

Assume K = {x ∈ Rn : gj(x) ≥ 0, j = 1, . . . ,m}. The dual of (Q) reads as

f ∗ = sup
λ
{λ : f (x)− λ ≥ 0 over K}. (3)

The convex cone PK(x) := {g(x) | g(x) ≥ 0 over K} is intractable!

Question: How to effectively approximate PK(x) by tractable subsets (or
supsets)?
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What does “SOS” mean?

Σ(x) := {f ∈ R[x] | f =
∑

i f
2
i , fi ∈ R[x]} (SOS polynomials)

Given g = {gj}mj=1 ⊆ R[x], the quadratic module generated by g is
Qg := {σ0 +

∑m
j=1 σjgj | σj ∈ Σ(x), j = 0, 1, . . . ,m},

and the truncated quadratic module of degree 2d is (with g0 := 1)
Qg,2d := {σ0 +

∑m
j=1 σjgj | σj ∈ Σ(x), deg(σjgj) ≤ 2d , j = 0, 1, . . . ,m}.

Theorem (Putinar’s Positivstellensatz)

Assume Archimedean’s condition holds. If f > 0 over K, then f ∈ Qg.

Replacing PK(x) by Qg,2d , we then obtain a series of SOS relaxations
(indexed by d) of (Q) to approximate f ∗ from below:

(Qd)∗ :
θ∗d := sup λ

s.t. f − λ ∈ Qg,2d .

This is actually the dual SDP problem of the moment relaxation.
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The moment-SOS hierarchy

f ∗

≤ ≤
...

...

≤ ≤

(the moment relaxation) θd “ = ” θ∗d (the SOS relaxation)

≤ ≤

...
...

≤ ≤
θd “ = ” θ∗d

d := max{deg(f )/2, d1, . . . , dm}
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Asymptotical convergence and finite Convergence

Under Archimedean’s condition (≈ compactness): there exists N > 0 s.t.
N − ||x||2 ∈ Qg, we have

θd ↑ f ∗ and θ∗d ↑ f ∗ as d →∞ (Lassere, 2001);

Finite convergence happens generically (Nie, 2014);

We can verify global optimality by the so-called rank condition (flat
extension/truncation);

We can easily extract minimizers when the rank condition is satisfied.

In practice for most POPs, the moment-SOS hierarchy retrieves f ∗ in a
few steps.

Important Message: The moment-SOS hierarchy enable us to
approximate/retrieve the global optimum/optimizers via solving a
sequence of SDPs with increasing sizes.
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Scalability

The size of SDP (considering (Qd)∗) at relaxation order d :

SDP matrix:
(n+d

d

)
#equality constraint:

(n+2d
2d

)
In view of the current state of SDP solvers (e.g. MOSEK), problems are
limited to n < 30 when d = 2 on a standard laptop.

Exploiting structure:

quotient ring

symmetry

constant trace property

sparsity (correlative sparsity and term sparsity)
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Correlative sparsity (Waki et al., 2006)

The basic idea is to partition the variables into cliques according to the
correlations between variables.

Correlative sparsity pattern (csp) graph G csp(V ,E ):
V := {x1, . . . , xn}
{xi , xj} ∈ E ⇐⇒ xi , xj appear in the same term of f or appear in the same
constraint gj

We then construct moment/localizing matrices with respect to the
variables involved in each maximal clique of the csp graph:

Ik 7−→ Md(y, Ik),Md−dj (gjy, Ik)
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Correlative sparsity

Example

Consider f = x41 + x1x
2
2 + x2x3 + x23x

2
4 and g1 = 1− x21 − x22 − x23 ,

g2 = 1− x3x4.

Figure: The csp graph for f and {g1, g2}

x1

x2

x3 x4

Two maximal cliques: {x1, x2, x3} and {x3, x4}
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The correlative sparsity adapted moment-SOS hierarchy

If the csp graph is chordal (otherwise we need a chordal extension),
then the correlative sparsity adapted moment-SOS hierarchy shares
the same convergence as the standard one;

We can still verify global optimality by the (adapted) rank condition;

We can still extract global minimizers if certain rank conditions are
satisfied;

Significantly improve scalability if the sizes of maximal cliques of the
csp graph are small (e.g. ≤ 10).
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Term sparsity

In contrast with correlative sparsity concerning variables, term sparsity
treats sparsity at the term level.

Vd(x) := {1, x1, . . . , xn, xd1 , . . . , xdn } the monomial basis of degree ≤ d .

Term sparsity pattern (tsp) graph G tsp(V ,E ) (with relaxation order d):
V := Vd(x)
{xα, xβ} ∈ E ⇐⇒ xα+β = xαxβ ∈ supp(f ) ∪

⋃m
j=1 supp(gj) ∪ Vd(x)2

(For f =
∑

α fαxα ∈ R[x], supp(f ) := {xα | fα 6= 0})
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Term sparsity

Example

Consider f = x41 + x1x
2
2 + x2x3 + x23x

2
4 and g1 = 1− x21 − x22 − x23 ,

g2 = 1− x3x4.

