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Polynomial optimization

® Polynomial optimization problem (POP):

inf f
— xIEnR” (X)

fmin-
st. gi(x)>0, i=1,....m
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Polynomial optimization

® Polynomial optimization problem (POP):

inf f
— xIEnR” (X)

fmin-
st. gi(x)>0, i=1,....m

® non-convex, NP-hard
® power systems, computer vision, combinatorial optimization, neutral

networks, signal processing, quantum information...
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Why polynomial optimization?

® closely related to real algebraic geometry: the theory of positive

polynomials, convex algebraic geometry
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Why polynomial optimization?

® closely related to real algebraic geometry: the theory of positive
polynomials, convex algebraic geometry

® be able to compute the globally optimal value/solutions: the
Moment-SOS hierarchy

® closely related to theoretical computer science: the theory of
approximation algorithms, the theory of complexity

® Powerful modelling ability: QCQP, binary program, (mixed) integer

(non-)linear program and so on
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Non-convexity of polynomial optimization
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Example (moment relaxation)

B 2 2
|2f X{ +x1xe + X5

1 X: X
inf xf + x1x0 + x22 ! :
x = st I X2 x| =[xkl [Lx,x]T =0,
st. 1—x2>0,1—x3>0 )
X2 X1X2 X2

1-x2>0,1-x3>0

infy>04y1,1+¥0,2
Y inf y20 ty11+ 02

1 Y1,0  Yo,1
s.t. =0 ’ ’
yi,0 Y20 yii| =9 relax
= ¥1,0 Y20 yi,1| =

Y01 Y1,1 Y02
1—y202>20,1—y322>0,
1—y202>0,1—y22>0

2 2 2
3x € R® s.t. y = (x1, X2, X7, X1X2,X5)
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The hierarchy of moment relaxations

® The hierarchy of moment relaxations (Lasserre, 2001):

inf  Ly(f)
y

st. M(y) =0,

M, _4(gy) =0, i=1,....m,

yo=1.
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Example (dual SOS relaxation)

ir;f x12+x1x2+x22 Sl;\p A
<~

s.t. 1*X1220>1*X2220 s.t. x12+x1x2+x227)\20,Vx6R2s4tA(17x1220,17x2220)
sup A
Ao

strengthen
s.t. x12 + x1x0 + x22 —A=o9+o1(l — xf) + oa(1 — xzz),

op, 01,02 € SOS
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The hierarchy of dual SOS relaxations

® The hierarchy of dual SOS relaxations (Parrilo 2000 & Lasserre 2001):

sup A
A0

st. f—A=o00+ ", 0igi,
00,01, --,0m € X(X),

deg(oo) < 2r,deg(oigi) <2r,i=1,...,m.

51

Jie Wang
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The Moment-SOS/Lasserre’s hierarchy

(Moment relaxation)

Jie Wang

fmin

Q\

VI

6%  (dual SOS relaxation)
VI

VI

*
Imin
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Asymptotical convergence and finite convergence

® Under Archimedean’s condition (=~ compactness): there exists N > 0

st. N—|[|x]|? € Q(g)
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Asymptotical convergence and finite convergence

® Under Archimedean’s condition (=~ compactness): there exists N > 0
st. N —||x|* € Q(g)
» 0, " fmin and 65 7 fin @as r — oo (Putinar’s Positivstellensatz,

1993)

Jie Wang Structured Polynomial Optimization UCSD, October 18, 2023 11/51



Asymptotical convergence and finite convergence

® Under Archimedean’s condition (=~ compactness): there exists N > 0
st. N —||x|* € Q(g)
» 0, " fmin and 65 7 fin @as r — oo (Putinar’s Positivstellensatz,

1993)
» Finite convergence happens generically (Nie, 2014)
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Detecting global optimality

® The moment relaxation achieves global optimality (6, = fmin) when one

of the following conditions holds:

Jie Wang Structured Polynomial Optimization UCSD, October 18, 2023 12 /51



Detecting global optimality

® The moment relaxation achieves global optimality (6, = fmin) when one
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Detecting global optimality

® The moment relaxation achieves global optimality (6, = fmin) when one

of the following conditions holds:

» (flat extension) For some rp < r’ <r, rank M, _, (y) = rank M,/(y)
~~ Extract rank M,/ (y) globally optimal solutions

» rankM,_ (y) =1

~ Extract one globally optimal solution
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Extension — polynomial matrix optimization

® Robust polynomial matrix inequality optimization:

inf  f
Jnf, (y)

s.t. P(y,x) =0, ¥x € X.

~> robust polynomial semidefinite programming

[Guo & Wang, 2023]
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Extension — polynomial dynamic system

® Polynomial dynamic system:

;

).(1 - ﬂ(x)a
x = h(x),
\)'(,, = fu(x),

~» maximal invariant set, attraction region, global attractor, reachable

set
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Extension — complex polynomial optimization

e Complex polynomial optimization problem (CPOP):

£ 3

ZIGn(C" (Z’Z)

st. gi(z,z)>0, i=1,...,m,
hi(z,2) =0, j=1,...,1.

~> optimal power flow
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Extension — trigonometric polynomial optimization

® Trigonometric polynomial optimization problem:

inf f(sinxy,...,sinX,, COSX], ..., COSXp)
x€[0,2m)"
S.t. gi(sinxy,...,sinx,,cosxy,...,cosx,) >0, i=1...,m,

hi(sinxi,...,sinxp,cosx1,...,c08x,) =0, j=1,...,1/

~ sigal processing
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Extension — noncommutative polynomial optimization

® Eigenvalue optimization problem:

ig(f eigf(X) =1f(Xq,...,X,)
st. gi(X)>0, i=1,...,m,
hi(X)=0, j=1,....1I

~ linear Bell inequality

Jie Wang
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UCSD, October 18, 2023

17 /51



Extension — noncommutative polynomial optimization

® Trace optimization problem:

ig(f trf(X) = f(X1,...,Xn)
st. gi(X)>0, i=1,...,m,
hi(X)=0, j=1,...,1

~+ Connes’ embedding conjecture

Jie Wang
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Extension — trace/state polynomial optimization

e trace polynomial: tr(x?)xax1 + tr(xi)tr(xexix2), x1, . .., xn € B(H)
e state polynomial: ¢(x?)xox1 + s(x1)s(x2x1%2), X1, ..., xn € B(H), s is a
formal state (i.e., a positive unital linear functional) on B(H)

~+ nonlinear Bell inequality

Jie Wang
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More extensions and applications

The Generalized Moment Problem (GMP)

@ Tensor computation/optimization

Optimal control

@ Volume computation of semialgebraic sets

Computing joint spectral radius

e PDE
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The scalability issue of the Moment-SOS hierarchy

® The size of SDP corresponding to the r-th SOS relaxation:

© PSD constraint: (”Jr”)

n+2r)

@ #equality constraint: ("}
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The scalability issue of the Moment-SOS hierarchy

® The size of SDP corresponding to the r-th SOS relaxation:

© PSD constraint: (”Jr”)

"3

@ #equality constraint: (
® r =2, n < 30 (Mosek)
® Exploiting structures:

» POP

» SDP

Jie Wang Structured Polynomial Optimization UCSD, October 18, 2023 21/51



Quotient ring

® Equality constraints: hj(x) =0, j=1,...,/
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Quotient ring

® Equality constraints: hj(x) =0, j=1,...,/
e Construct the Moment-SOS hierarchy on the quotient ring

R[x]/(h1(x), ..., hi(x))

~~ Grobner basis
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Symmetry

® permutation symmetry: (xi,...,xn) = (Xr(1); - - -5 Xr(n))
e translation symmetry: (xi,...,%5) = (X147« -+ Xnti)y Xnti = Xi
® sign symmetry: (x1,...,Xp) = (—x1,...,—Xp)

® conjugate symmetry: z — Z

0

e T-symmetry: z — €'’z
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The procedure for exploiting symmetry

@ Determine the symmetry group of the POP
@ Compute the irreducible representations of the symmetry group
© Compute the basis for each isotypic component

@ Construct the block diagonal moment-SOS hierarchy
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Smaller monomial basis

When the POP is sparse, possible to use a smaller monomial basis.