Figure: The tsp graph for f and {g1, g2} with d = 2

1

x21

x22

x23

x24

x1

x2x3x4 x1x2

x1x3 x1x4

x2x3

x2x4

x3x4
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Term sparsity

Suppose the tsp graph G tsp has connected components: B1, . . . ,Bt . So

Vd(x) =
t⊔

i=1

Bi .

For each Bi , we construct a block of the moment matrix: MBi
(y).

In such a way, we replace one big matrix Md(y) by a series of smaller
matrices MBi

(y), i = 1, . . . , t in the moment relaxation.

Remark: The same thing can be also done for the localizing matrices
Md−dj (y), j = 1, . . . ,m.
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Extending to an iterative procedure

For simplicity, we consider the unconstrained case. For a graph G (V ,E )
with nodes Vd(x) (d = deg(f )/2), define

supp(G ) := {xα+β | {xα, xβ} ∈ E}.

Let G (0) = G tsp. We iteratively define a sequence of graphs (G (k))k≥1 via
two successive operations:

1 Support extension: let F (k) be the graph with nodes Vd(x) and edges

E (F (k)) := {{xα, xβ} | xα+β ∈ supp(G (k−1)) ∪ Vd(x)2}

2 Block closure: G (k) = F (k), i.e. G (k) is obtained by completing every
connected components of F (k)

Jie Wang (LAAS-CNRS) Sparsity in Large-Scale POPs 28/10/2020 19 / 40



Support extension

Example

Consider the following graph G (V ,E ) with

V = {1, x1, x2, x3, x2x3, x1x3, x1x2} and E = {{1, x2x3}, {x2, x1x3}}.

Figure: The support extension of G

1 x1 x2 x3

x2x3 x1x3 x1x2
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Block closure

Example

Consider the following graph G (V ,E ) with
V = {1, x1, x2, x3, x2x3, x1x3, x1x2}

and
E = {{1, x2x3}, {x2, x1x3}, {x1, x2x3}, {x2, x3}, {x3, x1x2}}.

Figure: The block closure of G

1 x1 x2 x3

x2x3 x1x3 x1x2
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The term sparsity adapted moment-SOS (TSSOS)
hierarchy

Let B
(k)
1 , . . . ,B

(k)
tk be the connected components of G (k). For each

k ≥ 1, let us consider

(Qk) :

θ(k) := inf Ly(f )
s.t. M

B
(k)
i

(y) � 0, i = 1, . . . , tk

y0 = 1.

One then obtains

θsdsos ≤ θ(1) ≤ θ(2) ≤ · · · ≤ f ∗.

We call (Qk), k = 1, 2, . . . the TSSOS hierarchy for (Q) and k the sparse
order.
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A two-level hierarchy of lower bounds

The above procedure can be extended to the constrained case. As a
consequence, we obtain a two-level hierarchy of lower bounds for f ∗:
(d := max{deg(f )/2, d1, . . . , dm})

θ
(1)
d ≤ θ

(2)
d ≤ · · · ≤ θd
≥ ≥ ≥

θ
(1)
d+1 ≤ θ

(2)
d+1 ≤ · · · ≤ θd+1

≥ ≥ ≥

...
...

...
...

≥ ≥ ≥

θ
(1)
d ≤ θ

(2)
d ≤ · · · ≤ θd

≥ ≥ ≥

...
...

...
...
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The TSSOS hierarchy

Regarding the TSSOS hierarchy, we have

For QCQP, θ
(1)
1 = θshor;

Fixing a sparse order k , the sequence (θ
(k)
d )d≥d is monotone

nondecreasing;

Fixing a relaxation order d , the sequence (θ
(k)
d )k≥1 converges to θd in

finitely many steps.
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The connection to sign symmetries

Definition

Given a finite set A ⊆ Nn, the sign symmetries of A are defined by all
vectors r ∈ Zn

2 such that rTα ≡ 0 (mod 2) for all α ∈ A .

Example

Let A = {
[

0
2

]
,

[
3
1

]
,

[
1
3

]
,

[
2
2

]
}. The sign symmetries of A consist of

r1 =

[
0
0

]
, r2 =

[
1
1

]
.
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The connection to sign symmetries

Let A = {α ∈ Nn | xα ∈ supp(f ) ∪
⋃m

j=1 supp(gj)}.
The sign symmetries R = [r1, . . . , rs ] of A induces a partition of the bases
Vd(x), Vd−dj (x), j = 1, . . . ,m:

xα, xβ belong to the same block ⇐⇒ RT (α + β) ≡ 0 (mod 2).