Choose

By C[xlr =41, x1,-. s Xn, X{5- -, X }

such that

(supp(f yulJ Supp(g;)> C BB

i=1

Jie Wang

Structured Polynomial Optimization

UCSD, October 18, 2023 25 /51



Smaller monomial basis

When the POP is sparse, possible to use a smaller monomial basis.

Choose
By C x|y ={1,x1,. s Xn, X{, -, Xp}
such that

(supp(f yulJ Supp(g;)> C BB

i=1

For instance, consider the Newton polytope if unconstrained
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Correlative sparsity

e Correlative sparsity pattern graph G*P(V, E):
» Vi={xq,...,xn}
» {xi,xj} € E <= x;, x;j appear in the same term of f or in the same

constraint polynomial gi
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Correlative sparsity

e Correlative sparsity pattern graph G*P(V, E):
» Vi={xq,...,xn}
» {xi,xj} € E <= x;, x;j appear in the same term of f or in the same

constraint polynomial gi

® For each maximal clique of G*P(V, E), do

/k — Mr(Yy Ik)a Mr—d,-(giY7 lk)

[Waki et al., 2006]
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Term sparsity

® Term sparsity pattern graph G*P(V E):
» V=[x, ={1,xt, ... Xn, X{, ..., X}
» {x* xP} € E <= x*-xP = x>"B ¢ supp(f) UUT, supp(gi) U [x]?

[Wang & Magron & Lasserre, 2021]
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Correlative-term sparsity

@ Decompose the whole set of variables into cliques by exploiting

correlative sparsity
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Correlative-term sparsity

@ Decompose the whole set of variables into cliques by exploiting

correlative sparsity

@ Exploit term sparsity for each subsystem
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Problems to investigate

@ How to exploit different structures simultaneously when the POP

possesses multiple structures?
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Problems to investigate

@ How to exploit different structures simultaneously when the POP
possesses multiple structures?
@ How to detect global optimality and extract optimal solutions in the

presence of different structures?
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Global optimality conditions for CPOPs

rank M¢(y) = rank M;_4, (y)

n

M: 4 (y)  M: g (Ziy)

M: g (ziy) Mig,(|zi%y)
U

=0, Vi

global optimality
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Global optimality conditions under conjugate symmetry

conjugate symmetry
-
rank M(y) = rank M;_4, (y) = 2
I
global optimality

[Wang & Magron, 2023]
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Structures of the SOS problem

e Orthogonality: (Aj,A;) =0, Vi#j
@ Sparsity: A;, B; are very sparse

sup  cTx
X1,X2,x

s.t. (A,’,X1> + <B;,X2> +Cx=b;, i=1,...,m

X1,Xo =0
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Structures of the moment problem

o Low-rank: rank(X°P') < n
e Unit diagonal: diag(X) =1
e Unit trace: tr(X) =1
inf C, X
inf  (GX)
s.t. (Ai, X) =bj, i=1,....m

X >0
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Structures of the moment problem

o Low-rank: rank(X°P') < n
e Unit diagonal: diag(X) =1
e Unit trace: tr(X) =1
i (€
st.  (ALX)=b;, i=1....m
X >0

~~ manifold structure

[Wang & Hu, 2023]
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Solving large-scale polynomial optimization

POP structure Structured Moment-SOS ’
—|— *){ Solving large-scale POP
Moment-SOS structure Structured SDP ’
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Software

® TSSOS: based on JuMP, user-friendly, support

commutative/complex/noncommutative polynomial optimization
https://github.com/wangjie212/TSSOS
® ManiSDP: efficiently solve low-rank SDPs via manifold optimization

https://github.com/wangjie212/ManiSDP
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Binary quadratic programs

Table: Random binary quadratic programs min,cy_1 132 XxTQx, r = 2!