Theorem (Wang, Magron and Lasserre (2020))

Fixing a relaxation order d, the partition of monomial bases Vd(x),
Vd−dj (x) at the final step of the TSSOS hierarchy is the one induced by
the sign symmetries of the above A .
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A sparse representation theorem

Theorem (Wang, Magron and Lasserre (2020))

Assume that the quadratic module Qg is Archimedean and that f is
positive on K. Let A = supp(f ) ∪

⋃m
j=1 supp(gj) and R be the sign

symmetries of A . Then f can be represented as

f = σ0 +
m∑
j=1

σjgj ,

for some SOS polynomials σ0, σ1, . . . , σm satisfying RTα ≡ 0 (mod 2) for
any xα ∈ supp(σj), j = 0, . . . ,m.
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Extensions

Replacing block closure by chordal extension;

Exploiting correlative sparsity and term sparsity simultaneously;

Exploiting quotient structure and term sparsity simultaneously;

Extending to complex polynomial optimization (C[x]);

Extending to noncommutative polynomial optimization (R〈Y 〉);

Extending to polynomial optimization over C〈Y 〉, R[x]〈Y 〉, C[x]〈Y 〉.
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Replacing block closure by chordal extension

Let f = x21 − 2x1x2 + x22 − 2x21x2 + x21x
2
2 − 2x2x3 + x23 + x22x3− x2x

2
3 + x22x

2
3 .

A monomial basis: {1, x1, x2, x3, x1x2, x2x3}.

Figure: Block closure versus chordal extension

x1 x2 x3

x1x2 1 x2x3

Jie Wang (LAAS-CNRS) Sparsity in Large-Scale POPs 28/10/2020 29 / 40



Combining correlative sparsity with term sparsity

The combination of correlative sparsity with term sparsity splits into two
steps:

1 Partitioning the variables with respect to the maximal cliques of the
csp graph;

2 For each subsystem involving variables from one maximal clique,
applying the above iterative procedure to exploit term sparsity.

In doing so, we again obtain a two-level hierarchy of lower bounds for f ∗,
which is called the CS-TSSOS hierarchy.
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Softwares

All sparsity-exploiting techniques (reduced monomial basis, quotient
structure, correlative sparsity, term sparsity, combined correlative-term
sparsity) have been implemented in the following two softwares (freely
available on GitHub):

TSSOS: solving commutative polynomial optimization

NCTSSOS: solving noncommutative polynomial optimization

Besides, as an application to a specific SOS program

SparseJSR: computing joint spetral radius for a tuple of matrices
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Randomly generated polynomials of the SOS form

TSSOS, GloptiPoly, Yalmip: MOSEK SparsePOP: SDPT3

Table: Running time (in seconds) comparison with GloptiPoly, Yalmip and
SparsePOP for minimizing randomly generated sparse polynomials of the SOS
form with the same optimum; the symbol “-” indicates out of memory

n 2d TSSOS GloptiPoly Yalmip SparsePOP

8 8 0.24 306 10 24
8 8 0.34 348 13 130
8 8 0.36 326 19 175
8 10 0.58 - 92 323
8 10 0.53 - 72 1526
8 10 0.38 - 22 134
9 10 0.50 - 44 324
9 10 0.72 - 143 -
9 10 0.79 - 109 284
10 12 2.2 - 474 -
10 12 1.6 - 147 318
10 12 1.8 - 350 404
10 16 15 - - -
10 16 14 - - -
10 16 12 - - -
12 12 8.4 - - -
12 12 5.7 - - -
12 12 7.4 - - -
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Randomly generated polynomials with simplex Newton
polytopes

Table: Running time (in seconds) comparison with GloptiPoly, Yalmip and
SparsePOP for minimizing randomly generated sparse polynomials with simplex
Newton polytopes with the same optimum; the symbol “-” indicates out of
memory

n 2d TSSOS GloptiPoly Yalmip SparsePOP

8 8 0.36 346 31 271
8 8 0.51 447 24 496
8 8 0.31 257 6.0 178
9 8 1.0 - - -
9 8 0.63 - 363 611
9 8 0.76 - 141 578
9 10 6.6 - 322 -
9 10 5.0 - 233 -
9 10 4.9 - 249 -
10 8 1.2 - - -
10 8 8.0 - 536 -
10 8 1.0 - - -
11 8 1.7 - 655 398
11 8 1.8 - - 221
11 8 1.9 - 340 293
12 8 10 - - -
12 8 7.4 - - -
12 8 2.9 - - -
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AC-OPF problems