MOSEK 10.0 SDPNAL+ STRIDE ManiSDP
n Msdp Msdp . B . .
TImax time TImax time TImax time TImax time
10 56 1,256 4.4e-11 | 0.71 | 1.9e-09 | 0.65 | 4.7e-13 | 0.79 | 3.2e-15 | 0.14

20 211 16,361 2.7e-11 | 49.0 | 3.0e-09 | 28.8 | 7.4e-13 | 6.12 | 1.2¢-14 | 0.53

30 | 466 77,316 - - 1.7e-04 | 187 | 1.2e-12 | 65.4 | 2.4e-14 | 3.25
40 | 821 236,121 - - 2.1e-08 | 813 | 4.4e-13 | 249 | 4.1e-14 | 10.5
50 | 1,276 | 564,776 - - 1.6e-07 | 3058 | 7.8e-09 | 826 | 6.4e-14 | 31.1
60 | 1,831 | 1,155,281 - - * * 1.3e-12 | 2118 | 7.9e-14 | 94.3
120 | 7,261 | 17,869,161 - - - - - - 3.5e-13 | 30801

[Wang & Hu, 2023]
L. out of memory, *: >10000s
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The robust rotation search problem

® g: unit quaternion parametrization of a 3D rotation
o (z; € R% w; e R3)N .. N pairs of 3D points

ez =[zT,0]T e R*

® iy = [wT,0]T € R*

® 3;: threshold determining the maximum inlier residual

o N i [ 1B g0 o g7
min Zmln 52 ,1
i i
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The robust rotation search problem

Table: Results for the robust rotation search problem, r =2

MOSEK 10.0 SDPLR 1.03 SDPNAL+ STRIDE ManiSDP

N

TImax time TImax time TImax time TImax time TImax time
50 | 4.7¢-10 | 16.4 | 9.8e-03 | 12.5 | 1.1e-02 | 106 | 2.8e-09 | 18.3 | 6.6e-09 | 3.02
100 | 2.0e-11 | 622 | 3.6e-04 | 106 | 7.1e-02 | 642 | 3.1e-09 | 73.0 | 1.0e-09 | 22.9

150 - - 2.0e-03 | 291 | 8.0e-02 | 1691 | 4.3e-11 | 249 | 1.6e-09 | 33.5
200 - - 3.1e-02 | 459 | 8.3e-02 | 2799 | 1.4e-09 | 254 | 6.3e-10 | 65.3
300 - - 1.1e-03 | 1264 | 5.2e-02 | 3528 | 4.1e-10 | 1176 | 1.1e-09 | 188
500 - - * * * * 7.1e-09 | 5627 | 5.2e-10 | 601

[Wang & Hu, 2023]
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The AC-OPF problem

inf > (Cz;ﬂ?(Sf)2 + cuR(SE) + COk)

V;,S§eC ke
st.  ZV, =0,
1 u

SY < S{<S{, Vkeg,

v <|Vi| <, VieN,

Ykeq S =S = YilViP = Z(i,j)eE,—uE,.R Si, VieN,

< bEy (v . o
SU:(YU_|J)|‘1\-/’||2 _Ylj Tj7 V(I,_/)GE7
Vi

Si= (Vs —iDIVIE- Y3 %2, Wij) €k,

|S;| <s4, V(i,j)e EUER,

ijs

03 < £(ViV)) < e3¢, V(i,j)€E.
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The AC-OPF problem

CS (r=2) CS+TS (r=2)
" " Nsdp opt time gap Nsdp opt time gap
12 28 28 1.1242e4 | 0.21 | 0.00% 22 1.1242¢4 | 0.09 | 0.00%
20 55 28 1.7543e4 | 0.56 | 0.05% 22 1.7543e4 | 0.30 | 0.05%

72 297 45 4.9927e3 | 4.43 | 0.07% 22 4.9920e3 | 2.69 | 0.08%
114 315 120 7.6943e4 | 94.9 | 0.00% 39 7.6942¢4 | 14.8 | 0.00%

344 1325 253 - - - 73 1.0470e5 169 0.50%
348 1809 253 - - - 34 1.2096e5 201 0.03%
766 3322 153 3.3072¢6 | 585 | 0.68% 44 3.3042¢6 | 33.9 | 0.77%
1112 4613 496 - - - 31 7.2396e4 | 410 0.25%
4356 | 18257 378 - - - 27 1.3953e6 934 0.51%
6698 | 29283 | 1326 - - - 76 5.9858e5 | 1886 | 0.47%

[Wang & Magron & Lasserre, 2022]
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Nonlinear Bell inequality

® \(A1By + AB1)? + \(A1By — A B)? < 4
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Nonlinear Bell inequality

® \(A1By + AB1)? + \(A1By — A B)? < 4

sup  (s(xwy2) + s(ex1))® + (s(ayt) — s(xey2))?