Table: The results for AC-OPF problems; the symbol “-” indicates out of memory

n m
CS (d = 2) CS+TS (d = 2)

mb opt time (s) rel. gap mb opt time (s) rel. gap
12 28 28 1.1242e4 0.21 0.00% 22 1.1242e4 0.09 0.00%
20 55 28 1.7543e4 0.56 0.05% 22 1.7543e4 0.30 0.05%
114 315 66 1.3442e5 5.59 0.39% 31 1.3396e5 2.01 0.73%
114 315 120 7.6943e4 94.9 0.00% 39 7.6942e4 14.8 0.00%
72 297 45 4.9927e3 4.43 0.07% 22 4.9920e3 2.69 0.08%
344 971 153 4.2246e5 758 0.06% 44 4.2072e5 96.0 0.48%
344 971 153 2.2775e5 504 0.00% 44 2.2766e5 71.5 0.04%
344 1325 253 − − − 31 2.4180e5 82.7 0.11%
344 1325 253 − − − 73 1.0470e5 169 0.50%
348 1809 253 − − − 34 1.0802e5 278 0.05%
348 1809 253 − − − 34 1.2096e5 201 0.03%
766 3322 153 3.3072e6 585 0.68% 44 3.3042e6 33.9 0.77%
1112 4613 231 4.2413e4 3114 0.85% 39 4.2408e4 46.6 0.86%
1112 4613 496 − − − 31 7.2396e4 410 0.25%
4356 18257 378 − − − 27 1.3953e6 934 0.51%
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Eigenvalue minimization for the noncommutative
generalized Rosenbrock function

Table: The eigenvalue minimization for the noncommutative generalized
Rosenbrock function over D, where D is defined by {1− X 2

1 , . . . , 1− X 2
n ,

X1 − 1/3, . . . ,Xn − 1/3}; the symbol “-” indicates out of memory

n
CS+TS (d = 2) Dense (d = 2)

mb opt time (s) mb opt time (s)
20 3 1.0000 0.14 - - -
40 3 1.0000 0.22 - - -
60 3 0.9999 0.28 - - -
80 3 0.9999 0.35 - - -
100 3 0.9999 0.46 - - -
200 3 0.9999 0.89 - - -
400 3 1.0000 2.40 - - -
600 3 1.0000 4.47 - - -
800 3 1.0000 6.95 - - -
1000 3 0.9999 10.2 - - -
2000 3 0.9999 37.2 - - -
3000 3 0.9999 87.2 - - -
4000 3 0.9998 145 - - -
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Open questions

How to certify/prove global optimality in the sparse setting (term
sparsity and combined correlative-term sparsity)?

How to exact global optimizers in the sparse setting (term sparsity
and combined correlative-term sparsity)?

How to choose appropriate chordal extensions for specific
applications?

Is it possible go beyond chordal extension?
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What else?

Finding a smaller monomial basis;

Relying on other positivity certificates, e.g., Krivine-Stengle’s
certificate (LP or SDP), the SONC certificate (GP or SOCP), the
SAGE certificate (REP);

Approximating the PSD cone by simple convex cones;

Developing fast first-order algorithms to solve SDP.
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Conclusions and outlooks

The concept of term sparsity patterns opens a new window to exploit
sparsity at the term level for polynomial optimization;

The TSSOS hierarchy is a powerful tool to handle large-scale
polynomial optimization problems;

One can exploit term sparsity for generalized moment problems (more
general than polynomial optimization), SOS programming, SDP
problems;

Fruitful potential applications: optimal power flow, computer vision,
control, deep learning, quantum information, tensor decomposition,
......

Jie Wang (LAAS-CNRS) Sparsity in Large-Scale POPs 28/10/2020 38 / 40



Main references

Jie Wang, Victor Magron and Jean B. Lasserre, TSSOS: A Moment-SOS hierarchy that
exploits term sparsity, SIAM Optimization, 2020.

Jie Wang, Victor Magron and Jean B. Lasserre, Chordal-TSSOS: a moment-SOS
hierarchy that exploits term sparsity with chordal extension, SIAM Optimization, 2020.

Jie Wang, Victor Magron, Jean B. Lasserre and Ngoc H. A. Mai, CS-TSSOS: Correlative
and term sparsity for large-scale polynomial optimization, arXiv:2005.02828, 2020.

Jie Wang and Victor Magron, Exploiting Term Sparsity in Noncommutative Polynomial
Optimization, arXiv:2010.06956, 2020.

Jie Wang, Martina Maggio and Victor Magron, SparseJSR: A Fast Algorithm to Compute
Joint Spectral Radius via Sparse SOS Decompositions, arXiv:2008.11441, 2020.

Jared Miller, Jie Wang, Mario Sznaier and Octavia Camps, Model Fitting by
Semialgebraic Clustering, 2020.

TSSOS: https://github.com/wangjie212/TSSOS

NCTSSOS: https://github.com/wangjie212/NCTSSOS

SparseJSR: https://github.com/wangjie212/SparseJSR

Jie Wang (LAAS-CNRS) Sparsity in Large-Scale POPs 28/10/2020 39 / 40



Thanks for your attention!
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