Xi»Yj
st. x? =1y =1,[x,y]=0fori,j=12
® For classical models: 4

® For quantum commuting model: 4 (r = 3)

[Igor et al., 2023]
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Nonlinear Bell inequality

o NAx+ B+ By — A1B1 + AB1 + A1 Bo + A By) — A(A1)A(Bq) —
A(A2)A(B1) — A(A2)AM(B2) — A(A1)? — A(B2)?
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Nonlinear Bell inequality

® \(Ax+ B1+ By — A1B1 + A2B1 + A1Ba + A2 By) — A(A1)AN(By) —
A(A2)A(B1) — A(A2)AM(B2) — A(A1)? — A(B2)?

sup  s(x2) +<(y1) +<(y2) — s(xyr) +s(xay1) + s(x1y2) + s(xay2)

XisYj

—s(x1)s(y1) — s(x2)s(1) — s(x2)s(y2) — s(x1)* = (¥2)?

st. x? =1y =1[x,y]=0forij=12

® For classical models: 3.375
® For quantum commuting model: 3.5114 (r = 2)

[Igor et al., 2023]
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Ground state energy of quantum many-body systems

The Heisenberg chain is defined by the Hamiltonian:

N
H=Y Y ot

i=1 ac{x,y,z}
The ground state energy of the Heisenberg chain equals the optimum of

the NCPOP:

(

{ﬂg}<wmw

st. (09)?=1, i=1,...
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Structures of the Heisenberg model

(min, - (GIHIY)

s.t. (62)2=1, i=1,...,N,ac{x,y,z},

O'I?UJP:UJPO'?7 1Si#j§N7a7b€{X’y?Z}'

Q sparsity
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Structures of the Heisenberg model

(min, - (GIHIY)

s.t. (62)2=1, i=1,...,N,ac{x,y,z},

O'I?UJP:UJPO'?7 1Si#j§N7a7b€{X’y?Z}'

Q sparsity

© sign symmetry

Jie Wang Structured Polynomial Optimization UCSD, October 18, 2023 44 /51



Structures of the Heisenberg model

{\5353? (Y|H[y)

s.t. (62)2=1, i=1,...,N,ac{x,y,z},

a?af’ = af’a,?, 1<i#j<N,abe{xy,z}
Q sparsity
© sign symmetry

© translation symmetry
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Structures of the Heisenberg model

{\5353? (Y|H[y)

s.t. (62)2=1, i=1,...,N,ac{x,y,z},

0?0}’ = af’a,?, 1<i#j<N,abe{xy,z}
Q sparsity
© sign symmetry

© translation symmetry

© permutation symmetry
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Structures of the Heisenberg model

{\5353? (Y|H[y)

s.t. (62)2=1, i=1,...,N,ac{x,y,z},

0?0}’ = af’a,?, 1<i#j<N,abe{xy,z}
Q sparsity

@ sign symmetry

© translation symmetry

© permutation symmetry

© mirror symmetry
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Ground state energy of the Heisenberg chain

e *® Q‘““"":" -------- ‘:::::::::::::::::‘"""""""“"’
ZE -0.445 _.*
&6
o)
5
o —0.450
=
n
= -+~ DMRG PBC
! -0.455
&5 DMRG OBC Rescaled (Anderson)
~+- SDP Lower Bound
-0.460
20 40 60 80 100

N

Figure: Ground state energy of the Heisenberg chain [Wang et al., 2023]
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Measure Positive

theory polynomials

Polynomial

optimization

Applications
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Conclusions

@ Polynomial optimization provides a unified scheme for global

optimization of various non-convex problems.

@ The scalability of the Moment-SOS hierarchy can be significantly

improved by exploiting plenty of algebraic structures.

@ There are tons of applications in diverse fields!
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Thank Youl

https://wangjie212.github.io/jiewang
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